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1 Introduction

New technology and environmental awareness have transformed the landscape of energy management.
Energy production is becoming increasingly decentralized with rising use of personal solar panels. To take
advantage of this paradigm shift, we propose A Cooperative Energy System (ACES), which (1) reliably
provides low-cost energy to Centertown customers, (2) enables power sharing within microgrids, (3)
calculates customer bills, and (4) collects comprehensive usage data for research. Challenges of creating
such a system include real-time monitoring of components to share power when needed, collecting
fine-grained data within storage and network constraints, and responding to failures.

The design of ACES prioritizes reliability and adaptability. Our primary goal is reliability, which means
accurate and timely delivery of power and data, even during outages. We prioritize reliability because it
directly benefits residents and municipal services, who are most impacted by our system. Specifically, we
focus on reliable electricity, since power failures disrupt residents’ lives by impeding emergency services,
heating and air conditioning, Internet communications, and more. Moreover, reliable data collection
enables fair billing and system analytics, benefiting researchers who require usage data. Additionally, we
prioritize adaptability, or the system’s configurability by future engineers and ability to adjust to external
changes. We aim to minimize the burden of maintenance, which residents would otherwise bear the cost
of. Furthermore, adaptability increases ACES’s longevity and efficiency as system requirements evolve.

ACES accomplishes these goals by dynamically assigning microgrid controllers to manage energy sharing
and transfer data from smart meters to the central utility for billing and export. Combined with request
retransmissions and prioritization of electricity distribution, this design provides reliability and
adaptability in the face of component, network, and power failures.

In Section 2, we outline the system design and implementation. Then, we evaluate the feasibility and
impact of our system in Section 3.

2 System Description

ACES relies on three layers of components. At the bottom layer, smart meters respond to ANSI
commands. Some meters (“meters with batteries”) are attached to solar panels. In the middle, microgrid
controllers (MGCs) handle energy sharing and collect meter data. Finally, a top-level central utility
collects data from the MGCs, provides data extraction APIs, distributes electricity, and handles billing.
Figure 1 summarizes this organization.

Notably, the functionality of ACES is divided into two domains: energy management and data collection.
Energy management occurs at the microgrid level and aims to effectively deliver power to residents. This
domain includes commands for energy sharing (depending on battery levels throughout the microgrid)
and reducing power demand. On the other hand, data collection occurs at the smart meter level, with the
purpose of transferring data to the central utility. Accordingly, each MGC is assigned control of a set of
microgrids for the energy management domain and an unrelated set of smart meters (dispersed across
microgrids) for data collection. By introducing this difference in granularity, the system effectively
load-balances the storage and network demands of data collection, especially in the high-density
apartment microgrid.

Heartbeats between the central utility and MGCs facilitate detection of component failures. When MGCs
fail, their assigned microgrids and smart meters are transferred to other MGCs, enabling reliable energy



and data management. Since MGCs manage energy sharing independently, this functionality persists
when the broadband network fails, increasing ACES’s reliability.

In terms of storage mechanisms, the MGCs rely on a flat Usage Data file system to store meter
readings, as they perform little data processing before forwarding information to the central utility. In
contrast, the central utility features a relational database, the Customer Information Database (CIDB). The
CIDB offers reliable concurrency and easily adaptable tables, as well as SQL querying and exportability.

For all network communications, ACES employs TCP to achieve reliable, in-order transport. The MGCs
and central utility additionally retransmit failed commands for boosted fault tolerance. We use TCP for
improved performance, as the transport layer rectifies small amounts of packet loss without necessitating
large application-level retransmissions. Since fine-grained usage information enables researchers to
improve ACES, the system exclusively uses lossless aggregation for increased adaptability.

Figure 1: ACES Overview
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Ilustrates the main components of ACES, including storage and network mechanisms.
2.1 Microgrid Controllers

The microgrid controllers (MGCs) are responsible for (1) managing energy usage within microgrids and
(2) collecting data from smart meters. In each domain, MGCs receive microgrid and smart meter
assignment updates from the central utility. Section 2.2.2 details the assignment process. Our system
assumes that smart meters always handle incoming commands by replying to the sender’s IP address (and
direct put requests to the IP address that most recently requested its data). In addition, the MGCs track
and retransmit unsuccessful commands in case of network failure.



For energy management, every microgrid is assigned to at least one primary and one backup MGC; this
redundancy alleviates MGC failures when the central utility cannot update assignments. Under normal
conditions, a MGC handles energy management for its primary assignments only, which reduces network
usage. However, if the central utility is unreachable (as detected through heartbeats), the MGC also
performs energy management for its backup assignments. Since all decisions are deterministic, the system
behaves correctly when multiple MGCs control a microgrid simultaneously.

For data collection, each MGC regularly initiates get requests to its assigned smart meters. By
scheduling get requests themselves, the MGCs avoid relying on the central utility to run data collection,
improving the system’s fault tolerance. In addition, the MGCs retain backups of all data sent to the central
utility in case of storage failures. We describe implementation details in the following sections.

Figure 2: ACES Data Flow
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Highlights the flow of data from the smart meters to the central utility.

2.1.1 Storage
The MGCs’ storage includes several components, summarized in the table below. All storage is persistent
(stored in files) to allow for recovery after failure.

Table 1: MGC Storage

Component Purpose

System Info Stores the IDs, IP addresses, microgrid affiliations, and battery
thresholds of all smart meters.

Primary Microgrids | Stores the IDs of all microgrids assigned to the MGC for energy
management.




Backup Microgrids Stores IDs of the MGC'’s backup energy management

assignments.

Data_ Assignments Stores IDs of smart meters assigned to the MGC for data
collection.

Usage_Data Stores data from smart meters in files, with one file for all data

from each 15-minute interval (matching the 15-minute query
interval from the central utility).

Request Stack Tracks current commands.

System_ Info is a static file generated upon initialization. The central utility can rewrite it by command
(see Section 2.1.3). Similarly, Primary Microgrids, Backup Microgrids,and
Data Assignments are assigned by the central utility upon initialization and updated by command.

Usage Data stores history logs received from smart meters in files. Each file includes an is backup
bit. Once Usage Data exceeds S0GB, the oldest backup files are deleted to maintain storage
availability. We store data logs directly without parsing due to limited processing power.

Finally, the Request Stack stores all outstanding commands until they succeed. We chose the stack
data type over a queue to prioritize addressing more current requests for power from customers. Each
command has an associated expiration, after which it is dropped from the stack if still failing. For
instance, reduce power on expires in a week, as it likely no longer holds relevance after that
duration. This mechanism discards stale commands and curbs the size of the Request Stack.

2.1.2 Processes

To monitor energy sharing within the microgrid and collect smart meter data, each MGC runs the
processes outlined in Table 2. Each process runs on a single thread since the MGCs are single-processor
machines.

Table 2: MCG Processes

Process Name Description

Initialize meters Starts all assigned smart meters using initialize and instructs
them to perpetually apply lossless aggregation with
aggregate(lossless=true).

Query meter data Requests and stores data from assigned smart meters.
Manage_energy_ Responds to changes in battery statuses within assigned microgrids.
distribution

Send_data_to_utility | Handles get and acknowledge commands from the central utility.

Forward Forwards reduce power onand reduce power off from the




commands central utility to its assigned microgrids.

Garbage collect Deletes oldest backup files when close to reaching storage capacity.

Query meter data runs every 60 seconds. We chose a one-minute interval so that even with a few
retransmissions, the MGC obtains the necessary meter data before the central utility requests it. It sends
get requests to all meters in Data Assignments, adding the requests to the Request Stack. For
the remainder of the 60 seconds, Query meter data continues retransmitting commands from the
Request Stack.

Upon receiving data from a smart meter, Query meter data stores the data in the current

Usage Data file and removes the completed request from the Request Stack. If

Query meter data does not receive even a single record associated with a get request, that request
is considered unsuccessful and remains in the Request Stack. As a result, if a TCP connection fails in
the middle of a data transfer, the affected get requests are retransmitted in full.

Send data to utility sends requested data to the central utility. Whenever the central utility
acknowledges receipt of a file, Send data to utility marks that file as a backup. Each MGC can
back-up at least six months of data (see Section 3.1.2).

Every minute, Manage energy distribution queries all smart meters with batteries in the
MGC’s assigned microgrids for their most recent “power stored” (i.e. battery level) record using get.
This minimal data is not acknowledged to allow independent collection in the data collection domain. If
any battery is at 0%, Manage energy distribution sends share power on to all meters
above their thresholds. Meters are instructed to share power off if they are below their threshold or
no battery requires power. Fortunately, each microgrid contains at most 10 smart meters with batteries.
Thus, network usage is minimal compared to full data collection, enabling minute-by-minute power
sharing instructions. Provided MGC availability exceeds 0.65, each controller remains under the 2GB
LTE capacity (see Section 3.1.2). Manage energy distribution also directs smart meters to
reduce power on if the central utility is offline and issues reduce power off once the central
utility is reachable again.

2.1.3 Interface with Central Utility
In addition to the default ANSI commands get, put, acknowledge, and aggregate, we define
the following set of commands from the central utility to the MGCs:

e hello: sends a heartbeat message

e modify energy assignment: adds or removes a primary or backup microgrid
assignment for energy management

e modify data assignment: adds or removes a smart meter assigned to the MGC for
data collection

e reduce power on / reduce power off: toggles reduction of power demand
within microgrid

e put billing rates: delivers billing rates for current month

e set system info: updates System Info file



2.2 Central Utility

The central utility’s responsibilities span data management, energy management, and billing. It
contributes to ACES’s reliability by dynamically assigning microgrids and smart meters to each MGC.
These assignments change as MGCs crash and reboot, enabling resiliency to MGC failures and load
balancing across controllers. The central utility retransmits failed commands and prioritizes electricity
distribution in crises for added reliability. It adapts to changing requirements by employing a relational
database, collecting high quality data, and supporting configurable billing parameters.

2.2.1 Storage Mechanisms

The central utility stores its information in the Customer Information Database (CIDB). The CIDB
provides reliable storage as multiple threads read and write data, and its contents are highly configurable,
facilitating reorganization and addition of data. For example, the CIDB was easily augmented to
accommodate dynamic MGC assignments in response to new controller failures. Table 3 lists the CIDB’s
contents. Each field’s subscript indicates its size in bytes.

Table 3: CIDB Tables
* Primary Key

Table Name

Columns

Smart Meters

Meter IDg*, Compressed Meter ID,, Account Number,, [P Address,,
Function;, Direction;, Microgrid 1D,

Microgrid Controllers

Microgrid ID,*, Location, (Residential/Apartment/Emergency),
IP_Address,, Current_Status,; (Available/Unavailable)

Energy Management
Assignments

Microgrid_ID,*, Primary Manager Microgrid ID,,
Backup Manager Microgrid ID,

Data Collection
Assignments

Compressed Meter ID,*, Manager Microgrid 1D,

Meter Records

[Compressed Meter ID,, Record Type,, Start Time,]*, Record Duration,,
Lossy Aggregation,;, Readingg

Power Sharing Records

[Compressed Meter ID,, State Change Time,]*, Sharing_State, (On/OfY)

Customer Accounts

Account Number,*, Microgrid ID,, Base Billg

Billing Rates

Month IDg¢*, Peak Hour Ratey, Non Peak Hour Rates,
Starting Peak Hour,, Ending Peak Hour,

Usage Statistics

[Month_IDg, Account Number,, Statistic Type,;
(Generation/Consumption/Contribution)]*, Statistic Valueg

To save storage space, the CIDB uses 4-byte IDs for smart meters (permitting over one billion IDs). The
Smart Meters table maps each original 8-byte ID to its “compressed” ID. Billing rates and usage statistics
are deleted after five years, since the utility managers only desire data within that time frame. The
fine-grained meter and power sharing records, however, are deleted after six months due to storage



limitations. With this configuration, the CIDB occupies up to 1.8TB of the 2TB available in the central
utility (see Section 3.1.3).

Unsuccessful commands are chronicled in a Request Queue file and retransmitted for reliable
delivery in case TCP, broadband, or an MGC fails. We utilize a queue because older meter data is needed
more urgently for billing. Like in the MGCs, each command is dropped from the queue upon expiration.

2.2.2 MGC Assignment System

The central utility maintains mappings from microgrids and smart meters to their assigned MGCs in the
CIDB. Each microgrid has a primary MGC actively managing its energy-related activities and a backup
MGC prepared to perform those responsibilities if the primary fails. By pre-assigning backups before
failures occur, ACES ensures that if the central utility becomes unreachable, MGCs can promote
themselves from backups to primaries. In addition, each smart meter is given an MGC that collects its
data. There are no pre-assigned backups for data collection because if the central utility cannot update
assignments, it also cannot make use of any collected data.

The Manage assignments process communicates assignments to MGCs using

modify energy assignment andmodify data assignment. Upon system initialization,
each MGC acts as the primary energy manager of its own microgrid for simplicity and as the backup of
another randomly assigned microgrid. Moreover, there are 2(8000) + 303 + 4 = 16307 smart meters,

16307 . : .
so each of the 802 MGCs collects data from “soz =~ 21 randomly assigned meters. Physical distance

between MGCs and their assignments is not optimized since all infrastructure resides within a single
town. Instead, ACES prioritizes load balancing to decrease storage and network usage.

To detect changes in MGCs’ availability, the Update availability process pings each controller
every second using hel1lo. If the MGC acknowledges, it is marked available in the CIDB. If three
consecutive heartbeats are not acknowledged (ruling out momentary packet loss), the MGC is marked
unavailable. Heartbeats are sent every second to detect MGC failures within a few seconds, but not more
often to limit network usage (see Section 3.1.2).

If an MGC with primary microgrid assignments P and backup assignments B becomes unavailable,
Manage assignments promotes the backup MGCs for microgrids in P to primaries and assigns new
backups for all microgrids in P or B. It also assigns a new MGC to each smart meter the failed MGC was
collecting data from. As a result, functioning MGCs start managing the affected microgrids and smart
meters with minimal disruption. Assigning new backups promotes reliability in case many MGCs fail
simultaneously. Whenever a microgrid or smart meter requires reassignment, ACES chooses an MGC
currently servicing the fewest microgrids or smart meters, respectively, to maintain an even load.
Mistakenly believing an MGC is unavailable due to link failures results in duplicative assignments, but
network usage remains under capacity even with this redundancy (see Section 3.1.2).

When an MGC becomes available, it is reassigned as the primary of its own microgrid. Once the MGC
acknowledges the new assignment, Manage assignments demotes the interim primary of that
microgrid to a backup and removes the backup MGC with the highest load. The newly available MGC is
not immediately assigned to other microgrids or smart meters. This cautiousness prevents large volumes
of changing assignments if a MGC oscillates between appearing available and unavailable. As other
controllers fail, the MGC naturally accumulates more assignments, eventually rebalancing the load.
Figure 3 illustrates the assignment process.
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Figure 3: Dynamic MGC Assignment
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Exhibits MGCs’ evolving microgrid and meter assignments as an MGC fails and comes online again.

2.2.3 Data Management

To provide the utility managers and MIT researchers with usage information and create residents’ bills, a
Query data process gathers meter data from the MGCs using periodic polling. The central utility also
provides Recover data, Compute statistics, Export statistics,and

Export all data functions, as outlined below.

Every 15 minutes, Query data issues get to each MGC, requesting all data collected during an earlier
15-minute interval (at 9:45am, it requests data from 9:15-9:30am). This buffer gives the MGCs time to
first obtain the desired data from smart meters. Once again, if any record is not received, the get request
is retransmitted in full to reliably recover from TCP failures. After performing its new get requests,
Query data issues previously failed commands from the Request Queue until the end of that
15-minute interval. Successful commands are removed from the queue. Query data uses multiple
threads for parallel processing: one thread sends commands over the network, another listens for and
processes incoming responses, and a third writes received data records to the CIDB.

We chose a 15-minute interval for data collection so that under normal operations, the central utility’s data
is at most 45 minutes out of date (see Section 3.1.3). We believe this delay is acceptable since billing only
occurs once a month and the utility managers and researchers do not require real-time data. The interval
was not shortened further to give Query data ample time to process each request.



In case of a natural disaster, hardware failure, or malicious attack that erases non-volatile storage,
Recover data re-requests six months of meter records from the MGCs using get, increasing the
system’s fault tolerance. Recover data refrains from requesting more data due to storage constraints.

Once daily, Compute statistics performs SQL queries on Meter Records and Power Sharing
Records to update the total power generated, consumed, and contributed by each property for the current
month in Usage Statistics. Generated power is measured directly by smart meters with batteries. ACES
estimates consumed power by taking into account incoming power through meters and deltas between
battery power generated and power stored. It also considers how long a meter was sharing or shared with
based on its battery level and the Power Sharing Records. Similarly, contributed power is measured using
outgoing power through meters and estimated intra-microgrid shared power.

Furthermore, the central utility provides an Export statistics API to utility managers, which uses
Usage Statistics to compute averages for the past month, quarter, year, and five years, within a day’s
accuracy. Export all data exports the entire CIDB, making ACES more adaptable by the MIT
researchers, who receive six months of lossless records.

2.2.4 Energy Management
A Purchase power process purchases electricity during non-peak hours and prioritizes distribution
when supply is limited. These optimizations keep Centertown’s important facilities functioning.

Purchase power purchases from the regional grid to maintain a full battery immediately prior to the
start of peak hours, or during peak hours if the battery is critically low. This proactive purchasing means
residents may not have the chance to contribute as much power to the central utility to lower their bills,
but ACES makes this tradeoff to store more electricity for outages and high demand scenarios, thus
prioritizing reliability.

We assume the New England regional grid responds to each electricity request with an update regarding
their current supply (NORMAL, LOW, CRITICAL, or EMPTY). If the regional grid states that supply is not
NORMAL, Purchase power tells all microgrids to reduce power on. If supply is CRITICAL, the
flow of electricity to houses ceases and 50% less is routed to apartments. If supply is EMPTY, no
electricity is routed to apartments either. The emergency services are never deprived of available
electricity, as their continuance is prioritized first and foremost; the subsidized housing customers are next
in priority. Consequently, ACES reliably provides power to emergency facilities, followed by apartments,
by alerting microgrids and rerouting electricity in cases of high demand. Once supply is NORMAL,
Purchase power issues reduce power off and routes electricity as usual.

Microgrids are also instructed to reduce power on when main power lines are down, and
reduce power off afterwards, to limit loss of electricity.
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2.2.5 Billing
Finally, the central utility creates bills and sets rates, as shown in Table 5.

Table 4: Billing Functions

Function Name Description

Create bills The first day of each month, creates customers’ bills based on
usage the previous month.

Set billing rates Once a month, adds new month’s rates to Billing Rates.

Send billing rates Once a month, sends current rates to MGCs using
put billing rates.

Create bills uses SQL to construct bills. For every customer, it starts with the base bill from
Customer Accounts. By filtering through Meter Records, it charges based on time of day for incoming
power and credits customers using the non-peak rate for outgoing power (prorated if necessary). If the bill
is negative, it is adjusted to $0 and the customer’s base bill is reduced by 25%. If the bill is positive, their
base bill increases by 25% (capped at the initial value). By adjusting base bills, ACES adapts to changes
in the electricity contributions of residents.

The other functions promote adaptability as well by accommodating varying billing rates and providing
microgrids with information for optimizing electricity distribution.

3 Evaluation

Having described its key components, we now evaluate ACES and its behavior under various use cases.

3.1 Quantitative Evaluation

3.1.1 Smart Meters

All meters perpetually apply lossless aggregation, so we anticipate they will never exceed their 64GB of
storage. ACES always losslessly aggregates data to reduce storage and network usage, not only in smart
meters but throughout the system, without sacrificing accuracy. Regarding network usage, each smart
meter exclusively communicates with MGCs, and in section 3.1.2 we demonstrate that each MGC
remains under the same 2GB monthly LTE limit in both directions, despite interacting with several smart
meters and the central utility at once. An individual smart meter will therefore comfortably remain below
the LTE capacity.

3.1.2 Microgrid Controllers
Each MGC’s performance depends on how many microgrids and smart meters it services. We thus let E;
be the average (over a month) number of microgrids the MGC with ID 7 manages energy-related

activities for, and let i be the number of smart meters (on average over a month) MGC 1 collects data

E =max E D = max D;

for. We will show that even a bottleneck MGC servicing i ‘ microgrids and
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smart meters respects the constraints of the infrastructure. Table 5 demonstrates how F and D grow as
MGC availability decreases.

Table 5: E and D as Function of Availability

Mean MGC Availability A £~ [ 2 1 D { &07]
A 802A
1.00 2 21
0.75 3 28
0.50 4 41
0.25 8 82
0.01 200 2,034

The above table presupposes an even load across controllers. In practice, /2 and D could assume slightly
larger values due to delayed load balancing; assuming a lower availability compensates for this difference.
The table also assumes that each microgrid’s primary and backup MGCs are managing it simultaneously,
as this may happen under certain failure circumstances.

Storage in the MGCs is dominated by the history logs in the Usage Data file system. Each smart meter

generates at most 3 types of 36-byte records every 15 seconds, yielding

0.02D GB
1 month

( 3 records > <2678400 seconds) (36 bytes

D meters ~
1 record

1 meter - 15 seconds 1 month

without aggregation. ACES allocates 50GB for Usage Data; the remaining 14GB easily

accommodates the other files, like System Info. Figure 4 graphs the number of months of data the

MGC:s can store as availability increases.

ACES can adapt to more pervasive and longer MGC failures: even when availability is 0.05, they can
store the necessary six months of data. Since mean availability is likely above 0.99, the MGC storage
could support over 20 times as many smart meters with the same number of controllers.

For all network usage analyses, we conservatively assume a 5 percent increase in traffic due to TCP
retransmissions and an additional 10 percent increase in traffic due to application-level
retransmissions!'?). We also assume a 40-byte header is added to each packet, and that all control-flow
(non—meter-data) packets contain 10 bytes of content!*!.
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Figure 4: Months of Data Stored in MGCs Figure 5: Monthly LTE Network Usage
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We now consider monthly LTE network upload and download usage. Due to their infrequency, we simply
reserve 0.1GB per month in each direction for commands and acknowledgments involving initialization,
aggregation, power demand reduction, billing rates, MGC assignment updates, new system information,
and event logs. Event logs are insignificant because a smart meter’s state rarely changes in our system.
Turning to non-negligible upload traffic, the bottleneck MGC issues up to 10E get requests, power
sharing instructions, and get acknowledgments each minute for energy management purposes, one to
each meter with a battery in its assigned microgrids (each microgrid has at most 10 meters with batteries).
For data management, it sends a get request and acknowledgment to each of its D meters each minute.
To the central utility, the MGC transmits a hel1o acknowledgement every second and 15 minutes of its
D meters’ records (at most 15 - 4 - 3 36-byte history logs and 15 13-byte power-sharing records each)
every 15 minutes. After accounting for retransmission overhead, we obtain a monthly upload usage of

0.1+ 0.078E 4 0.029D + 0.155 GB.

For download usage, at most 10 smart meters send one 36-byte record (their battery level) and a power
sharing acknowledgement each minute to the bottleneck MGC. In addition, the MGC’s D assigned meters
send a full minute of history logs (at most 4 - 3 36-byte records) every minute. We count these history
logs twice because some smart meters send this same data using put, but ACES ignores those requests
for simplicity. The central utility sends the MGC a hello every second and one get request and
acknowledgment every 15 minutes. This traffic produces a monthly download usage of

0.1 +0.65E + 0.049D + 0.155 GB.

Figure 5 graphs these upload and download usages as a function of availability. Both directions remain
under the available 2GB per month when availability is at least 0.65 (which is exceedingly low — roughly
corresponding to 20-minute crashes every 40 minutes). Below this point, ACES relies on its lossless data
compression to stay under capacity. If, however, availability is at least 0.99, the current network capacity
could support a 40 percent increase in the number of smart meters.

ACES’s decoupling of energy and data management is key to operating under the constrained LTE

capacity. If one MGC collected data from all apartment smart meters, it would exceed 2GB in usage,
necessitating lossy aggregation or more capacity. Distributing meters evenly across MGCs significantly
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lessens usage at the bottleneck controller. This restructuring also ensures that the network can support
additional communications like frequent hel1o pings, MGC assignment updates, and occasional
duplicative commands, which increase the reliability of ACES during network and MGC failures.

The main latency-sensitive task MGCs conduct is intra-microgrid energy sharing. Suppose one meter
needs charge and another meter is above its threshold. An MGC will query the microgrid’s battery levels
in at most one minute (unless, for instance, LTE is down). If MGCs or the broadband network fails, the
MGC assignment system enables ACES to reliably recover in the span of seconds due to heartbeats. Once
an MGC starts querying battery levels, the remaining delay is magnitudes shorter than one minute. We
estimate an RTT of around 1.6ms between any two Centertown components'®, With a 10Mbps
connection, sending control-flow packets generates minimal transmission and queueing delay. After the
MGC receives the requested battery levels, processing delay is dominated by reading the at most SMB
System_Info file to identify battery thresholds, which takes under one second at a reading speed of
35MBps!™.

Consequently, a meter will be instructed to share power in slightly over a minute. If TCP fails, this delay
could increase to a few minutes, as the connection would need to be reestablished. We believe a delay on
the order of one to five minutes is tolerable because the underlying electrical system likely experiences
delays of the same magnitude — it may take several seconds for a meter to physically share electricity over
the local grid, so sending power sharing instructions more than once a minute would prove superfluous.

Each MGC performs few computationally intensive operations, as it primarily sends and processes
network packets and reads and writes disk files. A single processor is more than sufficient for executing
these responsibilities.

3.1.3 Central Utility
The CIDB occupies almost all of the central utility’s 2TB of storage. Table 6 bounds the number of rows

in each CIDB table.
Table 6: Rows in CIDB Tables

Table Maximum Number of Rows Notes

Smart Meters 16,307 16307 smart meters

Microgrid 802 802 MGCs

Controllers

Energy 802 802 MGCs meters

Management

Assignments

Data Collection 16,307 16307 smart meters

Assignments

Meter Records 35 .10 (3 record types - 8004 meters with batteries
' + 1 record type - 8303 meters without batteries)

- 1071360 15-second intervals in 6 months
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Power Sharing 2.2 .10° 8004 meters with batteries

Records - 267840 minutes in 6 months

Customer 8,303 8303 Centertown customers

Accounts

Billing Rates 60 60 months in 5 years

Usage Statistics |1 5. 10° 60 months in 5 years - 8303 customers
- 3 statistic types

Using the number of bytes per row as indicated by the field sizes in Table 3, we see that the CIDB stores
at most 0.72TB of raw data. We estimate a storage overhead factor of 2.5 associated with using a
relational database, based on a proof-of-concept CIDB we created using MySQL with over a million
records. We believe that the isolation and adaptability the CIDB provides warrants this overhead. The
overhead yields a usage of 1.8TB, leaving an ample 200GB for the Request Queue. The central utility
storage is ACES’s primary bottleneck. If forced to accommodate more customers or data without
additional storage space, the central utility could not store six months of fine-grained data.

There is no capacity associated with the broadband network utilized by the central utility; for reference,
its upload and download usage is on the order of hundreds of GB each month.

Under normal operations, the latency associated with transferring a smart meter record to the CIDB is
under 45 minutes. The central utility queries MGCs for the record at most 30 minutes after its creation
(because of the 15-minute buffer period). We expect the MGCs to possess the record by this point since
they query for meter data every minute. The get request reaches the MGC storing the record in several
milliseconds, after which it reads the appropriate Usage Data file. Even if the MGC were
singlehandedly managing all smart meters, this file would occupy at most 70MB, and could be read in 2
seconds at a speed of 35MBps!. With a 10Mbps connection, the MGC transmits the file to the central
utility in under one minute, likely sooner since each MGC manages only a fraction of the smart meters.
The smart meters collectively generate approximately 2 million records every 15 minutes. At a rate of
50,000 inserts per second, the central utility adds these records to the CIDB in less than one minute!®.

Thus, the record in question would reach the CIDB less than three minutes after the central utility sends
its get requests, or under 45 minutes total. If several application-level retransmissions occur or database
inserts are unexpectedly slow, we anticipate that the CIDB would contain the record within a couple hours
in the worst case. We deem this delay acceptable since the data is utilized for billing or exported only
occasionally.

With its eight cores, the central utility can simultaneously run Manage assignments,

Update availability, the three Query data threads, and Purchase power, leaving two
cores for other functions. Like the MGCs, the central utility’s processes are likely I/O bound, rendering a
2.6GHz processor sufficient.
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3.2 Use Cases

First, we consider the normal operations use case, with typical demand levels and enough sunlight to
power all microgrids. If a property’s battery drops to 0%, its energy management MGC learns this within
minutes and instructs other smart meters to share power. By facilitating energy sharing, ACES reduces
costs to low-income or retired residents with limited savings. ACES’s load balancing across MGCs allows
the system to operate under the existing LTE capacity (instead of spending more on higher capacity), also
lowering the financial burden on low- and middle-income homeowners and apartment dwellers.

In addition, the system accommodates an extreme power demand use case — for instance, a heat wave
may drastically increase air-conditioning usage across all microgrids. As per the specification, all solar
panels charge for 12 hours per day, which supports 150% of their microgrids’ average demands.

Residential homes use 1-20(12/24) +1.05(12/24) = 112.5% of typical demand, leaving 37.5% to
store or send back to the central utility. The municipal buildings require 105% of typical demand, with
45% left over. The only microgrid whose consumption exceeds generated solar energy is the apartment
microgrid, with 200% of its typical demand (so ~50% must be delivered by the central utility). We expect
the central utility to meet the rest of this demand, as there are 8000 homes generating excess power
compared to 300 apartments. Even if the homes do not share enough, the apartments can draw from the
central utility’s proactively fully-charged batteries — which have a capacity of 12 hours of average
Centertown consumption.

In the worst case, regional supply may reach critically low levels. This outcome is more likely if demand
increases further, available sunlight decreases, or the heat wave fails to subside after a week. We believe
that because an increase in life-threatening emergencies is inevitable during a heat wave, it is especially
important to keep the municipal services functioning during this time. Thus, the central utility adapts by
restricting the flow of electricity to houses and apartments to keep the municipal buildings functioning, as
we prioritize hospital patients and those experiencing emergencies over other residents. A drawback of
this choice is that homeowners and elderly apartment dwellers with health problems that necessitate air
conditioning may preemptively lose power. Subsidized housing residents are especially at risk, as they are
more likely to require sustained and affordable power due to factors such as age, medical needs,
socioeconomic status, and more. For this reason, apartments’ power is only limited after ceasing the flow
of electricity to homes. Ideally, the available solar power and early alerts urging residents to lower
demand would prevent this outcome altogether.

Next, in the storm outages use case, the central utility is taken offline and half of the residential
microgrids are isolated from the town lines; additionally, cloudy weather causes a 10-15% reduction in
generated solar energy. The MGCs continue internal operations as usual and ask residents to reduce usage
to prevent properties from losing power — otherwise, residents in affected microgrids may lose power
10-15% of the time (since the solar panels in normal weather generate 100% of average demand). As the
central utility cannot reassign MGCs because the broadband connection is lost, MGCs manage energy for
both their primary and backup microgrids; the redundancy makes it unlikely for a given microgrid to have
no functional MGC for energy sharing.

The broadband outage also poses challenges to data collection. The MGCs accumulate meter data during
the 12-hour outage, and processing this backlog after the storm may delay billing and data delivery by
several hours. Recall from Section 3.1.3 that fewer than three minutes elapse on average between
Query data sending its 802 get requests and the requested data reaching the CIDB. This processing
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rate suggests that Query data could comfortably handle another 4(802) get requests that
accumulated in the Request Queue during the outage in the remainder of each 15-minute interval. The
central utility would then obtain all data from the outage period within under four hours. In the worst case,
suppose Query data spends one second on average processing a single get request. It could consume

15(60) — 802 = 98 fajled get requests every 15 minutes, recovering all outage data within 5 days.
Since the MIT researchers desire large volumes of accurate data rather than instantaneous updates, ACES
prioritizes obtaining lossless data eventually over fast — but lossy — retrieval. Notably, this tradeoff does
not hinder the delivery of power to residents due to the separation of data collection and energy
management. If the storm outage lasted longer than 12 hours, the delay in data delivery to the central
utility would increase linearly; for instance, a 24-hour outage may result in a worst-case delay of 10 days.

Finally, we consider long-term changes, where demand shifts suddenly due to circumstances such as the
pandemic. If peak hours change, the central utility updates when it proactively charges its battery. In the
worst case, demand may increase enough that a full charge of the central utility’s battery cannot last
Centertown the entirety of peak hours, forcing it to buy power at a higher rate and add to customers’ bills;
however, ACES is constrained by the battery’s capacity. Due to the often necessary and even life-saving
role electricity plays for customers, we prioritize reliable service over cost-effectiveness — the system
buys from the New England power grid during peak hours if it must, but minimizes the need to do so.

In all use cases, ACES aims to reliably provide affordable energy and collect fine-grained data. Some of
the best outcomes for ACES are when residents receive steady power, energy sharing reduces customers’
bills, and utility managers and researchers receive data in a timely and lossless manner. However, each
scenario presents different obstacles to achieving the best case. For example, storm outages make the
worst-case scenario where ACES delivers incomplete or lossy data to researchers more likely. Another
potentially catastrophic outcome is customers losing electricity, which is more probable during extreme
demand circumstances. Losing power negatively impacts customers in many ways, ranging from minor
inconveniences to massive health and safety risks. Consequently, while the system places importance on
delivering lossless data to researchers, ACES prioritizes energy management over data collection when it
comes to timeliness.

3.3 Limitations

The central utility’s 2TB storage capacity is the main impediment to ACES’s scalability in terms of
supporting more customers or data. We chose to store only six months of lossless records as opposed to
more lossy records because the researchers requested high accuracy information and can consult the usage
statistics for longer-term patterns.

Another limitation of ACES concerns privacy. This data sent to MIT researchers comprehensively logs
when each property consumed electricity. Anyone with (possibly unauthorized) access to this data could
discern, for example, when residents are away from home. One of ACES’s goals is to reliably collect and
send usage data to researchers, but this comes with the tradeoff of risking Centertown customers’ privacy.

4 Conclusion
Our proposed system, ACES, provides low-cost, reliable energy by enabling intra-microgrid sharing.

Additionally, it manages customer billing and collects fine-grained data for researchers. The design
provides reliability through decentralized and dynamically assigned MGCs, request tracking, and backup
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files. Moreover, ACES adapts to changing circumstances by supporting modifications to its tables, energy
and data MGC assignments, and billing parameters, as well as producing high quality data for research.

The system is not without areas for improvement — for instance, the collection of fine-grained data
benefits researchers, but would compromise Centertown residents’ privacy were the data to be accessed
by malicious actors. Researchers’ data access is also limited in scope to six months. A future
improvement for ACES could be to add the ability for researchers to stream meter records from the
MGCs through the central utility, as the MGCs collectively have enough storage for five years of data.
Additionally, instead of fully charging its battery before peak hours, the central utility could employ a
neural network to predict daily usage and purchase strategically to lower costs.
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