
ACES: A Cooperative Energy System
6.033 Preliminary Report

March 18th, 2022

1    Introduction

New technology and environmental awareness have changed the landscape of energy management.
Energy production is becoming increasingly decentralized as homeowners and public buildings install
personal solar panels. To take advantage of this paradigm shift, we propose A Cooperative Energy System
(ACES), which will (1) provide low-cost and reliable energy to customers, (2) enable power sharing
within microgrids, (3) calculate customer bills, and (4) collect comprehensive usage data for research.

The design of ACES prioritizes reliability and adaptability. Our primary goal is reliability, which means
accurate and timely delivery of power and data, even when outages occur. We prioritize reliability because
it directly benefits residents and other consumers of electricity, who are most impacted by our system.
Specifically, we focus on reliable electricity, since power failures disrupt residents’ lives by impeding
essential services like emergency care, heating in homes, and Internet communication. Moreover, reliable
data collection ensures fair billing and system analytics. Additionally, we prioritize adaptability, or the
system’s ability to adjust to external changes and be configured by future engineers. The residents would
likely bear the cost of reworking the system, so we want to minimize the necessity and difficulty of
maintenance. Furthermore, adaptability increases the longevity and efficiency of our system in the face of
unexpected changes.

In Section 2, we outline the system design and implementation. Afterwards, we evaluate the impact and
feasibility of our system in Section 3.

2    System Description

ACES relies on three layers of components. At the bottom layer, smart meters initiate and respond to
ANSI commands. Some meters, “meters with batteries,” are attached to solar panels. In the middle, the
microgrid controllers (MGCs) collect meter data and handle energy sharing. Managing energy sharing in a
distributed manner allows sharing to continue during power or network outages elsewhere, increasing
ACES’s reliability. Finally, at the top, the central utility collects data from the MGCs, provides data
extraction APIs, distributes electricity, and handles billing. Figure 1 summarizes these components and
their interactions.

In terms of storage mechanisms, the MGCs relies on a flat, lightweight Usage_Data file system to store
meter readings, as they perform little data processing before forwarding information to the central utility.
In contrast, the central utility features a relational database, the Customer Information Database (CIDB),
which supports SQL querying. The CIDB offers reliable concurrency and easily adaptable tables, as well
as efficient querying and simplicity of export.

For all network communications, ACES employs TCP. We deemed TCP’s associated overhead tolerable
to achieve reliable, in-order transport. Each data collecting component additionally tracks failed requests

1



for boosted fault tolerance. Since fine-grained usage information enables researchers to improve ACES,
the system uses lossy aggregation sparingly for increased adaptability.

Figure 1: ACES Overview

Illustrates the main components of ACES, including storage and network mechanisms.

2.1    Microgrid Controllers

The main purposes of the microgrid controllers (MGCs) are to mediate communications between the
central utility and smart meters and enable intra-microgrid energy sharing. For data transmission, we
employ a store and forward approach to prioritize reliable communication. The MGCs backup all data
sent to the central utility for ten weeks so that the central utility can re-request data from the MGCs in
case of storage failures. Furthermore, we initiate get requests from the MGCs themselves instead of
relying on instructions from the central utility to enable independent operation of microgrids. By reducing
the MGCs’ reliance on the central utility, we improve the system’s fault tolerance. In addition, MGCs
support variable transmission time intervals to adapt to changes in network capacity or processing speed.
We describe implementation details in the following sections.

2



Figure 2: ACES Data Flow

Highlights the flow of data from the smart meters to the central utility.

2.1.1 Storage
The storage for the MGCs are divided into several components, summarized below.

Table 1: MGC Storage

Component Data
Type

Purpose

Meter_States Table Stores the states of each meter as booleans:
is_on, sharing_power, aggregating,
reducing_power_demand. Also stores the battery
threshold and current battery percentage of each meter
if applicable.

Meter_Last_Update Table Stores the last time data was received from each meter.

Data_Time_Interval Variable Time interval (in seconds) between smart meter data
queries; equals 300 by default.

Usage_Data File
System

Stores data from smart meters in files organized by
one-hour intervals.

Request_Stack Stack Tracks current get requests.

The Data_Time_Interval parameter can be modified by a command from the central utility,
improving ACES’s adaptability to changes in network demand.

3



Usage_Data stores history logs received from smart meters in files. Each file includes an is_backup
bit. We store data logs directly without parsing due to limited processing power in the MGCs.

Finally, the Request_Stack stores all outstanding get requests until the requested data is received.
The stack retransmits failed requests to ensure completeness of the data. We chose the stack data type
over a queue because customers are affected by the current state of the system. Thus, we prioritize
transmitting recent requests so that we can respond to current power demands quickly.

2.1.2 Processes
To monitor energy sharing within the microgrid and collect smart meter data, each MGC runs the
processes outlined in Table 2.

Table 2: MCG Processes

Process Name Description

Initialize_meters Starts or restarts all smart meters in microgrid by sending
initialize and aggregate (lossless=true).

Query_meter_data Requests and stores data from smart meters.

Send_data_to_utility Handles get and acknowledge commands from the central utility.

Process_utility_
commands

Forwards relevant commands (e.g. reduce_power_demand_on)
from the central utility to its smart meters.

Manage_energy_
distribution

Responds to changes in battery statuses within the microgrid.

Garbage_collect Deletes out-of-date backup files.

Query_meter_data runs every Data_Time_Interval seconds. It adds get requests to all meters
whose last update was greater than Data_Time_Interval seconds ago to the Request_Stack, and
proceeds to send get requests from the stack until the next Data_Time_Interval. Upon receiving
data from a smart meter, Receive_data stores the data into the current file and updates
Meter_Last_Update with the current time, along with the meters’ battery statuses. Finally,
Query_meter_data removes all completed get requests from the Request_Stack.

Send_data_to_utility sends requested data to the central utility. Whenever it receives an
acknowledgement from the central utility that a file was received, Send_data_to_utility marks
that file as a backup. We apply lossy aggregation to backup data to cover as much data as possible within
storage limitations.

Manage_energy_distribution handles intra-microgrid energy sharing by instructing meters
above their thresholds to share_power_on when at least one other battery is below its threshold.
Meters are instructed to share_power_off if no battery requires power.

4



Manage_energy_distribution also directs smart meters to reduce_power_demand_on if the
central utility is offline and issues reduce_power_demand_off once the central utility is running
again.

2.1.3 Interface with Central Utility
In addition to the default ANSI commands get, put, acknowledge, and aggregate, we define
the following set of commands from the central utility to the MGCs:

● put_billing_rates: delivers the billing rates for the current month
● reduce_power_demand_on / reduce_power_demand_off: toggles function

to reduce power demand within each microgrid
● set_data_time_interval: sets the Data_Time_Interval parameter

2.2    Central Utility

The central utility’s responsibilities span data management, energy management, and billing. Its
contributions to ACES’s reliability include tracking failed data requests and prioritizing electricity
distribution in crises. The central utility adapts to changing requirements by employing a flexible
relational database, collecting high quality data, and supporting configurable billing parameters.

2.2.1 Storage Mechanisms
The central utility stores its information in the Customer Information Database (CIDB). The CIDB
provides reliable storage as multiple processes read and write data, and its contents are easily
reconfigurable. Table 3 lists the CIDB tables.

Table 3: CIDB Tables

Table Name Columns Notes

Smart Meters Meter_ID*, Account_Number, IP_Address, Function,
Direction, Controller_ID

Created upon system
initialization.

Microgrid
Controllers

Controller_ID*, Location (Residential, Apartment, or
Emergency), IP_Address

Meter
Records

Record_ID*, Record_Type, Meter_ID,
Lossy_Aggregation, Start_Time, End_Time, Reading

Records deleted after
six months.

Customer
Accounts

Account_Number*, Controller_ID, Base_Bill

Billing Rates Month_ID*, Peak_Hour_Rate, Non_Peak_Hour_Rate,
Starting_Peak_Hour, Ending_Peak_Hour

Usage
Statistics

Month_ID*, Controller_ID, Statistic_Type (Generation,
Consumption, or Contribution)

* Primary Key

5



We note that if the broadband network or TCP fails, unsuccessful get requests are chronicled in a Failed
Request Queue (FRQ) file and remade later for reliable data collection.

2.2.2 Data Management
To provide the utility managers and MIT researchers with desired usage information and create residents’
bills, the central utility gathers meter data from the microgrids using periodic polling. Table 4 shows the
relevant processes.

Table 4: Data Management Processes

Process/Function Name Description

Query_data Issues get commands to each microgrid every hour.

Remake_failed_
requests

Every second, pops one get command from FRQ if non-empty
and remakes request.

Recover_data Re-requests data from up to ten weeks ago from the microgrids
using get.

Compute_
statistics

Once daily, updates total generation, consumption, and
contribution for current month in Usage Statistics. Accomplished
using SQL queries on Meter Records.

Each get command issued by Query_data requests data from the most recent completed hour. If
Query_data receives all the requested data, it is stored in Meter Records. If the request fails, it is
appended to the FRQ. Multiple Query_data threads run concurrently to reduce latency. Notably, no
data aggregation occurs between the central utility and MGCs, making ACES more adaptable by
researchers, who receive fine-grained data. Query_data only polls for data each hour because none of
its applications require near real-time data.

Remake_failed_requests operates similarly to Query_data, reliably bringing the central utility
up to date within several hours after a network outage. In case of a natural disaster, hardware failure, or
malicious attack that erases data in storage, Recover_data salvages backups from the MGCs,
increasing the system’s fault tolerance.

Furthermore, the central utility provides two APIs, Export_statistics and Export_all_data
to the utility managers and MIT researchers, respectively. Export_statistics uses Usage Statistics
to compute averages for the past month, quarter, year, and five years, within a day’s accuracy. We can
easily expand upon the gathered statistics due to the CIDB’s adaptability. Export_all_data exports
the entire CIDB, giving researchers access to six months of fine-grained records (likely entirely lossless),
thus aiding in their efforts to improve ACES.

2.2.3 Energy Management
The central utility purchases electricity during non-peak hours and prioritizes distribution when supply is
limited. These optimizations help minimize residents’ costs and keep Centertown’s important facilities
functioning.

6



The Purchase_power process handles energy management. It purchases from the regional grid to
maintain a full battery during non-peak hours, or during peak hours if the battery is critically low. This
proactive purchasing lowers customers’ bills.

We assume the New England regional grid responds to each electricity request with an update regarding
their current supply (NORMAL, LOW, CRITICAL, or EMPTY). If the regional grid states that supply is not
NORMAL, Purchase_power tells all microgrids to reduce_power_demand_on. If supply is
CRITICAL, the flow of electricity to houses ceases and 50% less is routed to apartments. If supply is
EMPTY, no electricity is routed to apartments either. Consequently, ACES reliably provides power to
emergency facilities, followed by subsidized apartments, by alerting microgrids and rerouting electricity
in cases of high demand. Once supply becomes NORMAL, Purchase_power issues
reduce_power_demand_off and routes electricity as usual.

2.2.4 Billing
The central utility meets billing requirements by creating bills and setting rates, as shown in Table 5.

Table 5: Billing Functions

Function Name Description

Create_bills The first day of each month, creates customers’ bills based on
usage the previous month.

Set_billing_
rates

Once a month, adds new month’s rates to Billing Rates.

Send_billing_
rates

Once a month, sends current rates to MGCs using
put_billing_rates.

Create_bills uses SQL to construct bills. For every customer, it starts with the base bill from
Customer Accounts. By filtering through Meter Records, it charges based on time of day for incoming
power and credits customers using the non-peak rate for outgoing power (prorated if necessary). If the bill
is negative, it is adjusted to $0 and the customer’s base bill is reduced by 25%. If the bill is positive, their
base bill increases by 25% (capped at the initial value). By adjusting base bills, ACES adapts to changes
in the electricity contributions of residents.

The other functions contribute to ACES’s adaptability as well by accommodating varying billing rates and
providing microgrids with valuable information for optimizing electricity distribution.

3    System Impact

Having described the key components of ACES, we now discuss its best and worst case behavior under
various use cases and evaluate the system.

7



3.1    Use Cases

First, we consider the normal operations use case, with typical demand levels and enough sunlight to
power all microgrids. If a property’s battery drops below its sharing threshold, its MGC learns this within
minutes, and instructs other smart meters to share power. By facilitating energy sharing, ACES reduces
costs to low-income or retired residents with limited savings. ACES also lowers residents’ base bills by
operating under the existing LTE capacity to avoid higher network costs. As a consequence, MGCs
request data less frequently, but we believe a delay on the order of minutes in the best case is permissible
to lower the financial burden on low- and middle-income homeowners and apartment dwellers.

In addition, the system accommodates an extreme power demand use case, where demand increases for all
microgrids — for instance, a heat wave may drastically increase air-conditioning usage. ACES sends
additional power to the apartment microgrid to meet this demand; this power comes from the central
utility’s proactively purchased charge, as well as extra generated power from the other microgrids
(assuming 12 hours of sunlight). If regional supply is critically low, the central utility adapts by restricting
the flow of electricity to houses and some apartments to keep the emergency facilities functioning. We
believe that because an increase in life-threatening emergencies is inevitable during a heat wave,
Centertown must remain able to reliably respond to these incidents. A drawback of this choice is that
homeowners and elderly apartment dwellers with health problems that necessitate air conditioning may
preemptively lose power. However, in the best case, this would not happen because of the available solar
power and early alerts urging residents to lower demand.

Next, in the storm outages use case, the central utility is taken offline and half of the residential
microgrids are isolated from the town lines. The MGCs continue internal operations as usual and ask
residents to reduce demand to prevent properties from losing power. This scenario poses challenges to
usual data collection since the broadband network fails; hence, ACES has microgrids accumulate data
during the 12-hour outage. Processing this backlog after the storm may delay billing and data delivery by
only several hours in the best case. Since the MIT researchers desire large volumes of accurate data rather
than instantaneous updates, ACES prioritizes obtaining lossless data eventually over fast — but lossy —
retrieval. Notably, this tradeoff does not hinder the delivery of power to residents.

Finally, we consider long-term changes, where demand shifts suddenly due to circumstances such as the
pandemic. If peak hours change, the central utility updates when it proactively charges its battery. In the
worst case, demand may increase enough that a full charge of the central utility’s battery cannot last
Centertown the entirety of peak hours, forcing it to buy power at a higher rate and add to customers’ bills;
however, ACES is constrained by the battery’s capacity. Due to the often necessary and even life-saving
role electricity plays for customers, we prioritize reliable service over cost-effectiveness — the system
buys from the New England power grid during peak hours if it must, but minimizes the need to do so.

In all use cases, ACES aims to reliably provide affordable energy and collect fine-grained data. Some of
the best outcomes for ACES are when residents receive steady power, energy sharing reduces customers’
bills, and data is transmitted across the system in a timely and lossless manner for utility managers and
researchers. However, each scenario presents different obstacles to achieving the best case. Regarding
data collection, for example, storm outages may make the worst-case scenario where ACES delivers
incomplete, lossy, or no data to researchers more likely. Another potentially catastrophic outcome occurs
when customers lose access to electricity, which is more likely in the extreme demand use case. Losing
power would negatively impact customers in many ways, ranging from minor inconveniences to massive
health and safety risks. Subsidized housing residents are especially at risk, as they may be more likely to

8



require sustained and affordable power due to factors such as age, medical needs, socioeconomic status,
and more.

3.2    Evaluation

ACES respects the storage and network constraints of its infrastructure. Since we leverage lossless
aggregation, smart meters never run out of storage. At the microgrid level, the bottleneck is the apartment
MGC, since it services over 300 smart meters — an order of magnitude higher than any other microgrid.
The data stored in the apartments’ MGC occupies roughly 50GB. Across all microgrids, we can only store
six months of fine-grained records in the central utility, occupying about 1.5TB of the 2TB total.

In terms of network bandwidth, the apartment MGC could need to download up to 2.7GB of meter data
monthly, but we anticipate at least the necessary 30% reduction from lossless aggregation. Regardless, a
potential fairness issue with ACES as it stands is that the apartments’ microgrid is most susceptible to
network congestion. In the worst case, its data could undergo lossy aggregation for part of the month. As
a result, researchers may have more difficulty optimizing the system for apartment dwellers, leading to
inequity.

Another limitation of ACES concerns privacy. MIT researchers receive fine-grained smart meter data that
comprehensively logs when each property consumed electricity. Anyone with (possibly unauthorized)
access to this data could discern, for example, when residents are away from home. One of ACES’s goals
is to reliably collect and send usage data to researchers, but this comes with the tradeoff of risking
Centertown customers’ privacy.

4    Conclusion

Our proposed system, ACES, provides low-cost, reliable energy by enabling intra-microgrid sharing.
Additionally, it manages customer billing and collects fine-grained data for researchers. The design
provides reliability through decentralized microgrids, request tracking, and backup files. Moreover, ACES
adapts to changing circumstances by supporting modifications to its tables, data collection patterns, and
billing parameters.

9


