
Summary By temporarily storing and providing access to video data in frame buffers and line buffers,
video algorithms can utilize scene coherence in digital signal processing algorithms. This
application note provides technical details surrounding temporary storage implemented in
Xilinx FPGAs and shows how to effectively process video using the MicroBlaze™ and
Multimedia development board.

Introduction There are many graphics and video systems using Application Specific Standard Product
(ASSP) devices to implement a line buffer function. There are also special memory devices
specifically available for buffering video frame data. This application note helps designers
integrate these and many other video functions inside a single Virtex™ or Spartan™-II device.
It also describes how to replace expensive special-purpose memories used for frame storage,
by interfacing to standard inexpensive memory devices.

There are many ASSP video line buffer and frame buffer memory devices. Here are just a few:

• Logic Devices LF3304 4K x 12 Dual Line Buffer/FIFO

• Logic Devices LF9501 1280 x 10-bit Programmable Line Buffer

• Logic Devices LF9502 2048 x 10-bit Programmable Line Buffer

• Logic Devices LF3312 is a 12.5 Mb Frame Buffer memory and FIFO

• NEC µPD485506 5K x 16 Line Buffer

The line buffers have about the same density as a Virtex-II block RAM. To architect a video or
graphics system in a Xilinx FPGA, the following should be considered:

1. How do real objects, represented as video data, exhibit coherence on several levels?
What does this mean to video, graphics, and image processing?

2. How is video data accessed for display and implications on processing?

3. What are the data rates and sizes for various video components?

4. What is the best way to implement the necessary designs in a Xilinx FPGA?

This application note touches on all four of these topics. Two versions of line buffers, one using
block RAM and one using SRL16s are discussed as well as two versions of a frame buffer
interface, namely ZBT RAM and DDR SDRAM. The reference designs will use both line buffers
interfaced to a ZBT RAM controller. The DDR SDRAM controller is available in a separate
application note (XAPP200).

Application Note: MicroBlaze and Multimedia Development Board

XAPP296 (v1.0) May 21, 2002

Video Scene Coherence, Frame Buffers,
and Line Buffers
Author: Gregg Hawkes

R

XAPP296 (v1.0) May 21, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp200.pdf
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Video Scene Coherence, Frame Buffers, and Line Buffers
R

"Live" 3D
Objects

2D Video Representations Exhibit Coherence
Coherence is explained in the book "Computer Graphics Principles and Practice"[1] quoting
Sutherland, Sproull, and Schumacher[2]:

"Coherence – the degree to which parts of an environment or its projection exhibit local
similarities. Environments typically contain objects whose properties vary smoothly from
one part to another. In fact, it is the less frequent discontinuities in properties (such as
depth, color, and texture) and the effects that they produce in pictures, that let us
distinguish between objects."

When considering natural physical properties and how those properties map into screen space
representations, video and graphics designers find coherence in the horizontal, vertical, and
temporal domains very interesting.

A fourth domain pointed out by Charles Poynton in "Digital Video" is termed spatial. The spatial
domain concept is a screen area algorithm with no ability to be separated into its horizontal and
vertical parts. Some computer graphics anti-aliasing algorithms, for example, fall into this
category. There are many other domains not covered in this application note. Figure 1 shows a
graphic representation of these four domains.

Video Data
Considerations

Displaying Video Data
Video is physically drawn on a CRT by sweeping an electron beam across the surface from left
to right. As it sweeps the surface, the beam energizes specific color triads one video line at a
time, defining small distinctly colored picture elements known as PELs or pixels. When the end
of a line or far right-hand side of the screen is reached, the beam is turned off or blanked and
returned to the starting point, only moved down by a single line width. After the entire CRT is
swept in this fashion, left to right and top to bottom, the beam is turned off and not only returned
to the left side of the screen, but also to the top, completing the single frame or field. Drawing
many frames very fast allows the human visual system to integrate the individual pixels into
pictures and integrate the pictures providing scene motion (a temporal effect).

Figure 1: Coherence Domains

Horizontal

Vertical

Spatial

Temporal

x296_01_091401
2 www.xilinx.com XAPP296 (v1.0) May 21, 2002
1-800-255-7778

http://www.xilinx.com

Video Scene Coherence, Frame Buffers, and Line Buffers
R

The way video is drawn on a CRT, since pixels can exhibit coherence in various domains, leads
to the control and data circuits. In other words, data is processed several localized pixels at a
time, several localized scan lines at a time, or several localized frames at a time. The algorithms
must have access to several adjacent pixels, scan lines, or frames. Memories must also
accommodate these requirements.

Video Data Rates and Data Sizes
The size of video data elements and data rates for broadcast video and image processing are
shown in Table 1. Video components of interest are the length of the video line in terms of
pixels, the number of video lines in the vertical screen dimension, and the number of frames
drawn per second.

Notice the bit-serial rates in the last column of data. These rates are used in Serial Data
Interface (SDI) video transfer standards. The following application notes address SDI:

• XAPP625: Serial Digital Interface (SDI) Video Decoder Flywheel

• XAPP288: Serial Digital Interface (SDI) Video Decoder

• XAPP298: Serial Digital Interface (SDI) Video Encoder

• XAPP299: Serial Digital Interface (SDI) Ancillary Data and EDH Processors

• XAPP247: Serial Digital Interface (SDI) Video Physical Layer Implementation

In addition to the numbers listed in Table 1, it is important to know, based on the algorithms,
how many pixels, lines, or frames an algorithm needs to access. For example, a 422 to 444
conversion algorithm can access 24 consecutive pixels to compute a resulting pixel.
De-interlacing lines can access four separate lines to compute a resulting line.

Some algorithms need to access a frame more than once in the allotted frame time. In many
cases, more than color is stored in a pixel requiring even higher bandwidth.

Figure 2: NTSC Video Interlaced Scan Process
x296_02_091401

Line 285

Line 286

Line 287

Line 523

Line 524

Line 23

Line 24

Line 25

Line 261

Line 262

Line 525

Odd Field (Field Two)Even Field (Field One)

Table 1: Bandwidth and Data Size Calculations for Broadcast Digital Video (Y’CrCb 4:2:2)

Video Format Active Pixels Total Pixels
Pixels per

Frame
Frames per

Second
Pixels per

Second Serial Bit Rate

NTSC 720 x 485 858 x 525 450,450 30 13.5 M 270 Mb/s

PAL 720 x 576 864 x 625 540,000 25 13.5 M 270 Mb/s

HDTVi 1920 x 1035 2200 x 1125 2.475 M 30 74.25 M 1.485 Gb/s
XAPP296 (v1.0) May 21, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp625.pdf
http://www.xilinx.com/xapp/xapp288.pdf
http://www.xilinx.com/xapp/xapp298.pdf
http://www.xilinx.com/xapp/xapp299.pdf
http://www.xilinx.com/xapp/xapp247.pdf

Video Scene Coherence, Frame Buffers, and Line Buffers
R

Necessary Video Storage Components

Registers

Algorithms using localized groups of pixels along a given line are simple, using coherence in
the horizontal direction. XAPP294: Video Digital Component Conversion 4:2:2 to 4:4:4,
describes the formation of missing Cr or Cb components, based on the filter contributions from
adjacent pixels. One can easily hold 2, 4, 16, or more pixels in flip-flops and not tax today’s
FPGA resources. In fact, the largest filter mentioned in the application note requires 24 pixels
or 240 flip-flops, assuming 10-bit pixels. Equation 3:

Cb[i] = (-4⋅(Cb[i–23] + Cb[i+23]) + 6⋅(Cb[i–21] + Cb[i+21])
– 12⋅(Cb[i–19] + Cb[i+19]) + 20⋅(Cb[i–17] + Cb[i+17])
– 32⋅(Cb[i–15] + Cb[i+15]) + 48⋅(Cb[i–13] + Cb[i+13])
– 70⋅(Cb[i–11] + Cb[i+11]) + 104⋅(Cb[i–9] + Cb[i+9])
– 152⋅(Cb[i–7] + Cb[i+7]) + 236⋅(Cb[i–5] + Cb[i+5])
– 420⋅(Cb[i–3] + Cb[i+3]) + 1300⋅(Cb[i-1] + Cb[i+1]))/2048;

Figure 3 shows a block diagram implementing the above set of equations. As pixels march
through the pipeline, the "phantom pixel" is calculated based on the nearest neighbors along
the scan line, thus taking advantage of horizontal coherence. In other words, any given pixel will
typically be a similar color to the adjacent pixels in the scan line, so by applying a FIR filter
function to those pixels, a "phantom" pixel value can be calculated.

Figure 3: 422 to 444 FIR Filter Uses Horizontal Scan-Line Coherency

x296_03_120701

24
Limit

10

−4
10

Missing
Cb or Cr

11

Cb[i−23]

10
Cb[i+23]

Cb[i−21]

Cb[i−3]

Cb[i−1]

Cb[i+21]

Cb[i+1]

Cb[i+3]

+6
10

11
10

10

10

+1300
10

10

Real
Cb or Cr

Input

Real
Cb or Cr
Output

12 Adders
12 Multipliers

−420

22

11

11
4 www.xilinx.com XAPP296 (v1.0) May 21, 2002
1-800-255-7778

http://www.xilinx.com/xapp/xapp294.pdf
http://www.xilinx.com

Video Scene Coherence, Frame Buffers, and Line Buffers
R

Line Buffers

The amount of storage increases for vertical coherence. Figure 4 shows that in order to look at
a vertical stripe of four pixels, thereby exploiting vertical coherence, four lines need to be
stored. Conceptually, the line buffer is a synchronous array of registers 8 bits or 10 bits wide
(pixel width) and 720 deep (active line length).

This is easily done in Virtex or Spartan-II families by using either block RAM or LUTs configured
as SRL16s. For comparison, Table 2 shows the commercial ASSP device densities versus
Virtex-II block RAM or SRL16 implementations.

In the Virtex-II architecture, a standard definition line requires only one block RAM running at a
rate of 27 MHz. The two line de-interlace algorithm is an example. You can read the details of
how the development board does de-interlace in XAPP285: Video Scan Line De-interlacing.
Figure 5 shows the most straightforward implementation of the two line de-interlace. A simpler
version, using only a one-line buffer, is shown in Figure 6. This implementation produces two
lines at once requiring the output to be twice the data rate as the input. The design adds two
small FIFOs that accept the lines at the normal line rate. The output of each FIFO can be run
at twice the data rate, filling the ZBT frame buffer appropriately. The most efficient
implementation for the small FIFOs is from LUTs used as dual-port memory, a feature found
only in Xilinx FPGAs.

Figure 4: Line Buffers Allow Algorithms to See Vertical Stripe Pixels.

x296_04_091401

Line 1

Line 1

Line 1

Line 1

Table 2: Memory Solutions for Video Line Buffers

Manufacturer ASSP Memory Types Organization
Virtex-II Block RAM

Utilization
Virtex or Spartan-II

SRL16s

Logic Devices
LF3304

Video Line Buffer 48K bits 4K x 12 2.7 3000 LUTs

NEC485506 Video Line Buffer 80K bits 5K x 16

10K x 8

4.4 5000 LUTs

Logic Devices
LF9501

Video Line Buffer 15K bits 1290 x 12 0.8 938 LUTs

Logic Devices
LF9502

Video Line Buffer 24 K bits 2048 x 12 1.3 1500 LUTs

NTSC Line
720 pixels
Y’CrCb

Video Line Buffer 11520 bits 1440 x 8 1 each
2K x 9

720 LUTs
XAPP296 (v1.0) May 21, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp285.pdf

Video Scene Coherence, Frame Buffers, and Line Buffers
R

Figure 7 and Figure 8 show block diagrams for the Line Buffer using block RAM and SRL16s
respectively. Notice that the Line Buffer in SRL16s requires no addressing or special control.

Figure 5: Scan Line De-Interlacing Using Two-Line Averaging

Figure 6: Alternate Implementation of Scan Line De-Interlacing Using Two-Line
Averaging and One-Line Buffer

Figure 7: Video Line Buffer (SRL16 Implementation)

x296_05_120701

10
pix_dout_A

pix_dout_B

pix_in_A

10

pix_wadr

pix_wadr

pix_wadr

Line Buffer A

pix_radr

pix_radr

pix_radr

1010

pix_in_B

Line Buffer B

1010

10

11
wire
shift

Phantom Line

x296_06_091401

Scan Line N

Phantom
 Line N-1

Scan Line N-2

Pixel adr

Line Buffer

Write Address

Pixel In Pixel Out

Read Address

10

10

wire
shift

10

11

FIFO

FIFO

To
ZBT

Line
Select

(Pixel A + Pixel B) / 2

Note: Sometimes
two lines are read
from here without
alternating

Scan Line N-2

Scan Line N

Phantom Line N-1

x296_07_120701

10
OutIn

Clk

SRL16

OutIn
Clk

SRL16

10 10
OutIn

Clk

SRL16

10

FORCE_F
(16 deep)

FORCE_F
(16 deep)

FORCE_R
(remainder)

Notes:
1. 720 pixels deep = 45 SRL16s (set at FORCE_F).
2. 858 pixels deep = 53 SRL16s (set at FORCE_F) + 1 (set at FORCE_9).
6 www.xilinx.com XAPP296 (v1.0) May 21, 2002
1-800-255-7778

http://www.xilinx.com

Video Scene Coherence, Frame Buffers, and Line Buffers
R

Frame Buffers

These examples show that a basic limitation to leveraging a scene’s coherence is how far the
data exhibiting the coherence is displaced in time. For adjacent pixels that are not displaced
very far, the process is easy, requiring only a few flip-flops. For two pixels at the same location
in adjacent scan lines, the problem is more difficult, requiring an entire line of storage. For two
pixels at the same location in two different frames, still more storage is needed. This is one use
of the frame buffer. Of course, just storing the pixels waiting their time to be displayed is a
minimum requirement.

Some spatial algorithms can be separated into their horizontal and vertical components.
Compression is an example of an algorithm that can usually be separated. Compression
algorithms look for spatial and temporal coherence to reduce the number of bits communicated
or stored. XAPP610 describes a one-dimensional DCT/IDCT. This algorithm can be run in
multiple dimensions, independent of each other, to reduce an image into mostly zeros by
removing the high frequency spatial components.

On the other hand, anti-aliasing, is an algorithm in computer graphics leveraging spatial
coherence that requires a block of XY data and, therefore, cannot be easily separated. Aliasing
is a visual artifact of raster systems that arises from the sampling error introduced by any digital
system sampling a continuous function. If graphics and live video are mixed, this issue will need
to be addressed in the development board.

Figure 9 illustrates smoothing the “jaggies” with an anti-aliasing algorithm. The polygon (black)
and background color (white) are augmented by a third color, a combination of the two (gray) to
the polygons edge. The human visual system integrates the three colors giving the effect of a
"smoother" edge. Many of the anti-aliasing algorithms require an "area" of pixels.

Figure 8: Video Line Buffer (Block RAM Implementation)
x296_08_120701

10

Pixel Read
Address

Pixel OutPixel In
Block RAM

(Read Before Write Mode)

10

10

Notes:
1. Clock in and clock out are the same.
2. Write data to same location as read (read-before-write mode).
3. Could force frame buffer to be random access.

Pixel Write
Address

Pixel Address Counter
(Modulo Line Length)Clk

CE
XAPP296 (v1.0) May 21, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp610.pdf

Video Scene Coherence, Frame Buffers, and Line Buffers
R

Hidden surface removal is another algorithm requiring multiple reads and writes to the same
pixel and, therefore, very high bandwidth in a frame buffer. Hidden surface removal becomes a
problem when an image is artificially produced. In real life, of course an object that is closer and
is opaque occludes an object that is farther away from a given eye point. This is not the case in
3D graphics mathematics. And the problem grows when mixing real life images and artificial
computer-generated images. Figure 10 shows how artificial objects might “occlude” each other
and how many “pixel accesses” it would take to resolve the conflicts.

Multi-Frame
Algorithms

Memory Density and Bandwidth Requirements
Hidden surface removal and other algorithms leveraging temporal or spatial coherence require
very high memory bandwidth. It is not uncommon to have bandwidth requirements that are 10
times the number of pixels in the frame times the frame rate.

Table 3 lists the three most widely used memories for frame buffer design. The density is shown
as the number of high definition frames (2.16M pixels x 20 bits = 43 Mb) that can be stored.
The bandwidth is expressed in pixel touches where a pixel touch is defined as accessing every
pixel in the frame once per frame time (43 Mb x 30 fields/s = 1.3 Gb/s).

Figure 9: Video and Graphics Unified Frame Buffer

Figure 10: Video and Graphics Unified Frame Buffer

x296_09_052002

Actual Polygon Edge

Notes:
1. Anti-Aliasing May Require Frame Buffer with Pixel Touch Ratio > 1

x296_10_120701

Each Pixel Here
Sees 3 Pixel Accesses

Each Pixel Here
Sees 1 Pixel Access

Each Pixel Here
Sees 2 Pixel Accesses

Z-buffer stores distance to
eye for every pixel
8 www.xilinx.com XAPP296 (v1.0) May 21, 2002
1-800-255-7778

http://www.xilinx.com

Video Scene Coherence, Frame Buffers, and Line Buffers
R

The DDR SDRAM is the most optimum choice for a frame buffer in terms of cost, density, and
bandwidth. For an algorithm that needs to access every pixel in the frame buffer approximately
nine times per frame (i.e., nine pixel touches), one DDR SDRAM, two ZBT RAMS, or one QDR
SRAM are needed. For an algorithm that needs to hold about nine frames of data, 43 QDR
SRAMs, 24 ZBT RAMs, and six DDR SDRAMs are needed.

Frame Buffer
Addressing

Frame buffer addressing is very dependent on what types of data are stored as well as how
algorithms need the data presented. A very common requirement is to convert pixels in
different positions along a line and at different line counts into memory addresses. One way to
think about this is to compose the memory address as:

Pixel Count x Line Count = Memory Address

It should also be mentioned that external memories can be operated in more efficient block
transfer modes by taking the data in and out of video algorithms using a Virtex-II block RAM as
an intermediate FIFO. This allows the external memories to run at optimum device speed
(Figure 11).

Table 3: Memory Solutions For Video Frame Buffers

Manufacturer Memory Types Organization
Density in HD

Frames and Mbs

Bandwidth in HD
Pixel Touches and

bits/second

Figure of Merit
Cost/BW x Density

(low is good)

Micron
MT54V512

167 MHz
QDR, DDR, SRAM

512K x 18
(2 ports)

0.21 HD Frames
(9.2 Mb)

9.2 Pixel Touches
(12 Gb/s)

$30/(0.21 x 9.2) = 15.53

IDT ZBT
MT55L512Y36P

167 MHz, not DDR 512 x 36 0.37 HD Frames
(16 Mb)

4.6 Pixel Touches
(6 Gb/s)

$60/(0.37 x 4.6) = 35

Micron
MT46V2M32

64 Mb, 200 MHz
DDR SDRAM

2M x 32 1.49 HD Frames
(64 Mb)

9.8 Pixel Touches
(12.8 Gb/s)

$12/(1.49 x 9.8) = 0.82

Notes:
1. ZBT has fast read-modify-write.
2. ZBT has simple interface.
3. Current pricing through distribution.
4. Video wants x30-bit-wide or x24-bit-wide minimum.

Figure 11: Memory Hierarchy

x296_11_121301

Horizontal
Coherence

Vertical
Coherence

Temporal
Coherence

DDR
SDRAM

ZBT
SRAM

QDR
SRAM

16k x 1
8k x 2
4k x 4
2k x 9

1k x 18
512 x 36

True-Dual Port
Synchronous
Block RAM

High-Performance
External Memory Interfaces

Virtex-II
Memory Hierarchy

Flip Flops or
Distributed RAM

16 x 1
16 x 1
16 x 1
16 x 1

16 x 1
16 x 1
16 x 1
16 x 1
XAPP296 (v1.0) May 21, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Video Scene Coherence, Frame Buffers, and Line Buffers
R

Features Used The high-speed block RAMs and SRL16s in Virtex and Spartan-II families form excellent line
buffers as used in the previous examples. As seen in the drawings, 10-bit wide data for each
video component Y’CrCb is used in the development board designs. A line of video is 858
pixels for NTSC or 864 pixels for PAL (including blanked pixels). Control is simplified if the
blanking pixels are just handled like visible pixels. A Virtex-II block RAM (18K bit) can be
configured in many widths. By picking a width of 18, three each, 10-bit components (Y’ or Cr or
Cb), 1024 pixels deep, with two block RAMS can be accommodated. A system speed of
27 MHz on the input can easily be supported by even the slowest Virtex speed grades.

Whether buffering data from external memories or operating as Line Buffers, Virtex and
Spartan-II block RAMs can handle the two focus frequencies for video. The SDTV rates of
13.5 MHz per pixel (27 MHz per digital component) and HDTV rates of 74.25 MHz (148.5 MHz
per digital component) are well within reach for many of the Virtex and Spartan-II devices.

Reference
Design

The reference design demonstrates two separate implementations of the two-line average, de-
interlacing problem shown in Figure 6. The implementations require us to store a minimum of
one line worth of information. The first implementation uses a SRL16 line buffer (Figure 7) while
the second uses a block RAM line buffer (Figure 8). Both interface to a FIFO designed in dual-
port CLB memory to cross the different pixel clock and memory clock domains. The output of
the FIFO drives a ZBT frame buffer via a ZBT RAM controller. Other Xilinx reference designs
are available for a DDR SDRAM and ZBT RAM.

Table 4 shows the results after “place and route” of the various modules implemented in this
application note. All results were obtained using the Verilog versions of the designs with Xilinx
ISE version 4.1i using XST as the synthesis tool. Results using the VHDL files are not shown,
but are essentially identical. Virtex-II device results are for a –5 speed grade device.
Spartan-II device results are for a –6 speed grade device.

Conclusion Line buffers for current video standards (HDTV and SDTV) are easily designed with the
supporting block RAM or SRL16s in Xilinx FPGAs. The density of the block RAMs or SRL16
implementations support the number of pixels or pixel components per line. The speed of the
block RAMs easily meet the performance requirements of the video standards. Line buffer to
external frame buffer interfaces are made easier by small FIFOs implemented in Xilinx CLB,
dual-port synchronous RAM. Demanding frame buffer interfaces can also be supported by
Xilinx FPGAs as shown in the reference design with a ZBT interface or a DDR SDRAM
interface.

Table 4: Reference Design Results

Design Name
Size

LUTs/FFs

Speed
Virtex-II
Device

Speed
Spartan-II

Device
Ports

Power
Consumption
10 www.xilinx.com XAPP296 (v1.0) May 21, 2002
1-800-255-7778

http://www.xilinx.com

Video Scene Coherence, Frame Buffers, and Line Buffers
R

References 1. Logic Devices Incorporated, LF3304 Dual Line Buffer/FIFO Data Sheet.
10/27/1999-LDS.3304-C.

2. Computer Graphics Principles and Practice, by Foley, van Dam, Feiner, Hughes, published
by Addison Wesley, ISBN 0-201-84840-6, copyright 1996. Reference is a quote by
Sutherland, Sproull, and Schumacher.

3. The video standards beginning with ITU come from the International Telecommunication
Union. ITU-R BT.656 and by ITU-R BT.601 standards are available on the International
Telecommunication Union’s web site, http://www.itu.int/itudoc/itu-r/rec/bt/ for a small
fee. The Society of Motion Picture and Television Engineers (SMPTE) standards are
available on http://www.smpte.org for members or a fee.

4. Video Demystified, by Keith Jack, published by Harris, ISBN 1-878707-23-X, is a good
beginners guide to video techniques. It can be read or purchased on line at the following
URL: http://www.video-demystified.com

5. Video Demystified - Third Edition, Author: Keith Jack, LLH Technology Publishing,
www.LLH-Publishing.com

6. Charles Poynton, tel: +1 416 413 1377, fax: +1 416 413 1378, poynton@poynton.com
www.inforamp.net/~poynton

Revision
History

The following table shows the revision history for this document.

Date Version Revision

05/21/02 1.0 Initial Xilinx release.
XAPP296 (v1.0) May 21, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://www.itu.int/itudoc/itu-r/rec/bt/
http://www.smpte.org
http://www.video-demystified.com
http://www.LLH-Publishing.com
www.inforamp.net/~poynton
http://www.logicdevices.com/

	Summary
	Introduction
	"Live" 3D Objects
	2D Video Representations Exhibit Coherence

	Video Data Considerations
	Displaying Video Data
	Video Data Rates and Data Sizes
	Necessary Video Storage Components
	Registers
	Line Buffers
	Frame Buffers

	Multi-Frame Algorithms
	Memory Density and Bandwidth Requirements

	Frame Buffer Addressing
	Features Used
	Reference Design
	Conclusion
	References
	Revision History

