
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Mayur Desai & Benjamin Hebert 

6.111 Final Project Report 

Teaching Assistant: Charlie Kehoe 

May 12, 2005 

 
 
 
 
 
 
 
 
 
 
 
Abstract 
 
The goal of this project is to design and implement a viable 3-D rendering system onto 
the Xilinx Field Programmable Gate Array (FPGA) kit.  This system takes a 3-D model 
and proceeds to render, shade it, and output the rendered image onto a VGA monitor.  
The user is able to rotate the model, zoom in and out, and watch the image update on 
the fly.  The implementation of this project initially consists of the rendering engine, the 
video controller, and a top-level finite state machine. The rendering engine is responsible 
for the transformation from the 3-D model file into frames of RGB (red-green-blue) pixel 
values. The video component is responsible for receiving these pixel values, storing the 
frame in memory, and then outputting the data to the D/A video converter with the proper 
timing and setup parameters.  Additional features implemented in this system are 
lighting and a choice of model to display on screen. 
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Introduction & Design Overview 
 
The design problem of this project is to create usable and feature-rich 3-D rendering 

system.  The resulting design that was implemented in this project is able to load up a 3-

D model from memory, render and shade it, and display the resulting image on a VGA 

monitor.  This project is interesting and relevant because an increasing number of 

applications, electronics, and tools all use 3-D graphics to create a rich and exciting 

experience.  Creating 3-D images is a difficult task that requires a large amount of 

computation and time – these features also make a hardware rendering engine very 

attractive.  Due to the large number of computations and intensive memory use required 

by 3-D rendering systems, many modern computers have dedicated video cards to 

handle the task.  Our 3-D rendering system implements many of the same features that 

are found in video cards.   This project exploits the ideas of parallelism and pipelining to 

render images with relatively high performance.  This project was completed using an 

iterative approach: a simple rendering system without shading was implemented along 

with video and a simple system FSM.   Additional features such as shading, rotation, 

zoom, lighting, and model switching were then added to the system.  This features 

create a more detailed and interesting experience for a user.  We decided to follow a 

highly modular approach that relies upon the major/minor FSM idea to coordinate 

between the different units of the system.    

Architecture Design & Implementation 

The project was implemented via a layered design that consists of many modules, sub-

modules, etc.  Each module is responsible for a discrete section of the project, and also 

for coordinating among its sub-modules.  This method was chosen because it helps to 

isolate errors, and it is a convenient way to think about a project that requires many 

modules.  Our project ended up consisting of over 30 different modules, so this report 

will only give details of the most pertinent ones.  The complete code for all modules can 

be found in the Appendix. 

I. Top Level Module & FSM 

The top level module is responsible for coordinating the operation of all the units that 

comprise the 3-D rendering system.  The main components that need to be 

synchronized are the Video Controller and the 3-D Unit.  The reason for this is that a 

double-buffering scheme was used, in order to allow for continuous reading to and 
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writing from the onboard Zero Bus Turnaround (ZBT) memories.  Because of this added 

complexity, careful coordination was required and accomplished through the use of the 

major/minor FSM idea.  The FSM in the top module plays the role of a Major FSM that 

arbitrates between units.  As seen in the diagram below, the double buffering scheme 

means that the 3-D unit first writes to a memory, then when it is finished, it begins to 

write to another one, and the video commences.  Once the video has finished reading a 

frame from memory and the 3-D unit has finished outputting data, then the buffers switch 

and the 3-D unit begins to render more pixels.   

 

Figure 1; Schematic of Double-Buffering Scheme 

The final system consisted of many modules, as stated earlier, and a block diagram is 

shown in Figure 3 of the final system from a top-level view.  The I/O buses used to 

connect the Video and 3-D components to the memories create a maze of lines, but the 

idea behind it is relatively straightforward. 

The Major FSM that is used to coordinate all of these units has three main functions: it 

starts the video controller, it clears the memories, and it starts the 3-D unit.  The 

memories are cleared upon every reset and after every frame.  This is important 

because when rotation was implemented onto the system, if the memories were not 

cleared, the newly rotated object would just be superimposed on the previous image.  It 

implemented this through six states, with the majority of them being the time necessary 
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to clear the ZBTs.  Otherwise, the FSM would “listen” for busy and done signals from the 

video and 3-D components in order to switch buffers and render the next frame. 

 

Figure 2: State Transition Diagram for Major FSM 
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Figure 3: Block Diagram of Whole System 

 

II. 3-D Component 

 

The 3-D Component is responsible for creating the images that appear on the screen.  

At its top-most level, it takes in a start signal and the input from the user, and outputs 

data to the memory.  The user controls two things: the model (which is chosen via input 

to the model selector) and the transformation matrix, which the user can manipulate 

through the push-buttons to rotate and zoom.   

 

The two large sub-modules of the 3-D Component are the renderer and the shader.  The 

renderer transforms the vertices of triangles in the model into coordinates, depth values, 

and colors on the screen.  The shader “fills in” the triangles, computing depth and color 

for every pixel in the triangle (not just the vertices).  The render unit and shader are 

pipelined—while the render unit is rendering one triangle, the shader can shade another.   
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Figure 4: 3-D Unit Block Diagram 

 
III. Rendering Unit 

The rendering unit operates using two sub-modules, an FSM and the face renderer.  The 

face renderer is a computational element with start and done signals.  The FSM begins 

at the first triangle in the ROM, runs the face renderer on it, and the proceeds to the next 

triangle, and so on…, until it reaches the end of the model, at which point it outputs a 

“done” signal.  After every triangle it rendered, the rendering unit outputs a “data ready” 

signal to notify the shader that a triangle is ready to be shaded. 

 

The number of triangles is stored in the first element of the faces part of the model ROM, 

so the rendering unit reads that value before it begins the rendering cycle.  It then 

initializes a counter, and counts until it has reached the last face of the model. 

 

A block diagram and state transition diagram for the rendering unit are below. 
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Figure 5: Rendering Unit Block Diagram 

 

Figure 6: Rendering Unit FSM State Transition Diagram 

 

IV. Face Renderer and Renderer 

The face renderer unit consists of an FSM and two parallel computational modules.  It 

selects each vertex from a triangle, and then starts the renderer and lighting 
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computational modules.  When those modules are done, it packs the results into the 

pixels and colors registers; these registers are input to the shader module. 

The lighting and rendering units work in a very similar fashion, so only one is 

diagrammed below.  Both of them are sequential computations, where an FSM iterates 

through each computational step, and the start and done signals are used to interface 

with the face renderer module. 

The lighting module implements Lambert diffuse lighting, where the intensity of the light 

at a point is the dot product of the normal vector at that point with the vector to the light 

source.  The renderer implements two 4x4 matrix multipliers, a transform matrix that 

rotates and translates the model, and a perspective matrix that transforms 3-D 

coordinates to the 2-D screen. 

Block diagrams and state transition diagrams for the renderer and face renderer 

modules are below. 

 

 

Figure 7: State Transition Diagram for Render Unit 
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Figure 8: Block Diagram for Renderer Unit 

 

 

Figure 9: State Transition Diagram for Face Renderer 
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Figure 10: Block Diagram for Face Renderer 

V. Shader Unit 

The shader unit takes the pixel locations and color values of the vertices from the 

renderer, and writes all of the pixels in the triangle to memory.  It implements Gouraud 

shading, a common interpolation scheme used in 3-D rendering.  It also implements a Z-

buffer, to ensure that only the front-most polygons are drawn to the screen. 

 

The shader has two steps: computing the derivates and coefficients required for 

Gouraud shading, and scanning the boundary box of triangle to write each pixel.  The 

computation of the coefficients is a serial computation in some respects similar to 

rendering. Once the coefficients are computed, the shader scans the boundary box of 

the triangle (from min(x), min(y) to max(x), max(y)).  It uses the coefficients to determine 

of the pixel is inside the triangle, and if so to interpolate a color value and a depth value.  

The depth value is compared to any existing pixel data stored at that location, and the 

pixel is only written if its depth is smaller than the existing value. 

 

The pixel pipe performs these interpolations and comparisons.  Each pixel requires a 

read from memory and (possibly) a write to memory, if the color is being updated.  
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These operations are interleaved, so that the pixel pipe can process one pixel every two 

clock cycles. 

 

VI. Model Format 

For ease of implementation, the 3-D model format used in this system is the Alias 

Wavefront OBJ format, which is a very simple and powerful way to describe 3-D models.  

The most basic 3D shape, a tetrahedron (in a triangle-based system), is easily described 

as a set of geometric vertices and corresponding faces.  Figure 3 shows a sample OBJ 

file that translates into a tetrahedron. 

Figure 11: Simple 3-D Tetrahedron Model in OBJ Format 

 
g tetrahedron 
  
v 1.00 1.00 1.00 
v 2.00 1.00 1.00 
v 1.00 2.00 1.00 
v 1.00 1.00 2.00 
  
f 1 3 2 
f 1 4 3 
f 1 2 4 
f 2 3 4 

  

The data is contained in an easily understandable text format.  The lines starting with a 

“v” specify a vertex and its x-, y-, and z-coordinates.  The lines with “f” specify faces 

between the vertices (the vertices are indexed at 1 and increment downward) and that is 

all that is required for a simple 3-D image.  This format allows for much more detail when 

using more complex models, as different parameters such as normal vertices, texture 

vertices, points, curves, color, etc. can be specified in this format.  This allows for the 

sequential addition of features to our system so that we arrive at real results within the 

time constraints.  The model data is going to be implemented as a ROM on the FPGA 

using a Perl script to create a Verilog file from the OBJ file. 

 

A model switcher unit was implemented that basically instantiates different models as 

ROMs on the FPGA and then can switch through them using the input switches built 

onto the lab kit.  To convert between the OBJ files to a COE file used by the Xilinx 

Coregen or a Verilog that can infer a ROM (through a case statement), a fairly extensive 

perl script was written.  This script extracts the data from the OBJ file, computes the 
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normal vectors for every face or vertex, converts the formats, and generates the 

appropriate file.  This script can be found at the end of the appendix.  

VII.  Video Component 

The video component is responsible for reading the data in from the ZBT RAMs and 

outputting it to the Video DAC with the appropriate sync and blank signals.  The goal of 

this portion of the project is to display the 3-D model at a high frame rate and resolution, 

in order to have a smooth picture on the monitor.  To maximize throughput and minimize 

delays, the output from the rendering engine is first sent to a ZBT memory.  Once a 

whole frame has been written to that memory, the video controller initializes and starts to 

read data from that memory, as described earlier and shown in Figure 1.  Meanwhile, 

the rendering engine continues to process the model and outputs the frame to the 

second ZBT memory.  The VGA video is at a resolution of 640x480 and runs at 60 Hz.  

This corresponds to a 25 MHz pixel clock.  This was implemented in a fairly simple way 

that used a counter and customizable parameters (i.e. the values for HSYNC, VSYNC, 

etc.) that be easily changed to accommodate a different resolution or refresh rate.   

 

This module was actually an extension of the design used in one of the problem sets, 

and had to be modified to read from memory as well.  The task of reading from memory 

was simplified because a scheme whereby each line of a frame was able to have its own 

1024 memory locations.  This was convenient because it allowed for the pixel counter 

(used to generate the horizontal syncing and blanking signals) to be used as the lower 

order bits of the memory address and the line counter (used to generate the vertical 

sync and blanking signals) to be used as the higher order bits.  

 

IIX. I/O Units 

The I/O units that connect the RAMs to the 3-D unit and video component were a crucial 

part of the total system.  These units used a status bit that controlled to which memory a 

bus from either of the units went to.  It was hard-coded that the unit that connected the 

3-D unit was always connected to the memory other than that which the video controller 

was hooked up to.  This is simple in theory, but actually proved to be the cause of a lot 

of our initial problems.  In our first simulations, we found that there were many sources of 

bus contention that we needed to track down before we could proceed to burn onto the 
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FPGA chip.   As bus contentions can be potentially crippling to the FPGA, it was very 

important that we made sure these I/O units were working perfectly before implementing 

them onto the actual hardware. 

 

Testing and Debugging 

 

Our primary test mechanism for the project was ModelSim.  Every sub-module had 

associated unit tests, and we used these unit tests to ensure that each module was 

operating properly.  Additionally, we had a test bench for the entire labkit.v file (the 

outermost file in the project) to do integration testing.   

 

Aside from ModelSim, we used the ChipScope utility to extract runtime data from the 

chip. This was useful for fixing bugs that were based on accumulated error—for 

example, at certain angles the shader did not work properly.  To debug the problem, we 

used ChipScope to read the current transformation matrix, then built a testbench that 

used that matrix in ModelSim and found the problem. 

 

Our major hurdles had to do with the memory.  We made two significant errors: first, we 

did not realize that the byte-write-enable signals also had to be low to enable a write on 

the memory.  Secondly, we connected the shader to the memory only for output (and not 

input).  The second error was fixed by having separate data-in and data-out buses 

leading to the I/O render->ram unit.  These two errors were very time-consuming to 

detect and fix, but aside from them the rest of our system was comparatively bug-free 

and issues only arose when integrating the final system. 

 

Another headache in the testing and debugging process, although unavoidable, was the 

large amount of time necessary to synthesize and implement our project onto the FPGA.  

Due to the large number of gates used (around 40% of the slices), huge buses, and 

many multipliers (120 used out of approx 140 available), the Xilinx application definitely 

took a considerable amount of time to compile.  Initially, this caused for a large amount 

of wasted time, but it really taught us the importance of simulating thoroughly before 

synthesizing.  In the end, we feel that our system was designed and implemented more 

efficiently because we were forced to try and catch bugs early.  
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Conclusion & Last Thoughts 

 

Overall, this project was an incredible learning experience for both of us.  The process of 

specifying, designing, and implementing a large-scale project of this nature was 

definitely a challenge.  The preceding labs definitely helped prepare us in terms of 

design methodology, debugging strategies, etc. but there are definitely issues that arise 

when designing such a complex project.  The most important thing that we have taken 

away from this project is that unexpected things definitely happen in a complex system.  

When different components are put together, even if they seem to work fine 

independently, we found that emergent properties in the form of bus conflicts, timing 

glitches, etc. can arise.  The debugging and testing that are involved in tracking down 

these errors was definitely the most time-consuming part, yet also the most satisfying 

when the working product appeared.  

 

We had several design trade-offs that were necessary in order for the project to work in 

the time allotted.  Our initial plan was to have a high resolution, high refresh rate image 

on the screen, but found that it was untenable in practice.  Three-dimensional image 

rendering and processing is usually done by dedicated hardware that has been 

optimized and contains millions of carefully placed gates.  We realized that same 

performance would not be attainable on our lab kits.  Also, we were limited by the 

amount of memory we could initialize in ROMs on the chip; we had initially planned to 

use the CompactFlash interface to load up models, but that also proved not to be 

achievable in our time limits.  

 

In the end, we had a great time working on the project and were definitely satisfied by 

the results.  We would like to acknowledge our Teaching Assistant, Charlie, for his 

invaluable assistance and advice.  We also want to thank Nathan Ickes for his expertise 

on the intricacies of how the new lab kits work, and we definitely pestered him a bit when 

it came to issues such as DCMs.   

 


