
Summary This application note describes three ways to implement the Y’CrCb Color Space to R’G’B’
Color Space conversion necessary in many video designs. The tick marks on red, green, blue,
and Luma, assume the components are in the gamma corrected space. No gamma correction
is applied to color difference signals Cr and Cb.

The first implementation shows how to simply write behavioral Verilog to describe the
conversion equations, and then synthesize to a silicon target. This technique infers
MULT_ANDs for the constant coefficient multiplier.

The second implementation uses the Xilinx feature of embedded RAM functioning as a Look-
up Table (LUT), or ROM, to store all possible intermediate results for the terms in the three
equations. Since three of the seven total terms are identical, only five ROMs are needed. The
depth of the ROM, 1K, is driven by the color component bit width of 10 bits or studio quality
video. To target Spartan-II devices, either add more ROMs or use commercial 8-bit video
instead of 10-bit studio quality.

The third implementation makes use of the embedded multiplier in the Virtex™-II series of
devices to perform the color space conversion. Again, only five multipliers are used. The Verilog
model using the embedded multiplier is synthesized, placed, and routed. The design has a
clock performance of 185 MHz after place and route, using simple constraints.

Color Space
Definition

The human eye has three types of photoreceptor cells called cones. Stimulating the cells
causes the human brain to “perceive” color. Colors can be specified, created, and visualized
using different color formats or “color spaces.”

Different color spaces have historically evolved for different applications. In each case, a color
space was chosen for reasons that may no longer be applicable. Maybe a choice was made on
a particular color space because the math elements needed to process were simpler or faster.
Maybe a certain choice was better because it required less storage and bandwidth on digital
buses.

Whatever historical reasons caused color space choices in the past, the convergence of
computers, the Internet, and a wide variety of video devices, all using different color
representations, is forcing the digital designer today to convert between them. The objective is
to have a common color space that all inputs are converted to before algorithms and processes
are executed. The converters are useful for a number of markets, such as image processing
and filtering. Their basic function is to convert from one color space to another. This application
note describes one such conversion.

Application Note: Virtex-II Series

XAPP283 (v1.1) April 22, 2001

Color Space Converter
Author: Latha Pillai

R

XAPP283 (v1.1) April 22, 2001 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Color Space Converter
R

Three Color
Space
Examples

RGB Color Space
RGB color space is a simple and robust color definition used in computer systems and the
Internet to help ensure that a color is correctly mapped from one platform to another without
significant loss of color information. RGB uses three numerical components to represent a
color. This color space can be thought of as a three-dimensional coordinate system whose
axes correspond to the three components, R or red, G or green, and B or Blue. RGB is the color
space that computer displays use. RGB corresponds most closely to the behavior of the human
eye.

RGB is an additive color system. The three primary colors red, green, and blue are added to
form the desired color. Each component has a range of 0 to 255, with all three 0s producing
black and all three 255s producing white.

Y’CbCr Color Space
Y’CbCr Color Space was developed as part of the Recommendation ITU-R BT.601 for
worldwide digital component video standard and is used in television transmissions. Y’CbCr is
a scaled and offset version of the YUV color space where Y represents luminance (or
brightness), U represents color, and V represents the saturation value. Here the RGB color
space is separated into a luminance part (Y’) and two chrominance parts (Cb and Cr).

As mentioned earlier, the historical reasons for this choice, over R’G’B’, were to reduce storage
and bandwidth. Since the eye is more sensitive to change in brightness than change in color,
the reduction in bandwidth requirement seemed a valid trade for little or no visual difference.

Engineers found that 60 to 70 percent of luminance or brightness is found in the “green color.”
In the chrominance part Cb and Cr, the brightness information can be removed from the blue
and red colors.

To generate the same color in the RGB format, all three color components should be of equal
bandwidth. This requires more storage space and bandwidth. Also, processing an image in the
RGB space is more complex since any change in the color of any pixel requires all the three
RGB values to be read, calculations performed, and then stored. If the color information is
stored in the intensity and color format, some of the processing steps can be made faster.

The result is that Cb and Cr provide the hue and saturation information of the color and Y'
provides the brightness information of the color. Y' is defined to have a range of 16 to 235 and
Cb and Cr have a range of 16 to 240 with 128 equal to zero. Because the eye is less sensitive
to Cb and Cr, engineers did not need to transmit Cr and Cb at the same rate as Y'. Less storage
and bandwidth was needed, resulting in design costs being reduced.

Converting from
Y’CrCb to
R’G’B’

A color in the Y'CrCb color space is converted to the RGB color space using the following
equations:

Where R'G'B' are gamma-corrected RGB values and Y', Cr, and Cb are 8-bit inputs.

For 10-bit inputs, the equations are:

Figure 1 shows a direct mapping of the above three equations. Notice that three of the seven
terms are duplicates. This term is computed once and fed to the output adders for the Y', Cr,
and Cb results.

R’ 1.164 Y’ 16–() 1.596 Cr 128–()+=

G' 1.164 Y' 16–() 0.813() Cr 128–()– 0.392 Cb 128–()–=

B' 1.164 Y' 16–() 2.017 Cb 128–()+=

R’ 1.164 Y’ 64–() 1.596 Cr 512–()+=

G' 1.164 Y' 64–() 0.813() Cr 512–()– 0.392 Cb 512–()–=

B' 1.164 Y' 64–() 2.017 Cb 512–()+=
2 www.xilinx.com XAPP283 (v1.1) April 22, 2001
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Virtex-II
Implementation
Examples

The high density, on-chip memory in the Virtex-II designs increase overall system bandwidth by
providing fast and resource-efficient FIFO buffers, shift registers, and CAMs. With embedded
multipliers and improved arithmetic functions, Virtex-II solutions deliver over 600 billion MACs/s
of Xtreme DSP performance.

There are up to 192 18 x 18 signed multipliers in a single device, supporting up to 36-bit signed
multiplications. Cascading these multipliers supports even larger numbers. The multipliers can
be combinatorial or pipelined, running between 140 MHz and 250 MHz depending on bit width.
These features make Virtex-II devices the ideal choice for implementing the color space
converter.

Verilog Examples

As mentioned at the start of this application note, there are three different implementation
examples. The following are the results of synthesizing and implementing each example.

Three different implementation examples are detailed in this application note. A fourth example
is a CoreGen distributed arithmetic approach. The CoreGen approach is not implemented, but
estimated results are given. The following sections show the results of synthesizing and
implementing each example.

Implementation Using Behavioral Verilog (gen_model.*)
In this implementation, the basic Y’CrCb2R’G’B’ conversion equations are synthesized using
Synplicity. All the signals are registered at the input and at the output. The synthesized EDIF file
is then placed and routed using Design Manager. A timing constraint of 10 ns was given to the
place and route tool. The implementation results are listed in the following tables.

Notes:
1. See Verilog file, gen_model.v.

Figure 1: Block Diagram Showing Math Elements

Y'[7:0]

Cr[7:0]

Cb[7:0]

CE

CLK

+

+

+

X

X

X

X

X

+

+

+ Limit

Limit

Limit R'

G'

B'

x283_01_101701

1.164

1.596

-0.813

-0.392

2.017-128

-128

-16
XAPP283 (v1.1) April 22, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Design Summary

Implementation Using Block RAM as Look-Up ROM (ram_model.*)
Y’, Cb, and Cr are 10-bits wide and so have a range of 0 to 1023. This would give the following
values for each of the terms in the R’,G’, and B’ equations:

Each of these terms is calculated for all the possible input values. The results can then be
stored in a 16-bit wide, 1024-deep RAM. Five RAMs are used for the five terms. The address
lines to the RAMs are the respective input signals that are used in each of the terms. The output
of the RAM is the data stored in the location addressed by the input signals, Y’, Cr, and Cb. The
output of the RAMs are added using an adder. The block diagram and the implementation
results for this method are shown in Figure 2.

Table 1: Behavioral Implementation Design Summary

Device LUTs FFs Ports Performance

XC2V500-5
(slowest speed grade)

258 52 68 14 ns / 71 MHz
(inputs and outputs registered

XC2V500-5
(slowest speed grade)

260 85 68 9.4 ns / 106 MHz
(one intermediate pipe stage)

1.164 Y’ 16–() 1.164 0 16–()to 1023 16–()[] 1.164 16– to1007()==

1.596 Cr 128–() 1.596 0 128–()to 1023 128–()[] 1.596 128– to 895()==

0.813 Cr 128–() 0.813 0 128–()to 1023 128–()[] 0.813 128– to 895()==

0.392 Cb 128–() 0.392 0 128–()to 1023 128–()[] 0.392 128– to 895()==

2.017 Cb 128–() 2.017 0 128–()to 1023 128–()[] 2.017 128– to 895()==
4 www.xilinx.com XAPP283 (v1.1) April 22, 2001
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Implementation Results Using Embedded Multiplier in Virtex-II Device

The model with the instantiated block RAM was synthesized using Synplicity and the resulting
EDIF file was placed and routed using Design Manager. A timing constraint of 5 ns was given
to the place and route tool. The implementation results (push button) for the color space
converter using the instantiated block RAM are as follows:

Notes:
1. See Verilog file, ram_model.v.

Figure 2: Implementation Using RAM

Y'

Cr

Cb

CLK

RST

16-bit 1024
deep RAM

1.164(Y'-16)

16-bit 1024
deep RAM

1.596(Cr-128)

16-bit 1024
deep RAM

0.392(Cb-128)

16-bit 1024
deep RAM

0.813(Cr-128)

16-bit 1024
deep RAM

2.017(Cb-128)

+ R'

G'

B'

x283_02_101701

+

+

Table 2: Block RAM Implementation Design Summary

Device LUTs FFs RAM Ports Performance

XC2V500-5
(slowest speed grade)

60 10 5 68 9 ns / 103 MHz
(inputs and outputs registered
XAPP283 (v1.1) April 22, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Implementation Using Embedded Multiplier (mult_model.*)
The block diagram for the implementation using embedded multiplier is as shown in Figure 3. A
two’s complement circuit is provided to take care of the negative results for (Y'–16),
(Cr –128),and (Cb –128) values. The two’s complement circuit can be omitted if the inputs are
assumed to be in two’s complement format.

Figure 3: Implementation Using Instantiated Multiplier

Y'[9:0] Cr[9:0] Cb[9:0]

Y-16
ADD/SUB

Cr-128
ADD/SUB

Cb-128
ADD/SUB

Two's
Complement

Two's
Complement

Two's
Complement

1.164 1.596 0.392

P1 P2 P4

P1_int

0.813 2.017

P3 P5

P3_int P2_int P5_int

P4_int

P1 + P2
ADDER

P1 - P3 - P4
ADDER

P1 - P3
ADDER

P1 + P5
ADDER

R int1

G int1

B int1

R'[20:9] G'[20:9] B'[20:9]
x283_03_101701
6 www.xilinx.com XAPP283 (v1.1) April 22, 2001
1-800-255-7778

http://www.xilinx.com

Color Space Converter
R

Implementation Results Using Embedded Multiplier in Virtex-II Device

The model with the instantiated multiplier was synthesized using Synplicity and the resulting
EDIF file was placed and routed using Design Manager. A timing constraint of 5 ns was given
to the place and route tool. The implementation result (push button) for the color space
converter using the instantiated multiplier is as follows:

Notes:
1. See Verilog file, mult_model.v.

Design Summary

Reference Design

The VHDL and Verilog reference designs for this application note are available on the Xilinx
web site in a .zip file:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp283.zip

Conclusion The results of the synthesis and implementations demonstrate how the three examples trade
off one math resource for another. The behavioral Verilog describing the conversion equations
uses a resource available in Virtex, Virtex-E, and Virtex-II devices, known as “MULT_AND” to
form the basis of the multiplies in the equations. No block RAM or embedded multipliers are
consumed. In the second example, the math resource used is block RAM/ROM, again available
in all Virtex families. Finally, the Virtex-II family now provides the most flexible math resource for
DSP in the form of an embedded, high-speed, two’s complement multiplier.

Revision
History

The following table shows the revision history for this document.

Table 3: Embedded Multiplier Implementation Design Summary

Device LUTs FFs
Mult

18 x 18 Ports Performance

XC2V500-5
(slowest speed grade)

131 177 5 68 8.9 ns / 111 MHz

Date Version Revision

07/11/01 1.0 Initial Xilinx release

04/22/02 1.1 Updated Figure 1 and Figure 2. Changed implementation
summaries with newer data. Updated to include Virtex-II Pro
devices. Modified the 10-bit equation on page 2.
XAPP283 (v1.1) April 22, 2001 www.xilinx.com 7
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp283.zip
http://www.xilinx.com

	Summary
	Color Space Definition
	Three Color Space Examples
	RGB Color Space
	Y'CbCr Color Space

	Converting from Y'CrCb to R'G'B'
	Virtex-II Implementation Examples
	Verilog Examples
	Implementation Using Behavioral Verilog (gen_model.*)
	Design Summary

	Implementation Using Block RAM as Look-Up ROM (ram_model.*)
	Implementation Results Using Embedded Multiplier in Virtex-II Device

	Implementation Using Embedded Multiplier (mult_model.*)
	Implementation Results Using Embedded Multiplier in Virtex-II Device
	Design Summary
	Reference Design

	Conclusion
	Revision History

