
Because of the Valentine’s Day Song Extravaganza, we didn’t have time in lecture to cover the
slides about implementing acquire() and release(). So here are some notes!

💖💖💖💖💖

In lecture, we went through two big examples of applying locks: to bounded buffers and to
filesystems. To really believe that all of this works, though, we should think about how one might
actually implement acquire() and release(). Here’s a simple strawman design:

First, we’re going to treat a lock as a flag. The flag is true (1) when a piece of code is holding the
lock, and false (0) otherwise. Our implementation of release(), then, is easy; we just set the
flag to zero.

release(lock):
lock = 0

What about acquire()? It’s not safe to acquire the lock if another piece of code is holding it
(lock != 0). If that’s the case, we’re going to have our function sit and do nothing. Once it’s
safe to acquire the lock, we’ll go ahead and set the flag to 1.

acquire(lock):
while lock != 0:

do nothing
lock = 1

But you all should know better than to think that our first attempt will work. Imagine this
scenario:

● Two CPUs run acquire(lock)
● Both find that lock = 0 (e.g., one does the check, then the other CPU takes over and

does the same check before anyone has set the flag to 1)
● Both set the flag to 1 and start executing the code after acquire(), since they both

have the lock.

This is bad! This is a race condition. It’s exactly what we don’t want to happen. We need the
check on the flag’s value, as well as setting it equal to 1, to be an atomic action. In other words,
we need locks to implement locks. This is a similar problem to virtual memory, where we needed
a way to get the page table’s physical address, or DNS, where we needed a way to get the IP
address of the root server.

💘💘💘💘💘
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And we’re going to solve this problem in the same way we did those: with a little bit of hardware
support. Here’s how the x86 architecture handles this. It uses at atomic exchange instruction,
XCHG, that looks like this:

XCHG reg, addr
temp <- mem[addr]
mem[addr] <- reg
reg <- temp

All (“all”) that this function is doing is swapping the values stored in reg with the value stored in
memory at address addr. The code that you see above is not inherently atomic (why would it
be, it’s three lines with seemingly no protection surrounding them). But there is a controller
responsible for managing access to memory. We can partition the overall system memory
across multiple controllers such that each memory location is the responsibility of one controller.
To perform an atomic operation — such as XCHG— a CPU must obtain permission from the
controller. The controller ensures that only one processor has permission at a time (processors
request permission by sending messages to the controller). This means that there is a piece of
hardware that prevents more than one CPU from executing this exchange operation at a time; it
cannot be interrupted.

💞💞💞💞💞

Now let’s use XCHG to implement acquire():

acquire(lock):
do:

r <= 1
XCHG r, lock

while r == 1

How does this work? If lock = 0, after XCHG, r will be 0, and the loop will terminate. Otherwise,
someone else is holding lock, and we need to keep trying. When we succeed, we will have
atomically installed 1 into lock, so others will block.
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