
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #4: Bounded Buffers + Locks
getting many programs to communicate at once

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

why does emergency.mit.net exist
when we have emergency.mit.edu?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

why does emergency.mit.net exist
when we have emergency.mit.edu?

“MIT owns the domain mit.net and
is running the emergency notification
service on http://emergency.mit.net/. It
is replicated and will normally go to the
same place as http://emergency.mit.edu/.
Having it routed through a .net
domain gives MIT additional recovery
options in case something happens to
the campus network or the registrar
for .edu domains.”

http://kb.mit.edu/confluence/pages/viewpage.action?pageId=4266679

http://emergency.mit.net/
http://emergency.mit.edu/

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

assume they don’t need to

(for today)

assume one program per CPU

(for today)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers
(virtualize communication links)

assume one program per CPU

(for today)

today’s goal: implement bounded buffers so that programs can communicate

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

// receive a message from bb
receive(bb):
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.in <- bb.in + 1
 bb.buf[bb.in mod N] <- message
 return

// receive a message from bb
receive(bb):
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.in <- bb.in + 1
 bb.buf[bb.in-1 mod N] <- message
 return

// receive a message from bb
receive(bb):
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.in <- bb.in + 1
 bb.buf[bb.in-1 mod N] <- message
 return

// receive a message from bb
receive(bb):
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

this code is incorrect if we
swap these two lines!

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffer: a buffer that stores (up to) N messages.
programs can send and receive messages via this buffer

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

// receive a message from bb
receive(bb):
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

junebug is trying to
send message m2

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 1 current line: 1

junebug is trying to
send message m2

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 1 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 2 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 3 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 4 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 5 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 6 current line: 1
->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 1

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 2

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 3

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 4

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m1 | m2 | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 5

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m1 | m2 | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 6
->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m1 | m2 | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete complete

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m1 | m2 | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 1 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 2 current line: 1

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 2 current line: 2

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 3 current line: 2

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 3 current line: 3

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 4 current line: 3

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [| | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 4 current line: 4

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 5 current line: 4

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [m1 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 5 current line: 4

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 0
bb.out = 0
bb.buf = [m2 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 5 current line: 5

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 1
bb.out = 0
bb.buf = [m2 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 6 current line: 5

->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m2 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

current line: 6 current line: 6
->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m2 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete current line: 6
->

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m2 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

what happens when multiple programs try to send?

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: bb.buf[bb.in mod N] <- message
5: bb.in <- bb.in + 1
6: return

broccoli is trying to
send message m1

complete complete

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

junebug is trying to
send message m2

bb.in = 2
bb.out = 0
bb.buf = [m2 | | | | |]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

this implementation of send and receive only works with a single sender and
receiver; it can introduce race conditions with multiple senders

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

// receive a message from bb
receive(bb):
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

(in fact, a program could be interrupted while
incrementing bb.in; remember that bb.in <-

bb.in + 1 is multiple lines in assembly)

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

// send a message by placing it in bb
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 return

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

(in fact, a program could be interrupted while
incrementing bb.in; remember that bb.in <-

bb.in + 1 is multiple lines in assembly)

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: acquire(bb.lock)
5: bb.buf[bb.in mod N] <- message
6: bb.in <- bb.in + 1
7: release(bb.lock)
8: return

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: acquire(bb.lock)
5: bb.buf[bb.in mod N] <- message
6: bb.in <- bb.in + 1
7: release(bb.lock)
8: return

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

now, only one
program can be “in”
this section of the

code at a time

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: acquire(bb.lock)
5: bb.buf[bb.in mod N] <- message
6: bb.in <- bb.in + 1
7: release(bb.lock)
8: return

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

now, only one
program can be “in”
this section of the

code at a time

question: suppose the buffer has room for
exactly one more message. program A and

program B each call send. what might
happen?

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our earlier problem stemmed from the fact
that a program could be interrupted after

adding message to bb.buf, but before
incrementing bb.in

problem: second sender could end up
writing to full buffervariables in use

bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

// send a message by placing it in bb
1: send(bb, message):
2: while True:
3: if bb.in – bb.out < N:
4: acquire(bb.lock)
5: bb.buf[bb.in mod N] <- message
6: bb.in <- bb.in + 1
7: release(bb.lock)
8: return

now, only one
program can be “in”
this section of the

code at a time

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

the previous problem stemmed from the
fact that programs checked whether bb.buf

had space before acquiring bb.lock

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

question: suppose the buffer is full.
program A calls send, and program B calls

receive. what might happen?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

problem: deadlock* if buffer is full
variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while True:
 if bb.out < bb.in:
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

problem: deadlock* if buffer is full
*in 6.1800, we’ll use “deadlock” to mean “two

programs are waiting on each other, and neither can
make progress until the other one does”

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in – bb.out >= N:
 release(bb.lock)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in – bb.out >= N:
 release(bb.lock)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

give up the lock to allow other
programs to access the buffer

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in – bb.out >= N:
 release(bb.lock)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

if you are unsatisfied by the
performance of this code, that’s

okay; we’re going to revisit it

give up the lock to allow other
programs to access the buffer

variables in use
bb = the bounded buffer
message = the message we’re trying to send/receive
bb.in = total number of messages sent via this buffer
bb.out = total number of messages received via this buffer
bb.buf = the actual buffer for storing messages
N = total number of messages bb.buf can hold (assume N is large)
bb.lock = lock intended to protect the bounded buffer

locks allow only one CPU to be inside a piece of code at a time.
programs can acquire and release a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

// move a file from one directory to another
move(dir1, dir2, filename):
 unlink(dir1, filename)
 link(dir2, filename)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file

// move a file from one directory to another
move(dir1, dir2, filename):
 unlink(dir1, filename)
 link(dir2, filename)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
fs_lock = a global lock held whenever a program interacts with the filesystem

// move a file from one directory to another
move(dir1, dir2, filename):
 acquire(fs_lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(fs_lock)

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
fs_lock = a global lock held whenever a program interacts with the filesystem

// move a file from one directory to another
move(dir1, dir2, filename):
 acquire(fs_lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(fs_lock)

problem: poor performance

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
dir1.lock, dir2.lock = directory-specific locks

// move a file from one directory to another
move(dir1, dir2, filename):
 acquire(dir1.lock)
 unlink(dir1, filename)
 release(dir1.lock)
 acquire(dir2.lock)
 link(dir2, filename)
 release(dir2.lock)

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
dir1.lock, dir2.lock = directory-specific locks

// move a file from one directory to another
move(dir1, dir2, filename):
 acquire(dir1.lock)
 unlink(dir1, filename)
 release(dir1.lock)
 acquire(dir2.lock)
 link(dir2, filename)
 release(dir2.lock)

problem: exposes inconsistent state

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// move a file from one directory to another
move(dir1, dir2, filename):
 acquire(dir1.lock)
 acquire(dir2.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
dir1.lock, dir2.lock = directory-specific locks

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// move a file from one directory to another
move(dir1, dir2, filename):
 acquire(dir1.lock)
 acquire(dir2.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)

problem: deadlock

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
dir1.lock, dir2.lock = directory-specific locks

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
dir1.lock, dir2.lock = directory-specific locks
dir1.inum, dir2.inum = i-numbers for each directory

// move a file from one directory to another
 move(dir1, dir2, filename):
 if dir1.inum < dir2.inum:
 acquire(dir1.lock)
 acquire(dir2.lock)
 else:
 acquire(dir2.lock)
 acquire(dir1.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

variables in use
dir1 = the directory to move the file from
dir2 = the directory to move the file to
filename = the absolute path of the file
dir1.lock, dir2.lock = directory-specific locks
dir1.inum, dir2.inum = i-numbers for each directory

// move a file from one directory to another
 move(dir1, dir2, filename):
 if dir1.inum < dir2.inum:
 acquire(dir1.lock)
 acquire(dir2.lock)
 else:
 acquire(dir2.lock)
 acquire(dir1.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)

could release dir1.lock
here instead

locks create atomic actions. deciding what actions should be atomic, while
balancing performance, is a challenge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

variables in use
lock = the lock being acquired/released

acquire(lock): release(lock):

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

acquire(lock): release(lock):
 lock = 0

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

acquire(lock): release(lock):
 lock = 0

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

lock is released; no
program holds it

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

acquire(lock):
 while lock != 0:
 do nothing

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

lock is released; no
program holds it

release(lock):
 lock = 0

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

acquire(lock):
 while lock != 0:
 do nothing

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

another program holds
lock; it can’t be

acquired

lock is released; no
program holds it

release(lock):
 lock = 0

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

another program holds
lock; it can’t be

acquired

lock is released; no
program holds it

release(lock):
 lock = 0

acquire(lock):
 while lock != 0:
 do nothing
 lock = 1

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

another program holds
lock; it can’t be

acquired

lock is released; no
program holds it

release(lock):
 lock = 0

acquire(lock):
 while lock != 0:
 do nothing
 lock = 1

problem: race condition
(need locks to implement locks!)

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

another program holds
lock; it can’t be

acquired

lock is released; no
program holds it

release(lock):
 lock = 0

acquire(lock):
 while lock != 0:
 do nothing
 lock = 1

implementing locks requires hardware support — namely an atomic exchange
operation. much like how the MMU needs the physical address of page tables,

and DNS clients need to know the IP address of a root server

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to believe that all of this works, we should understand the implementations of
acquire and release

we can treat a lock as a flag that is true (1) when the lock is held and false (0) otherwise

XCHG atomically swaps the
value of r and lock; it

cannot be interrupted in the
middle of this action

acquire(lock):
 do:
 r <- 1
 XCHG r, lock
 while r == 1

release(lock):
 lock = 0

implementing locks requires hardware support — namely an atomic exchange
operation. much like how the MMU needs the physical address of page tables,

and DNS clients need to know the IP address of a root server

variables in use
lock = the lock being acquired/released

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

lingering performance issue: this is a lot of releasing and acquiring, especially if the
buffer remains full (or empty) for some time. we will address this in the next lecture

there is also something unsatisfying about locks, in that we often need a global
understanding of how they’re used; we’ll come back to that later in 6.1800

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in – bb.out >= N:
 release(bb.lock)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 return message

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

…Since these filesystems may contain millions or hundreds of millions of files,
most of which are inspected exactly once and found not to have changed, it
generates a lot of "garbage" in kernel memory which must eventually be
reclaimed. The kernel only actively collects this garbage, which it does by means
of a pseudo-LRU queue, when it runs into a configured limit. There is a broad-
scope mutex which protects this queue, and one of the issues is that it is
held too long while the garbage-collector is running, which causes any
process on the system that needs to open a file -- including the NFS server
process -- to block.

- email from Garrett Wollman in CSAIL last fall

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtualize memory

bounded buffers
(virtualize communication links)

assume one program per CPU

(for today)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bounded buffers allow programs to
communicate, completing the second step of
enforcing modularity on a single machine. dealing
with concurrency opens up a number of new
challenges

locks allow us to implement atomic actions.
determining the correct locking discipline can be
tough thanks to race conditions, deadlock, and
performance issues

notice that we have choices about how
apply locks (e.g., fine-grained, coarse-

grained). those choices impact the
performance and simplicity of our systems,

which in turn impacts users, developers,
and beyond

(and right now, performance and simplicity
appear to be at odds)

