
MultimediO User’s Guide

This guide will instruct you in the use of MultimediO, your gateway to all things
peripheral. The FPGA boards provided to you come pre-burned with the appropriate
programming file, and are ready for immediate use. If you would like to learn more about
programming the FPGA, please consult the programming guide, located on the 6.115
website.

Device Summary
MultimediO is an FPGA based device designed to interface with the 8051 family

of microcontrollers and provide access to an assortment of peripherals, including a video
system capable of resolutions up to 800x600, and a 16-bit CD quality audio system.
Figure 1, shown below, is a functional block diagram of the device. Table 1, also located
below, provides a description of all pins of the device.

Figure 1. MultimediO Block Diagram.

Pin Description
Symbol Type Name/Description

D0-D7 I/O Bi-directional, tri-state data bus lines. Used for all
communication between the microcontroller and
MultimediO.

A0 I Address line. Used to select between the data register
and command register.

/CS I Chip Select, active low. The device will only respond to
read and write signals when chip select is asserted,
otherwise those signals will be ignored.

/WR I Write, active low. This signal is asserted by the
microcontroller to write data.

/RD I Read, active low. This signal is asserted by the
microcontroller to read data.

Table 1. Pin Description.

Functional Description
MultimediO consists of a collection of independent subsystems, all of which can

be operated simultaneously. Table 2, shown below, provides a summary of the
functionality of these subsystems. State information for each subsystem can be
determined by reading from the status register, see interface description for details.

Subsystem Description Relevant Commands
Video MultimediO features a sprite based, 8-bit

RGB, multiple resolution video system. In
order to display graphics, you must create a
sprite, which is a persistent, 2-dimensional
image. Sprites can either be created by
directly providing pixel data, or through the
use of pixel data stored on a Compact Flash
card. MultimediO uses an 8-bit true-color
scheme, whereby each byte of pixel data
directly represents the intensities of the red,
green, and blue components of a pixel (as
opposed to a color-palette based system, in
which a byte of pixel data specifies an index
in a color table). The system can operate in
resolutions of 640x480 and 800x600.

Make Sprite, Move Sprite,
Edit Sprite, Make Sprite
From CF, Set VGA
Parameters

Audio MultimediO possesses a 16-bit, 44.1 Khz
stereo audio system. It is designed to play
audio files in the .WAV format, or raw audio
data. Audio Data is stored in a 2MB RAM.
This RAM is organized as 220 16 bit words.

Load Audio Data, Load
Audio Data from CF, Play
Audio

Keyboard This subsystem facilitates the use of a
standard PS/2 keyboard. Each key press is
recorded, and converted to the standard
ASCII representation for the corresponding
character. These ASCII values are then stored
in a buffer which can be accessed using the
relevant command.

Read Keyboard

Compact
Flash

MultimediO can be used to read data from a
Compact Flash card. This data can either be
loaded to a buffer, from which individual
bytes can be read, or can be directly sent to
the video or audio subsystems.
IMPORTANT: After issuing ANY command
which uses the Compact Flash card, the status
byte should be read until the Compact Flash
Busy Bit is 0. No other commands should be
issued to the device when this bit is 1.

Load Compact Flash Buffer,
Read Compact Flash Buffer,
Make Sprite from CF, Load
Audio Data from CF

USB The USB subsystem is compliant to version
2.0 of the USB spec and is capable of
interfacing with low speed, full speed, and
high speed devices. Bus powered devices
cannot be use.

USB Data Transfer

Table 2. Functional Description.

Interface Description
Communication between the microcontroller and MultimediO is accomplished

through the use of two registers, a bidirectional data register and a multiplexed
command/status register, located in MultimediO. In this document, it is assumed that the
data register is located at FE00h and the command/status register is located at FE01h in
the XIO select space. If you have chosen to locate MultimediO at a different offset, adjust
addresses accordingly. A write to FE01h accesses the command register, which is used to
issue commands to device; a read from FE01h accesses the status register, which is used
to determine the current status of MultimediO.

In order to issue a command to the device, such as Make Sprite or Read
Keyboard, the microcontroller must first write the corresponding command byte to the
command register. A full list of commands, and their respective command bytes, is found
below in the section titled Instruction Format. Next, the microcontroller should write each
byte of data required by the instruction, such as the pixel information used by the Make
Sprite command, to the data register. Then, if the instruction causes MultimediO to
produce one or more byte of data for the microcontroller, such as the Read Keyboard
instruction, the microcontroller should read the data register to retrieve these bytes.
Lastly, the microcontroller should write a NOP command to the command register. The
device is then ready to receive its next command from the microcontroller.

The status of MultimediO can be determined by reading a status byte, which is
done by reading from the command/status register. Each bit of the status byte is a flag
that represents certain state information. The bits of the status byte are defined as:

Bit 7 6 5 4 3 2 1 0
Function RFU RFU USB Data

Pending
USB
Buffer Full

USB
Busy

Keyboard Data
Available

CF
Busy

Ready

Bit 0: Ready- At startup, this bit is 0. This bit is set to 1 when the device has finished its
power up sequence. Once set, it is only cleared if the device is reset, at which point the
device will again enter its power up sequence, and again set the bit when the sequence
finishes.
Bit 1: Compact Flash Busy- This bit is 1 when the Compact Flash card is busy, 0
otherwise. IMPORTANT: NO COMMAND, INCLUDING NOP, SHOULD BE
ISSUED TO THE DEVICE WHEN THIS BIT IS 1.
Bit 2: Keyboard Data Available- This bit is 1 when there is keyboard data in the buffer
waiting to be read, and 0 if the buffer is empty
Bit 3: USB Busy- This bit is 1 when the USB subsystem is busy, 0 otherwise. No USB
commands should be issued when this bit is 1.
Bit 4: USB Buffer Full- This bit is 1 when the USB write buffer is full, 0 otherwise. No
data should be written to the buffer when this bit is 1.
Bit 5: USB Data Pending- This bit is 1 when there is USB data in the write buffer that has
yet to be sent to the device.

All other bits are unspecified/reserved for future use (RFU).

MultimediO's reset button is located in the lower left corner of the board, near the
TerasIC logo; it is labeled Key7. This section of the board is pictured below. Pressing this
button for 1 second resets the device. IMPORTANT: Do NOT reset the device while
switch 1 on the blue and white bank of dip switches is in the on (up) position. Move this
switch to the off (down) position before resetting the device.

Device Connection and Powerup Sequence
In order to use MultimediO, the following sequence should be followed. Do not

turn on the device until instructed to do so.
•Connect all external devices, such as a monitor or keyboard, to MultimediO. Also,
connect the AC power adapter.

•Connect MultimediO to the labkit using the provided “labkit connector” board and
an IDE cable. Make sure that the cable is connected to JP1, not JP2, on the FPGA
board.

•Make sure the Run/Prog switch is in the “Run” position. Locate the blue and white
bank of dip switches. Make sure that all switches are in the off (down) position.

•Turn on power to the labkit, then turn on MultimediO by pressing the blue power
button.

•Move switch 1 on the bank of dip switches to the on (up) position. Leave all other
dip switches in the off position.
•If everything has been done properly, LED0, LED1, LED2, and LED3 will all be lit.
The state of all other LEDs is unspecified. The device is now ready for operation.

Instruction Format
The following table contains a list of all instructions, with corresponding 8 bit

command bytes (expressed in hex) and a full explanation of their use. To initiate any of
these instructions, simply write the appropriate command byte to the command register
(located at fe01h), then write all data needed by the instruction to the data register
(located at fe00h) one byte at a time, and finally send a NOP command to the command
register. It is important to always send at least one NOP command to the device at the end
of an instruction. All opcodes not specified are invalid/reserved for future use.

Name Command
Byte

Description

NOP 00h Upon receiving this command, the device will ignore all
writes to its data register, and will not drive the 8-bit
databus. When executing this instruction, the device will
continue to drive the display, but will otherwise be
completely inactive. If a blank screen is desired, simply
move all sprites off screen using the Move Sprite

Name Command
Byte

Description

command.

Make Sprite
This command
is used to create
a new sprite.

01h The data written to the data register should have the
following form:
byte 0: low 8 bits of x coordinate of top left corner of
sprite
byte 1: 6 zeros, high 2 bits of x coordinate of top left
corner of sprite
byte 2: low 8 bits of y coordinate of top left corner of
sprite
byte 3: 6 zeros, high 2 bits of y coordinate of top left
corner of sprite
byte 4: x length (8 bits)
byte 5: y length (8 bits)
byte 6: low 8 bits of area
byte 7: high 8 bits of area
byte 8-n: color information of each pixel, left to right, top
to bottom

Color information is specified using an 8-bit truecolor
RGB scheme in which the first 3 bits correspond to red,
the next 3 bits correspond to green, and the final 2 bits
correspond to blue. The newly created sprite will have an
ID number given by the number of sprite created before
it. Thus, the first sprite will be 0, the next sprite will be 1,
etc. This ID number is used by the Move Sprite
command.

Move Sprite
This command
is used to move
an existing
sprite to a new
location.

02h The data written to the data register should be of the form:
byte 0: high 2 bits of new x, high 2 bits of new y, sprite
number(4 bit)
byte 1: low 8 bits of new x
byte 2: low 8 bits of new y
Where the “sprite number” is the ID number assigned to a
given sprite by the Make Sprite command, and “new x”
and “new y” refer to the x and y coordinates, respectively,
of the top left corner of the sprite. It should be noted that
it is perfectly valid to move a sprite off screen.

Read
Keyboard

03h No data should be written to the data register when using
this command. After issuing this command, the ascii

Name Command
Byte

Description

This command
is used to read
the ascii value
of a key pressed
on the
keyboard.

value can be retrieved by reading from the data register. If
no key has been pressed, this value will be 00h.
Otherwise, it will be the standard ascii value of the first
character in the keyboard buffer. Characters are added to
the buffer in the order in which they are entered from the
keyboard. Each use of the Read Keyboard command
removes exactly one character from the buffer, if there are
any characters in the buffer. The buffer can store a
maximum of 128 ascii characters. While the buffer is full,
any key presses will be ignored.

Load Compact
Flash Buffer
This command
is used to load a
sector of the
Compact Flash
card to the
buffer.

04h The data written to the data register should be of the form:
byte0: low 8 bits of sector address
byte1: next higher 8 bits of sector address
byte2: next higher 8 bits of sector address
byte3: 4 zeros, high 4 bits of sector address
byte4: The literal 01h

This command loads the specified 512 byte sector of the
compact flash card into a buffer. This buffer can then be
accessed using the Read Compact Flash Buffer
Command. Note that due to the relatively low speed of
Compact Flash, this command may take several machine
cycles to execute. In order to determine if the command
has finished, read the status byte (by reading the
command register). Until the Compact Flash busy bit has
cleared, no command should be issued, including the nop
needed at the end of all commands.

Read Compact
Flash Buffer
This command
is used to read
data from the
Compact Flash
buffer.

05h The data written to the data register should be of the form:
byte 0: word number

This command accesses the specified 16 bit word in the
Compact Flash buffer. The Load Compact Flash Buffer
command is used to populate this buffer. After a sector is
loaded into the buffer, this command can be used as many
times as is desired to access individual words in the
buffer.

After issuing the command, the desired data can be
retrieved by reading the data register twice. The first byte
read will be the high order byte of the word, the second
byte read will be the low order byte of the word.

Make Sprite 06h The data written to the data register should have the

Name Command
Byte

Description

From CF
This command
is used to create
a new sprite
from data
stored on the
Compact Flash
card.

following form:
byte 0: low 8 bits of x coordinate of top left corner of
pixel
byte 1: 6 zeros, high 2 bits of x coordinate of top left
corner of pixel
byte 2: low 8 bits of y coordinate of top left corner of
pixel
byte 3: 6 zeros, high 2 bits of y coordinate of top left
corner of pixel
byte 4: x length (8 bits)
byte 5: y length (8 bits)
byte 6: low 8 bits of area
byte 7: high 8 bits of area
byte 8: low 8 bits of sector address
byte 9: next higher 8 bits of sector address
byte 10: next higher 8 bits of sector address
byte 11: 4 zeros, high 4 bits of sector address
byte 12: number of adjacent sectors containing data

This command essentially combines the Load Compact
Flash Buffer, Read Compact Flash Buffer, and Make
Sprite commands. The same functionality can be achieved
by using those commands individually; however, this
command exists for convenience and speed. The sector
address referenced above is the first sector that contains
pixel information. The pixel information stored in the
Compact Flash card must be aligned to the start of the
sector. The file stored on the Compact Flash Card should
contain raw pixel information only (similar to 24-bit .bmp
files, which consist of a short header followed by pixel
data).

As is the case for the Load Compact Flash Buffer
Command, this command may take several cycles to
complete. Until the Compact Flash busy bit has cleared,
no command should be issued, including the nop needed
at the end of all commands.

Edit Sprite
This command
is used to edit
an existing
sprite.

07h The data written to the data register should be of the form:
byte0: sprite number
byte1: low 8 bits of x coordinate
byte2: low 8 bits of y coordinate
byte3: 8 zeros
byte4: width of rectangle being edited

Name Command
Byte

Description

byte5: height of rectangle being edited
byte6-n: New pixel data.

This command is used to edit the pixel data of an existing
sprite. It does not change the size of the sprite or move the
sprite. The x and y coordinates referenced above refer to
the top left corner of the rectangle being edited. These
coordinates are in the frame of the sprite, not the absolute
reference frame used to position sprites. The width and
height parameters specify the size of the rectangle being
edited. The remaining bytes are the new RGB values of
the pixels, in the same order as the Make Sprite
command.

NOTE: The width and height parameters must both be
even numbers.

Load Audio
Data
This command
is used to
transfer audio
data into
MultimediO's
RAM

08h Byte 0:low 8 bits of start address
Byte 1: 4 zeros, high 4 bits of start address
Byte 2-n: Audio Data

This command is used to load audio data into
Multimedio's Audio RAM. The start address specifies the
high 12 bits of the 20 bit address at which audio data will
start being stored. The low 8 bits are always 00h. If the
amount of audio data supplied is sufficiently long that the
new entry enters a portion of RAM occupied by another
audio file, that other file will be overwritten. Note that the
section of RAM being accessed is reserved for Audio
only. This command must be used before any attempt is
made to play audio. Audio data should be in the .wav file
format.

Load Audio
Data From CF
This command
is used to
transfer audio
data from the
Compact Flash
card to RAM

09h Byte 0:Low 8 bits of start address
Byte 1: 4 zeros, high 4 bits of start address
Byte 2: low 8 bits of sector address
Byte 3: next higher 8 bits of sector address
Byte 4: next higher 8 bits of sector address
Byte 5: 4 zeros, high 4 bits of sector address
Byte 6: number of adjacent sectors containing data

The term “start address” refers to the high 12 bits of the
20 bit location in the Audio RAM at which the audio data
will be stored. The term “sector address” refers to the

Name Command
Byte

Description

address of the first sector on the Compact Flash Card that
contains the desired audio information.

This command combines the functionality of the Load
Compact Flash Buffer, Read Compact Flash Buffer, and
Load Audio Data commands. As is the case for the Load
Compact Flash Buffer Command, this command may take
several cycles to complete. The status byte should be read
until the Compact Flash card is no longer busy before
issuing any other command, including the nop command
needed at the end of any command.

Play Audio
This command
is used to play
an audio clip

0Ah The data written to the data register should be of the form:
Byte 0:Low 8 bits of start address
Byte 1:next 8 bits of start address
Byte 2:low 4 bits of end address, high 4 bits of start
 address
Byte 3:next 8 bits of end address
Byte 4:high 8 bits of end address

This command causes MultimediO to play the audio file
located between the start address and the end address in
the Audio RAM. The audio file is loaded through the
Load Audio Data or the Load Audio Data From CF
command.

Set VGA
Parameters
This command
is used to set
resolution and
background
color.

0Bh The data written to the data register should be of the form:
Byte 0:Resolution code
Byte 1:RGB color value of background.

Allowable values for the resolution code are:
00h: 800x600
01h: 640x480
All other values are not allowed. 800x600 is the default
value that the device is set to on power up.

USB Data
Transfer
This command
is used to
transfer data to
or from the
USB port.

0Ch The data written to the data register should be of the form:
Byte 0:Command code
Byte 1-n: data bytes (for load write buffer only)

The command code specifies which type of USB
operation is desired. The valid codes are:

Name Command
Byte

Description

01h: Load Write Buffer
02h: Send Write Buffer
03h: Read Byte

Additional data bytes should only be sent when using the
load write buffer operation, which loads a group of bytes
to a write buffer, located in MultimediO. This buffer
stores data that will eventually be written to the USB port,
using the Send Write Buffer command. No more than 64
bytes can be loaded into the buffer at any one time. The
status of the buffer can be determined by reading the
status byte.

The send write buffer operation sends the entire contents
of the write buffer to the USB port. Each byte of data is
sent serially, most significant bit first. After using this
operation, the write buffer will be empty.

The read byte command reads a single byte from the read
buffer. No additional data should be written to the data
register. After writing the command code, the data byte
can be retrieved by reading from the data register. This is
the only USB operation in which data should be read from
the data register.

Appendix I- Sample Code
;;This program demonstrates how to create and display a simple sprite on a VGA
;;monitor using MultimediO. The sprite is a red square, located at x=32 pixels, y=128
;;pixels on the screen, with a side length of 32 pixels. The screen is driven at the default
;;resolution of 800x600.
;;;
org 8000h
mov dptr, #0fe01h ;command register
mov A, #01h; make sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #0E0h ;red
mov R3, #04h
pixelLoop:

lcall out256
djnz R3, pixelLoop

mov dptr, #0fe01h ;command register
mov A, #00h ;nop command
movx @dptr, A
hang:

NOP
sjmp hang

;subroutine out256
;outputs the contents of A 256 times to address specified by dptr
out256:

mov R2, #00h
out256Loop:

movx @dptr, A
djnz R2, out256Loop

ret

;;This program reads pixel data from a compact flash card and uses that data to create a
;;sprite by first transferring the data to local ram (the RAM located in the R31JP), then
;;using the Make Sprite command
org 8000h
;load sector into the buffer
mov dptr, #0fe01h ;command register
mov A, #04h; load compact flash buffer command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #05h; low byte of sector address
movx @dptr, A
mov A, #08h; next higher byte of sector address
movx @dptr, A
mov A, #00h; next higher byte of sector address
movx @dptr, A
mov A, #00h; 4 zeros and high nibble of sector address
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A
mov R1, #02h
mov R0, #00h
pauseLoop0: ;pause a bit to allow compact flash to finish reading

pauseLoop1:
nop

djnz R0,pauseLoop1
djnz R1, pauseLoop0
;read the buffer, transfer to local ram
mov R0, #00h; current word
mov R1, #80h; counter
mov R3, #0e0h; high byte of temp storage
mov R4, #00h; low byte of temp storage
readLoop:

mov dptr, #0fe01h ;command register
mov A, #05h; read compact flash buffer command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, R0
movx @dptr, A
inc R0
movx A, @dptr ;read high byte
mov R2, A
movx A, @dptr ;read low byte
mov P1,A
mov dpl, R4
mov dph, R3

movx @dptr, A
inc dptr
mov A, R2
movx @dptr, A
inc R4
inc R4
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

djnz R1, readLoop
mov dptr, #0fe01h ;command register
mov A, #01h; make sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #10h ;width=16
movx @dptr, A
mov A, #10h ;height=16
movx @dptr, A
mov A, #00h ;area=256, low bits
movx @dptr, A
mov A, #01h ;area=256, high bits
movx @dptr, A
mov R4, #00h; low byte of temp storage
mov R1, #00h; counter
pixelLoop:

mov dph, R3
mov dpl, R4
movx A,@dptr
mov dptr, #0fe00h ;data register
movx @dptr, A
inc R4

djnz R1, pixelLoop
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A
hang:

nop
sjmp hang

;;This program creates a sprite from data stored on the compact flash card. It creates the
;;same sprite as the above program, but does so using the Make Sprite from CF
;;command, which transfers data directly from the CF card to the module responsible for
;;creating sprites.
;;;
org 8000h
mov dptr, #0fe01h ;command register
mov A, #06h; make sprite from cf command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #28h ;x=40, low bits
movx @dptr, A
mov A, #00h ;x=40, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #05h; low byte of sector address
movx @dptr, A
mov A, #08h; next higher byte of sector address
movx @dptr, A
mov A, #00h; next higher byte of sector address
movx @dptr, A
mov A, #00h; 4 zeros and high nibble of sector address
movx @dptr, A
mov A, #02h; number of sectors
movx @dptr, A
mov dptr, #0fe01h ;command register
pauseLoop:

movx A,@dptr ;read status byte
jb acc.1,pauseLoop ;loop until cf card isn't busy
nop ;pause one extra cycle
mov A, #00h; nop
movx @dptr, A
hang:

NOP
sjmp hang

;;;
;;This program creates a sprite in the same manner as the first demo program, then edits
;;the sprite. Specifically, it changes a small square in the center of the sprite from red to
;;green
;;;
org 8000h
mov dptr, #0fe01h ;command register
mov A, #01h; make sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #0E0h ;red
mov R3, #04h
pixelLoop:

lcall out256
djnz R3, pixelLoop

mov dptr, #0fe01h ;command register
mov A, #00h ;nop command
movx @dptr, A
mov A, #07h ;edit sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #00h ;sprite 0
movx @dptr, A
mov A, #08h ;x=8, low bits
movx @dptr, A
mov A, #08h ;y=8, low bits
movx @dptr, A
mov A, #00h ;4 zeros, high bits of x and y
movx @dptr, A
mov A, #10h ;width

movx @dptr, A
mov A, #10h ;height
movx @dptr, A
mov A, #1ch ;green
lcall out256
mov dptr, #0fe01h ;command register
mov A, #00h ;nop command
movx @dptr, A
hang:

NOP
sjmp hang

;subroutine out256
;outputs the contents of A 256 times
;to address specified by dptr
out256:

mov R2, #00h
out256Loop:

movx @dptr, A
djnz R2, out256Loop

ret

;;;
;;This program reads pixel data from a compact flash card and uses that data to create a
;;simple animation of a flying duck.
;;;
org 8000h
mov R0,#03h
makeLoop: ;creates sprites

mov dptr, #0fe01h ;command register
mov A, #06h; make sprite from cf command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #03h; low byte of sector address (base)
add A, R0; low byte of sector address (half offset)
add A, R0; low byte of sector address (half offset)
movx @dptr, A
mov A, #08h; next higher byte of sector address
movx @dptr, A
mov A, #00h; next higher byte of sector address
movx @dptr, A
mov A, #00h; 4 zeros and high nibble of sector address
movx @dptr, A
mov A, #02h; number of sectors
movx @dptr, A
mov dptr, #0fe01h ;command register
pauseLoop:

movx A,@dptr ;read status byte
jb acc.1,pauseLoop ;loop until cf card isn't busy
nop ;pause one extra cycle
mov A, #00h; nop
movx @dptr, A

mov R1, #20h
djnz R0,makeLoop

mov R1, #20h ;sprite x
mov R2, #80h; sprite y
mov R3, #00h; frame of animation, 0 indexed, frame 1 is same as frame 3, only low 2 bits
matter
animLoop:

mov R4,#1ah ;counter
upRight:

mov R5, #04h; counter
upRInner:

inc R1
dec R2
lcall moveAll
lcall pause20

djnz R5, upRInner
mov A,R3
inc A;update frame
anl A, #03h ;mask high 6 bits
mov R3,A

djnz R4, upRight
mov R4,#1ah ;counter
downRight:

mov R5, #04h; counter
downRInner:

inc R1
inc R2
lcall moveAll
lcall pause20

djnz R5, downRInner
mov A,R3
inc A;update frame
anl A, #03h ;mask high 6 bits
mov R3,A

djnz R4, downRight
mov R4,#1ah ;counter
downLeft:

mov R5, #04h; counter
downLInner:

dec R1
inc R2
lcall moveAll
lcall pause20

djnz R5, downLInner
mov A,R3

inc A;update frame
anl A, #03h ;mask high 6 bits
mov R3,A

djnz R4, downLeft
mov R4,#1ah ;counter
upLeft:

mov R5, #04h; counter
upLInner:

dec R1
dec R2
lcall moveAll
lcall pause20

djnz R5, upLInner
mov A,R3
inc A;update frame
anl A, #03h ;mask high 6 bits
mov R3,A

djnz R4, upLeft
ljmp animLoop

;subroutine moveAll
;moves active sprite to R1,R2 and innactive sprite offscreen
moveAll:

mov A, R3
jz frame0
dec A
jz frame1
dec A
jz frame2
frame1:

mov R0, #01h
lcall moveSpr
mov R0, #00h
lcall moveOff
mov R0, #02h
lcall moveoff

ljmp doneMove
frame0:

mov R0, #00h
lcall moveSpr
mov R0, #01h
lcall moveOff
mov R0, #02h
lcall moveoff

ljmp doneMove
frame2:

mov R0, #02h
lcall moveSpr
mov R0, #00h
lcall moveOff
mov R0, #01h
lcall moveoff

doneMove:
ret

;subroutine moveSpr
;moves sprite R0 to R1,R2
moveSpr:

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, R0
movx @dptr, A
mov A, R1
movx @dptr, A
mov A, R2
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

ret

;subroutine moveOff
;moves sprite with sprite number R0 offscreen
moveOff:

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, R0
orl A, #30h ;need high bits of y to be 3h
movx @dptr, A
mov A, #00h
movx @dptr, A
mov A, #80h
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

ret

;subroutine pause20
;pauses for 20 miliseconds(approx)
pause20:

mov R6, #23h
pauseLoop0:

lcall pause256
djnz R6, pauseLoop0

ret

;subroutine pause256
;pauses for 256 cycles
pause256:

mov R7, #0ffh
pauseLoop1:

nop
djnz R7,pauseLoop1

ret

test:
mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #00h
movx @dptr, A
mov A, #20h
movx @dptr, A
mov A, #20h
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #01h
movx @dptr, A
mov A, #20h
movx @dptr, A
mov A, #80h

movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #02h
movx @dptr, A
mov A, #80h
movx @dptr, A
mov A, #80h
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

ret

;;;
;;This program demonstrates the audio system. It creates an audio file that consists of a
;;simple triangle wave and transfers it to MultimediO. It then issues the
;;command to play that file repeatedly
;;;
org 8000h
mov dptr, #0fe01h ;command register
mov A, #08h; load audio data command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #00h; low byte of address
movx @dptr, A
mov A, #00h; 4 zeroes, high 4 bits of address
movx @dptr, A
lcall triaOut
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

mov R4, #00h ;counter
mov R3, #04h ;counter
playLpO:

playLpI:
mov A, #0ah; play audio
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #00h; low byte of start address
movx @dptr, A
mov A, #00h; next byte of start address
movx @dptr, A
mov A, #00h; low 4 bits of end address, high 4 bits of start address
movx @dptr, A
mov A, #10h; next byte of end address
movx @dptr, A
mov A, #00h; high byte of end address
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A
lcall pause6

djnz R4, playLpI
mov P1, R3

djnz R3, playLpO

hang:
nop

sjmp hang
;subroutine triaOut
;outputs one period of triangle wave (128 bytes)
triaOut:

mov R1, #00h;low byte of audio word
mov R2, #00h;high byte of audio word
mov R6, #04h; counter
outLp:

mov R5, #20h ;counter
upLoop:

mov A, R1
clr C
add A, #55h
mov R1, A
movx @dptr, A
mov A, R2
addc A, #05h
mov R2, A
movx @dptr, A
mov P1, A

djnz R5, upLoop
mov R5, #20h ;counter
downLoop:

mov A, R1
clr C

subb A, #55h
mov R1, A

movx @dptr, A
mov A, R2
subb A, #05h
mov R2, A
movx @dptr, A

djnz R5, downLoop
djnz R6, outLp

ret
;subroutine pause6
;pauses for about 6 ms
pause6:

mov R0, #00h
mov R1, #0ah
pLoop:

pauseLp:
nop

djnz R0, pauseLp
djnz R1, pLoop

ret

;;Lecture Demo
;;The purpose of this program is to demonstrate a variety of MultimediO’s functions.
;;Specifically, this program shows how to create, move, and edit sprites, as well as how to
;;load and play sound files and how to get input from the keyboard.
org 8000h
lcall init
mainLp:

lcall procCmd
lcall mainPause

sjmp mainLp

;subroutine init
;initializes all
init:

mov dptr, #0fe01h ;command register
mov A, #06h; make sprite from cf command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #28h ;x=40, low bits
movx @dptr, A
mov A, #00h ;x=40, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #0f8h ;width=248
movx @dptr, A
mov A, #0feh ;height=254
movx @dptr, A
mov A, #10h ;area=62992, low bits
movx @dptr, A
mov A, #0f6h ;area=62992, high bits
movx @dptr, A
mov A, #93h; low byte of sector address
movx @dptr, A
mov A, #06h; next higher byte of sector address
movx @dptr, A
mov A, #00h; next higher byte of sector address
movx @dptr, A
mov A, #00h; 4 zeros and high nibble of sector address
movx @dptr, A
mov A, #7ch; number of sectors
movx @dptr, A
mov dptr, #0fe01h ;command register

pauseLoop:
movx A,@dptr ;read status byte

jb acc.1,pauseLoop ;loop until cf card isn't busy
nop ;pause one extra cycle
mov A, #00h; nop
movx @dptr, A
mov R7, #00h; stores last created sprite
mov R6, #00h; indicates that no audio data has been loaded yet

ret

;subroutine procCmd
;processes commands
procCmd:

lcall readKbrd
jnz doCmd
ret
doCmd:

cjne A, #31h, notMake;checks for 1(make sprite)
lcall menuOff
lcall makeSpri
lcall menuOn
ret

notMake:
cjne A, #32h, notMove;checks for 2(move sprite)
lcall menuOff
lcall moveSpri
lcall menuOn
ret

notMove:
cjne A, #33h, notEdit;checks for 3(edit sprite)
lcall menuOff
lcall editSpri
lcall menuOn
ret

notEdit:
cjne A, #34h, none;checks for 4(play sound)
lcall menuOff
lcall playSnd
lcall menuOn
ret

none:
ret

ret

;subroutine menuOff
;moves menu offscreen

menuOff:
mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #0f0h ;high bits of new x and y, sprite number
movx @dptr, A
mov A, #0ffh; low bits of new x
movx @dptr, A
mov A, #0ffh; low bits of new y
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop command
movx @dptr, A

ret

;subroutine menuOn
;moves menu onscreen
menuOn:

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #00h ;high bits of new x and y, sprite number
movx @dptr, A
mov A, #28h ;x=40, low bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop command
movx @dptr, A

ret

;subroutine mainPause
;pauses during main loop
mainPause:

mov R0, #00h
mov R5, #10h
mainPz0:

mainPz1:
nop

djnz R0, mainPz1
djnz R5, mainPz0

ret

;subroutine readKbrd
;sends command to read keyboard, transfers data to A
readKbrd:

mov A, #03h; read keyboard command
mov dptr, #0fe01h ;command reg
movx @dptr, A
mov dptr, #0fe00h; data reg
movx A, @dptr
mov R0, A; save value
mov A, #00h; nop command
mov dptr, #0fe01h ;command reg
movx @dptr, A
mov A, R0; recall value

ret

;subroutine makeSpri
;makes a sprite, specifically a red square with top left
;corner at x=32 pixels,y=128 pixels on and side length 32 pixels
;this sprite will be displayed on the vga monitor
makeSpri:

mov dptr, #0fe01h ;command register
mov A, #01h; make sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #0E0h ;red
mov R3, #04h
pixelLoop:

lcall out256
djnz R3, pixelLoop

mov dptr, #0fe01h ;command register

mov A, #00h ;nop command
movx @dptr, A
inc R7; increments current sprite number
makeMenu:

lcall mainPause2
lcall readKbrd

cjne A,#6dh,makeMenu ;checks for M
lcall colGarb

ret

;subroutine moveSpri
;creates a sprite and moves it around the screen
moveSpri:

mov dptr, #0fe01h ;command register
mov A, #01h; make sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #0e0h ;red
mov R3, #04h
pixelLoopc:

lcall out256
djnz R3, pixelLoopc

mov dptr, #0fe01h ;command register
mov A, #00h ;nop command
movx @dptr, A
inc R7; increments current sprite number
movLp:

mov R1, #20h ;x
mov R2, #80h ;y
mov R3, #40h ;distance to move

upR:
inc R1
dec R2
lcall moveAct
jz moveDone

djnz R3, upR
mov R3, #40h ;distance to move
dnR:

inc R1
inc R2
lcall moveAct
jz moveDone

djnz R3, dnR
mov R3, #40h ;distance to move
dnL:

dec R1
inc R2
lcall moveAct
jz moveDone

djnz R3, dnL
mov R3, #40h ;distance to move
upL:

dec R1
dec R2
lcall moveAct
jz moveDone

djnz R3, upL
sjmp movLp
moveDone:

lcall colGarb
ret

;subroutine moveAct
;moves active sprite to R1, R2
moveAct:

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, R7; sprite number
movx @dptr, A
mov A, R1; low bits of new x
movx @dptr, A
mov A, R2; low bits of new y
movx @dptr, A
mov dptr, #0fe01h ;command register

mov A, #00h; nop command
movx @dptr, A
moveMenu:

lcall mainPause
lcall readKbrd
cjne A,#6dh,notMoveM ;checks for M
mov A, #00h
ret
notMoveM:

mov A, #01h
ret

;subroutine playSnd
;plays an audio clip from the Compact Flash card
playSnd:

mov A, R6
jnz starPlay
lcall loadSnd
starPlay:

mov dptr, #0fe01h ;command register
mov A, #0Ah; play audio command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #00h; low byte of start address
movx @dptr, A
mov A, #00h; next byte of start address
movx @dptr, A
mov A, #00h; low 4 bits of end address, high 4 bits of start address
movx @dptr, A
mov A, #0c0h; next byte of end address
movx @dptr, A
mov A, #30h; high byte of end address
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop
movx @dptr, A

playMenu:
lcall mainPause
lcall readKbrd

cjne A,#6dh,playMenu ;checks for M
ret

;subroutine loadSnd
;loads audio clip
loadSnd:

mov R0, #04h ;load count
mov R1, #3bh; low byte of sector address
mov R2, #03h; high byte of sector address
loadLp:

mov dptr, #0fe01h ;command register
mov A, #09h; load audio data from cf command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, R1 ;low byte of start address
clr C
subb A, #3bh
movx @dptr, A
mov A, R2 ;high byte of start address
subb A, #03h
movx @dptr, A
mov A, R1; low byte of sector address
movx @dptr, A
mov A, R2; next higher byte of sector address
movx @dptr, A
mov A, #00h; next higher byte of sector address
movx @dptr, A
mov A, #00h; 4 zeros and high nibble of sector address
movx @dptr, A
mov A, #0ffh; number of sectors
movx @dptr, A
mov dptr, #0fe01h ;command register
pauseLoopc:

movx A,@dptr ;read status byte
jb acc.1,pauseLoopc ;loop until cf card isn't busy
nop ;pause one extra cycle
mov A, #00h; nop
movx @dptr, A
mov A, R1
clr C
add A, #0ffh
mov R1, A
mov A, R2
addc A, #00h
mov R2, A

djnz R0, loadLp
mov R6, #01h

ret

;subroutine editSpri
;creates a sprite (same as makeSpri)
;then edits that sprite

editSpri:
mov dptr, #0fe01h ;command register
mov A, #01h; make sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #20h ;x=32, low bits
movx @dptr, A
mov A, #00h ;x=32, high bits
movx @dptr, A
mov A, #80h ;y=128, low bits
movx @dptr, A
mov A, #00h ;y=128, high bits
movx @dptr, A
mov A, #20h ;width=32
movx @dptr, A
mov A, #20h ;height=32
movx @dptr, A
mov A, #00h ;area=1024, low bits
movx @dptr, A
mov A, #04h ;area=1024, high bits
movx @dptr, A
mov A, #0E0h ;red
mov R3, #04h
pixelLoopb:

lcall out256
djnz R3, pixelLoopb

mov dptr, #0fe01h ;command register
mov A, #00h ;nop command
movx @dptr, A
inc R7; increments current sprite number
mov A, #07h ;edit sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, R7 ;sprite number
movx @dptr, A
mov A, #08h ;x=8, low bits
movx @dptr, A
mov A, #08h ;y=8, low bits
movx @dptr, A
mov A, #00h ;8 zeros
movx @dptr, A
mov A, #10h ;width
movx @dptr, A
mov A, #10h ;height
movx @dptr, A
mov A, #1ch ;green

mov R0, #00h
editLp:

movx @dptr, A
djnz R0, editLp
mov dptr, #0fe01h ;command register
mov A, #00h ;nop command
movx @dptr, A
editMenu:

lcall readKbrd
cjne A,#6dh,editMenu ;checks for M

lcall colGarb
ret

;subroutine colGarb
;performs garbage collection, moves last active sprite offscreen
colGarb:

mov dptr, #0fe01h ;command register
mov A, #02h; move sprite command
movx @dptr, A
mov dptr, #0fe00h ;data register
mov A, #0f0h ;high bits of new x and y
add A, R7;sprite number
movx @dptr, A
mov A, #0ffh; low bits of new x
movx @dptr, A
mov A, #0ffh; low bits of new y
movx @dptr, A
mov dptr, #0fe01h ;command register
mov A, #00h; nop command
movx @dptr, A

ret

;subroutine out256
;outputs the contents of A 256 times
;to address specified by dptr
out256:

mov R2, #00h
out256Loop:

movx @dptr, A
djnz R2, out256Loop

ret

	Device Summary
	Interface Description
	Device Connection and Powerup Sequence
	Instruction Format

