
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #5: Threads
understanding the “most mysterious code” in an OS

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.unicode.org/L2/L2021/21075-heart-emoji-coverage.pdf

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.unicode.org/L2/L2021/21075-heart-emoji-coverage.pdf

how do we decide what
features to add to a system?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.unicode.org/L2/L2021/21075-heart-emoji-coverage.pdf

how do we decide what
features to add to a system?

can we correctly predict how
features will be used? who/what

they’ll impact?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.unicode.org/L2/L2021/21075-heart-emoji-coverage.pdf

how do we decide what
features to add to a system?

can we correctly predict how
features will be used? who/what

they’ll impact?

who gets to make these decisions?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

assume one program per CPU

(for today)

bounded buffers
(virtualize communication links)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

threads
(virtualize processors)

today’s goal: implement threads, which allow multiple programs to share a CPU

bounded buffers
(virtualize communication links)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

a thread is a virtual processor

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

a thread is a virtual processor
can suspend and resume a thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

a thread is a virtual processor
can suspend and resume a thread

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 // spin until it’s safe to send
 while bb.in - bb.out >= N:
 release(bb.lock)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

a thread is a virtual processor
can suspend and resume a thread

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 // spin until it’s safe to send
 while bb.in - bb.out >= N:
 release(bb.lock)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

question: what are we hoping will happen
in between release(bb.lock) and

acquire(bb.lock)?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

a thread is a virtual processor
can suspend and resume a thread

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 // spin until it’s safe to send
 while bb.in - bb.out >= N:
 release(bb.lock)
 yield()
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

a thread is a virtual processor
can suspend and resume a thread

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 // spin until it’s safe to send
 while bb.in - bb.out >= N:
 release(bb.lock)
 yield()
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

yield()’s job is to suspend the current
thread and resume another* thread; our
first job today is to understand what that
means

*there are cases where yield() might suspend the current
thread and end up resuming the same thread; that’s okay

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

yield():
 // Suspend the running thread
 // Choose a new thread to run
 // Resume the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

t_lock makes yield() an atomic action

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

t_lock makes yield() an atomic action

threads is a table that contains information
about each of the current threads

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

t_lock makes yield() an atomic action

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

t_lock makes yield() an atomic action

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

t_lock makes yield() an atomic action

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = id of current thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

t_lock makes yield() an atomic action

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

SP = current stack pointer
PTR = current page table register

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 // Resume the new thread

 release(t_lock)

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

t_lock makes yield() an atomic action

cpus is a table that keeps track of the id
of the thread currently running on each cpu

SP = current stack pointer
PTR = current page table register
CPU = current cpu

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread

 release(t_lock)

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

t_lock makes yield() an atomic action

cpus is a table that keeps track of the id
of the thread currently running on each cpu

SP = current stack pointer
PTR = current page table register
CPU = current cpu

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

t_lock makes yield() an atomic action

cpus is a table that keeps track of the id
of the thread currently running on each cpu

SP = current stack pointer
PTR = current page table register
CPU = current cpu

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 release(bb.lock)
 yield()
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

performance concern: if the processor resumes
the sending thread before any thread has called
receive(), the buffer will still be full, and the
sending thread will resume, but immediately yield
again

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 release(bb.lock)
 yield()
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

it would be nice if send() could indicate “yield, and don’t resume this
thread until there’s room in the buffer”

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 release(bb.lock)
 yield()
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

yield() suspends the running thread, chooses a new thread to run, and resumes the new thread

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 release(bb.lock)
 yield()
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 return

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 release(bb.lock)
 wait(bb.has_space)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 notify(bb.has_message)
 return

new variables in use
bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 release(bb.lock)
 wait(bb.has_space)
 acquire(bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 notify(bb.has_message)
 return

new variables in use
bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 wait(?)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 notify(?)
 return message

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
1: send(bb, message):
2: acquire(bb.lock)
3: while bb.in - bb.out >= N:
4: release(bb.lock)
5: wait(bb.has_space)
6: acquire(bb.lock)
7: bb.buf[bb.in mod N] <- message
8: bb.in <- bb.in + 1
9: release(bb.lock)
10: notify(bb.has_message)
11: return

bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 wait(bb.has_message)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 notify(bb.has_space)
 return message

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
1: send(bb, message):
2: acquire(bb.lock)
3: while bb.in - bb.out >= N:
4: release(bb.lock)
5: wait(bb.has_space)
6: acquire(bb.lock)
7: bb.buf[bb.in mod N] <- message
8: bb.in <- bb.in + 1
9: release(bb.lock)
10: notify(bb.has_message)
11: return

bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 wait(bb.has_message)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 notify(bb.has_space)
 return message

question: what happens if send() is interrupted between lines 4 and 5?

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024
bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

// receive a message from bb
receive(bb):
 acquire(bb.lock)
 while bb.out >= bb.in:
 release(bb.lock)
 wait(bb.has_message)
 acquire(bb.lock)
 message <- bb.buf[bb.out mod N]
 bb.out <- bb.out + 1
 release(bb.lock)
 notify(bb.has_space)
 return message

problem: lost notify

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

// send a message by placing it in bb
1: send(bb, message):
2: acquire(bb.lock)
3: while bb.in - bb.out >= N:
4: release(bb.lock)
5: wait(bb.has_space)
6: acquire(bb.lock)
7: bb.buf[bb.in mod N] <- message
8: bb.in <- bb.in + 1
9: release(bb.lock)
10: notify(bb.has_message)
11: return

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 wait(bb.has_space, bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 notify(bb.has_message)
 return

condition variable API:
 wait(cv,lock):

 notify(cv): notify waiting threads of cv

yield processor, release
lock, wait to be notified
of cv

bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

// send a message by placing it in bb
send(bb, message):
 acquire(bb.lock)
 while bb.in - bb.out >= N:
 wait(bb.has_space, bb.lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.lock)
 notify(bb.has_message)
 return

condition variable API:
 wait(cv,lock):

 notify(cv): notify waiting threads of cv

yield processor, release
lock, wait to be notified
of cv

our second job today is to understand how wait() and
notify() work, and also where yield() ends up in all of this

bb.has_space = indicates that the buffer is not full (and so has space for at least one message)
bb.has_message = indicates that the buffer has at least one message in it

condition variables let threads wait for events (“conditions”), and get notified when they occur.
can wait on a condition, and be notified of it occurring

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

t_lock makes yield() an atomic action

SP = current stack pointer
PTR = current page table register
CPU = current cpu

cpus is a table that keeps track of the id
of the thread currently running on each cpu

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 // release lock

 // set current thread to be
 // waiting on cv

 // yield

 release(t_lock)
 // re-acquire lock

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

t_lock makes yield() and wait() atomic
actions

SP = current stack pointer
PTR = current page table register
CPU = current cpu

wait(cv, lock) releases lock, sets the current thread to be waiting on cv, yields, and then re-
acquires lock

cpus is a table that keeps track of the id
of the thread currently running on each cpu

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)

 // set current thread to be
 // waiting on cv

 // yield

 release(t_lock)
 acquire(lock)

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING
- stack pointer (sp)
- page table register (ptr)

SP = current stack pointer
PTR = current page table register
CPU = current cpu

t_lock makes yield() and wait() atomic
actions

cpus is a table that keeps track of the id
of the thread currently running on each cpu

wait(cv, lock) releases lock, sets the current thread to be waiting on cv, yields, and then re-
acquires lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 // yield
 release(t_lock)
 acquire(lock)

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING, WAITING
- stack pointer (sp)
- page table register (ptr)
- condition to be notified of (cv)

cpus is a table that keeps track of the id
of the thread currently running on each cpu

SP = current stack pointer
PTR = current page table register
CPU = current cpu

t_lock makes yield() and wait() atomic
actions

wait(cv, lock) releases lock, sets the current thread to be waiting on cv, yields, and then re-
acquires lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

SP = current stack pointer
PTR = current page table register
CPU = current cpu

t_lock makes yield() and wait() atomic
actions

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING, WAITING
- stack pointer (sp)
- page table register (ptr)
- condition to be notified of (cv)

cpus is a table that keeps track of the id
of the thread currently running on each cpu

wait(cv, lock) releases lock, sets the current thread to be waiting on cv, yields, and then re-
acquires lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

SP = current stack pointer
PTR = current page table register
CPU = current cpu

t_lock makes yield() and wait() atomic
actions

for right now, you can assume that
yield_wait() is the same as yield()

threads is a table that contains information
about each of the current threads

for each thread it stores the thread’s
- state: RUNNABLE, RUNNING, WAITING
- stack pointer (sp)
- page table register (ptr)
- condition to be notified of (cv)

cpus is a table that keeps track of the id
of the thread currently running on each cpu

we’re giving it a different name, because we’re going
to find that it needs to be a slightly different function

wait(cv, lock) releases lock, sets the current thread to be waiting on cv, yields, and then re-
acquires lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 notify(cv):
 acquire(t_lock)
 for id = 0 to N-1:
 if threads[id].cv == cv &&
 threads[id].state == WAITING:
 threads[id].state = RUNNABLE
 release(t_lock)

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

we’re going to get back to yield_wait() in a second, but
just for context, here’s how notify() works

notify(cv) finds all threads waiting on cv, and sets
their state to RUNNABLE (i.e., ready to be run; not

RUNNING)

condition variables let threads wait for events (“conditions”), and get notified when they occur
can wait on a condition, and be notified of it occurring

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()

yield_wait():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

problem: wait() holds t_lock

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()

yield_wait():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

problem: current thread’s state
shouldn’t be set to RUNNABLE

(wait() has already set it to WAITING)

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

problem: deadlock
(wait() holds t_lock, but notify() also needs it)

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 release(t_lock)
 acquire(t_lock)
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

problem: stack corruption

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 release(t_lock)
 acquire(t_lock)
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

 wait(cv, lock):
 acquire(t_lock)
 release(lock)
 id = cpus[CPU].thread
 threads[id].cv = cv
 threads[id].state = WAITING
 yield_wait()
 release(t_lock)
 acquire(lock)

yield_wait():
 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].sp = SP
 threads[id].ptr = PTR
 SP = cpus[CPU].stack

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 release(t_lock)
 acquire(t_lock)
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

yield_wait() is the version of yield() called by wait(); it functions similarly to yield()
but let’s find out why it needs to be slightly different

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we’ve done so much work. but what if threads just never call wait() (or yield())?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we’ve done so much work. but what if threads just never call wait() (or yield())?

preemption: forcibly interrupt threads

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we’ve done so much work. but what if threads just never call wait() (or yield())?

 timer_interrupt():
 push PC
 push registers
 yield()
 pop registers
 pop PC

preemption: forcibly interrupt threads

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we’ve done so much work. but what if threads just never call wait() (or yield())?

 timer_interrupt():
 push PC
 push registers
 yield()
 pop registers
 pop PCproblem: what if timer interrupt occurs while

running yield() or yield_wait()?

preemption: forcibly interrupt threads

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we’ve done so much work. but what if threads just never call wait() (or yield())?

 timer_interrupt():
 push PC
 push registers
 yield()
 pop registers
 pop PCproblem: what if timer interrupt occurs while

running yield() or yield_wait()?

preemption: forcibly interrupt threads

solution: hardware mechanism to
disable interrupts

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

we’ve done so much work. but what if threads just never call wait() (or yield())?

 timer_interrupt():
 push PC
 push registers
 yield()
 pop registers
 pop PCproblem: what if timer interrupt occurs while

running yield() or yield_wait()?

preemption: forcibly interrupt threads

solution: hardware mechanism to
disable interrupts

notice the need for some assistance from hardware
here! just like how we required an atomic exchange
operation for locks, and how we require the physical
addresses of the page table registers for virtual
memory to work

(and also similar to how the IP addresses of the DNS
root servers are hardcoded into clients)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

choosing a new thread to run is the problem of scheduling

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

choosing a new thread to run is the problem of scheduling

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

first-come first-serve: whichever thread yielded
first is scheduled first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

choosing a new thread to run is the problem of scheduling

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

first-come first-serve: whichever thread yielded
first is scheduled first

priority scheduling: threads that need to finish
sooner are scheduled before threads that can be
scheduled later

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

choosing a new thread to run is the problem of scheduling

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

first-come first-serve: whichever thread yielded
first is scheduled first

priority scheduling: threads that need to finish
sooner are scheduled before threads that can be
scheduled later

shortest remaining time first: threads that need
the least amount of time to finish are scheduled
first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

choosing a new thread to run is the problem of scheduling

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

first-come first-serve: whichever thread yielded
first is scheduled first

priority scheduling: threads that need to finish
sooner are scheduled before threads that can be
scheduled later

shortest remaining time first: threads that need
the least amount of time to finish are scheduled
first

round robin: assign a quantum of time per
thread, and schedule threads to get one quantum
in a “round robin” order; repeat as needed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

choosing a new thread to run is the problem of scheduling

yield():
 acquire(t_lock)

 // Suspend the running thread
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 // Choose a new thread to run
 do:
 id = (id + 1) mod N
 while threads[id].state != RUNNABLE

 // Resume the new thread
 SP = threads[id].sp
 PTR = threads[id].ptr
 threads[id].state = RUNNING
 cpus[CPU].thread = id

 release(t_lock)

first-come first-serve: whichever thread yielded
first is scheduled first

priority scheduling: threads that need to finish
sooner are scheduled before threads that can be
scheduled later

shortest remaining time first: threads that need
the least amount of time to finish are scheduled
first

round robin: assign a quantum of time per
thread, and schedule threads to get one quantum
in a “round robin” order; repeat as needed

how threads are scheduled has a large impact
on performance and fairness; there is no best
scheduling algorithm

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtualize memory

bounded buffers

(virtualize communication links)

threads
(virtualize processors)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

threads virtualize a processor so that we can share it
among programs. yield() allows the kernel to
suspend the current thread and resume another

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

threads virtualize a processor so that we can share it
among programs. yield() allows the kernel to
suspend the current thread and resume another

condition variables provide a more efficient API for
threads, where they wait for an event and are notified
when it occurs. wait() requires a new version of
yield(), yield_wait()

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

threads virtualize a processor so that we can share it
among programs. yield() allows the kernel to
suspend the current thread and resume another

condition variables provide a more efficient API for
threads, where they wait for an event and are notified
when it occurs. wait() requires a new version of
yield(), yield_wait()

preemption forces a thread to be interrupted so that
the kernel doesn’t have to rely on programmers
correctly using yield(). requires a special interrupt
and hardware support to disable other interrupts

