
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #6: Virtual Machines
even more virtualization, plus kernel designs

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.nytimes.com/2024/02/21/world/asia/niue-nu-domain-sweden.html

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.nytimes.com/2024/02/21/world/asia/niue-nu-domain-sweden.html

in the case of DNS, names have
meaning outside of the system, even if

they were only originally intended to
denote “administrative zones that

divide the web into domains”

many of the decisions we make when
we build our systems impact people
who might not even be aware of the

system

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

threads
(virtualize processors)

today’s goal: run multiple operating systems at once

bounded buffers
(virtualize communication links)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machine monitor virtualizes the physical hardware for the guest OSes

virtual machine monitor (VMM)

virtual machine
running guest OS

physical hardware
U/K, PTR, page table, …

virtual machine
running guest OS

guest OSes run in user mode

privileged instructions in guest OS will
cause an exception, which the VMM will
intercept (“trap”) and emulate

if the VMM can’t emulate an instruction, it will send the
exception back to the guest OS for handling

first question: what does it mean to emulate?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machine monitor virtualizes the physical hardware for the guest OSes

virtual machine monitor (VMM)

guest OSguest OS

physical hardware

virtual hardware
U/K
PTR

page table…

virtual hardware
U/K
PTR

page table…

U/K, PTR, page table, …

first example: virtualizing memory (again!)

first question: what does it mean to emulate?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machine monitor virtualizes the physical hardware for the guest OSes

guest virtual
address

guest physical
address

host physical
address

virtual machine monitor (VMM)

guest OSguest OS

physical hardware

virtual hardware
U/K
PTR

page table…

virtual hardware
U/K
PTR

page table…

U/K, PTR, page table, …

first example: virtualizing memory (again!)

first question: what does it mean to emulate?
in this example, it means that the VMM needs to
step in and translate guest physical addresses to
host physical addresses

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

guest OSguest OS

virtual hardware virtual hardware

physical hardware PTR

PTR guest OS
page table

PTR guest OS
page table

VMM
page table

+

host
page table

virtual machine monitor
(VMM)

guest OS
page table

guest virtual → guest physical

VMM
page table

guest physical → host physical

host
page table

guest virtual → host physical

1. guest OS loads its PTR,
which triggers an exception;
the VMM intercepts

2. VMM combines the guest
page table with its own page
table to create a host page
table

3. physical hardware uses the
host page table

virtual machine monitor virtualizes the physical hardware for the guest OSes
first example: virtualizing memory (again!)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

guest OSguest OS

virtual hardware virtual hardware

physical hardware

virtual machine monitor
(VMM)

guest OS
page table

guest virtual → guest physical

VMM
page table

guest physical → host physical

host
page table

guest virtual → host physical

1. guest OS loads its PTR,
which triggers an exception;
the VMM intercepts

2. VMM combines the guest
page table with its own page
table to create a host page
table

3. physical hardware uses the
host page table

virtual machine monitor virtualizes the physical hardware for the guest OSes

PTR guest OS
page table

0x01 | 0xA2
0x02 | 0xA3

0xA2 | 0xC1
0xA3 | 0xC4

+

0x01 | 0xC1
0x02 | 0xC4

PTR

PTR

first example: virtualizing memory (again!)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

guest OSguest OS

virtual hardware virtual hardware

physical hardware

virtual machine monitor
(VMM)

guest OS
page table

guest virtual → guest physical

VMM
page table

guest physical → host physical

host
page table

guest virtual → host physical

1. guest OS loads its PTR,
which triggers an exception;
the VMM intercepts

virtual machine monitor virtualizes the physical hardware for the guest OSes

guest OS page tables are marked as
read-only memory so that modifications
to these page tables also trigger
exceptions (and thus allow the VMM to
update the other tables)

PTR guest OS
page table

PTR

PTR guest OS
page table

VMM
page table

+

host
page table

first example: virtualizing memory (again!)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

guest OSguest OS

virtual hardware virtual hardware

physical hardware

virtual machine monitor
(VMM)

guest OS
page table

guest virtual → guest physical

VMM
page table

guest physical → host physical

1. guest OS loads its PTR,
which triggers an exception;
the VMM intercepts

in modern hardware, the physical
hardware is aware of both page tables,
and performs the translation from
guest virtual to host physical itself

virtual machine monitor virtualizes the physical hardware for the guest OSes

PTR guest OS
page table

PTR

VMM
page table

+

PTR guest OS
page table

first example: virtualizing memory (again!)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machine monitor (VMM)

guest OSguest OS

physical hardware

virtual hardware
U/K
PTR

page table…

virtual hardware
U/K
PTR

page table…

U/K, PTR, page table, …

guest OSes run in user mode

privileged instructions in guest OS will
cause an exception, which the VMM will
intercept (“trap”) and emulate

if the VMM can’t emulate an instruction, it will send the
exception back to the guest OS for handling

if the VMM can’t emulate an instruction, it will send the
exception back to the guest OS for handling

figuring out how to emulate an instruction is not enough; we also need to make sure that
the VMM is trapping all relevant instructions

virtual machine monitor virtualizes the physical hardware for the guest OSes

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machine monitor (VMM)

guest OSguest OS

physical hardware

virtual hardware
U/K
PTR

page table…

virtual hardware
U/K
PTR

page table…

U/K, PTR, page table, …

second example: virtualizing the U/K bit

para-virtualization: modify guest OS
slightly

binary translation: VMM replaces
problematic instructions with ones that it
can trap and emulate

hardware support: architecture
provides a special operating mode for
VMMs in addition to user mode, kernel
mode

virtual machine monitor virtualizes the physical hardware for the guest OSes

figuring out how to emulate an instruction is not enough; we also need to make sure that
the VMM is trapping all relevant instructions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machine monitor (VMM)

guest OSguest OS

physical hardware

virtual hardware
U/K
PTR

page table…

virtual hardware
U/K
PTR

page table…

U/K, PTR, page table, …

VMMs work by trapping and emulating
important instructions

the actual emulation looks different
depending on what we’re trying to do. at
times — e.g., in the case of virtual
memory — it’s a fairly straightforward
extension of what the OS does

modern architectures build support for
virtualization into their CPUs, which allow
the VMM to operate efficiently

virtual machine monitor virtualizes the physical hardware for the guest OSes

this is all yet another application of virtualization. the details change depending on
what problem we’re solving, but the goal of virtualization remains the same.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

monolithic kernel: no enforced
modularity within the kernel itself

hardware

basic interprocess communication, virtual memory,
scheduling, file server, device drivers, network, …

application

microkernels: enforce modularity by
putting subsystems in user programs

hardware

basic interprocess communication, virtual memory,
scheduling

application
IPC

device
driver network

application

…

despite the modularity, it’s not clear that redesigning an operating system from a
monolithic kernel to a microkernel is a good idea, in part for reasons of performance

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

virtual machines allow us to run multiple isolated
OSes on a single physical machine, similar to how we
used an OS to run multiple programs on a single CPU

monolithic kernels provide no enforced modularity
within the kernel. microkernels do, but redesigning
monolithic kernels as microkernels is challenging

we have cared about performance in all aspects of
our operating systems journey so far, and next time
we’ll start to think about performance more generally

this set-up also enables many cloud
compute infrastructures, which back many

of the applications you use today

you have now seen virtualization applied as a solution to many different problems.
the details change depending on what problem we’re solving, but the goal of
virtualization remains the same.

