
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #1: Complexity, modularity, abstraction
plus an intro to client/server models

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we care about you as people more than we care
about any deadline
if you need help, ask for it. we need to balance the needs of a large group of
students and the needs of the staff, but we will work with you to help as much as
we can. in particular, as long as you reach out to your TA ahead of time, we will give
you a 24-hour extension on any assignment, no questions asked.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what is a system?
“a set of interconnected components that has an
expected behavior observed at the interface with its
environment.”

what makes building systems difficult?
complexity

why do we care?
complexity limits what we can build

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

why do we care?
complexity limits what we can build

how do we mitigate
complexity?
with design principles such as modularity
and abstraction

how do we enforce
modularity?
one way is to use a client/server model

Class Browser
(on machine 1)

Class Server
(on machine 2)

def main():
 html = browser_load_url(URL)
 ...

def server_load_url():
 ...
 return html

def browser_load_url(url):
 msg = url # could reformat
 send request
 wait for reply
 html = reply # could reformat
 return html stub

request

reply

def handle_server_load_url(url):
 wait for request
 url = request
 html = server_load_url(URL)
 reply = html
 send reply stub

the browser is the
client in this example

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

Class Browser
(on machine 1)

def main():
 html = browser_load_url(URL)
 ...

def browser_load_url(url):
 msg = url # could reformat
 send request
 wait for reply
 html = reply # could reformat
 return html stub

Class Server
(on machine 2)

def server_load_url():
 ...
 return html

def handle_server_load_url(url):
 wait for request
 url = request
 html = server_load_url(URL)
 reply = html
 send reply stub

client server

network

load(“view.html?item”)

X
load(“view.html?item”)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

Class Browser
(on machine 1)

def main():
 html = browser_load_url(URL)
 ...

def browser_load_url(url):
 msg = url # could reformat
 send request
 wait for reply
 html = reply # could reformat
 return html stub

Class Server
(on machine 2)

def server_load_url():
 ...
 return html

def handle_server_load_url(url):
 wait for request
 url = request
 html = server_load_url(URL)
 reply = html
 send reply stub

client server

network

load(“buy.html?item&ccNo=XX”)

X
load(“buy.html?item&ccNo=XX”)

problem: we just bought two copies of item
there are ways to deal with this issue — for example, giving each request a unique

ID, and keeping track of those IDs on the server — but then new problems arise: for
example, what happens if the server crashes in the middle of handling a request?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

Class Server
(on machine 2)

def server_load_url():
 ...
 return html

def handle_server_load_url(url):
 wait for request
 url = request
 html = server_load_url(URL)
 reply = html
 send reply stub

Class Browser
(on machine 1)

def main():
 html = browser_load_url(URL)
 ...

def browser_load_url(url):
 msg = url # could reformat
 send request
 wait for reply
 html = reply # could reformat
 return html stub

client server

network

load(“buy.html?item&ccNo=XX”)

problem: we just bought two copies of item
there are ways to deal with this issue — for example, giving each request a unique

ID, and keeping track of those IDs on the server — but then new problems arise: for
example, what happens if the server crashes in the middle of handling a request?

☠

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

network

scalability: how does our system behave
as we increase the number of machines,

users, requests, data, etc.?

fault-tolerance/reliability: how does our
system deal with failures (☠)? machines

crashing, network links breaking, etc.

security: how does our system
cope in the face of targeted

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance
requirements, and know if our system is meeting

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices?
who makes those choices?

#

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

http://mit.edu/6.1800
has all of the class material, due dates,
deadlines, etc.

http://mit.edu/6.1800

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

http://mit.edu/6.1800
has all of the class material, due dates,
deadlines, etc.

Canvas
for submitting assignments and seeing your
grades, and the occasional class-wide (or
section-wide) announcement. everything on
Canvas will be linked from the class website

we’ve already sent out one announcement about a
scheduling form — please fill it out today if you

haven’t already!

http://mit.edu/6.1800

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

http://mit.edu/6.1800
has all of the class material, due dates,
deadlines, etc.

Piazza
for questions that are relevant to the entire
class. important information from Piazza will
also end up on the website (e.g., some of
your assignments will have FAQs)

Canvas
for submitting assignments and seeing your
grades, and the occasional class-wide (or
section-wide) announcement. everything on
Canvas will be linked from the class website

we care about you as
people more than we
care about any
deadline
if you need help, ask for it. we need to
balance the needs of a large group of
students and the needs of the staff, but we
will work with you to help as much as we
can. in particular, as long as you reach
out to your TA ahead of time, we will
give you a 24-hour extension on any
assignment, no questions asked.

http://mit.edu/6.1800

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

complexity limits what we can build, but
can be mitigated with design principles
such as modularity and abstraction

one way to enforce modularity is with
a client/server model, where the two
modules reside on different machines
and communicate with RPCs; network/
server failures are still an issue

you will see these principles applied
over and over in this class

a student once told me that I say “modularity” in
almost every lecture, which seems correct

next lecture: naming, which allows modules to communicate

after that: operating systems, which enforce modularity on a
single machine

