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6.1800 Spring 2024
Lecture #7: Performance + Other Concerns 
performance, with a deep dive into storage and filesystems
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6.1800 in the news

https://downdetector.com/status/att/
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https://about.att.com/pages/network-update

sometimes 
performance issues are 
a result of human error
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6.1800 in the news

failures in one system can impact people who don’t use that service at all
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operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to 
(and corrupt) each others’ memory

2. programs should be able to 
communicate with each other

3. programs should be able to share a 
CPU without one program halting the 
progress of the others

virtual memory

threads 
(virtualize processors)

bounded buffers 
(virtualize communication links)
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systems on the same physical hardware
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operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to 
(and corrupt) each others’ memory

2. programs should be able to 
communicate with each other

3. programs should be able to share a 
CPU without one program halting the 
progress of the others

virtual memory

threads 
(virtualize processors)

today: performance more generally, with a focus on storage, and how the 
abstractions that an operating system provides impact our systems

bounded buffers 
(virtualize communication links)
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few users, few requests

moderate utilization 
more users→more requests, 

but the system isn’t 
“maxed out” yet

high utilization 
many users→many requests, 

system is working as 
hard as it can

question: how do you expect latency to change 
as the system progresses through these stages?

in a real system, we’d expect variation in latency, 
and we might start to see an increase as the system 

is moderately utilized; this is a simplified graph
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but the system isn’t 
“maxed out” yet

high utilization 
many users→many requests, 

system is working as 
hard as it can

question: how do you expect throughput to change 
as the system progresses through these stages?

throughput hits a maximum: there is a 
number of requests per unit of time beyond 

which the system simply cannot handle
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utilization: what fraction of 
resources are being utilized? this 
puts our performance 
measurements in context

number of users
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latency: how long does it take to 
complete a single request?

example: how long does it take to retrieve 
a particular piece of data in an OS?

throughput: how many 
requests per unit of time?

example: how many reads or writes 
can a system do to a disk at once?

our general approach to improving performance is to 
measure our systems to find a bottleneck, and then to 
relax the bottleneck with general techniques such as 
caching, parallelism, etc. 

we’ll make this concrete with an example: performance in 
reading/writing to a file
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platters

tracks

sectors

hard disk drives (HDDs)
common in datacenters

example HDD specs (Hitachi 7K400) 

capacity: 400GB 
number of platters: 5 
number of heads: 10 
number of sectors per track: 567-1170 
number of bytes per sector: 512 
time for one revolution: 8.3ms 
average read seek time: 8.2ms 
average write seek time: 9.2ms
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the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors

hard disk drives (HDDs)
common in datacenters

example HDD specs (Hitachi 7K400) 

capacity: 400GB 
number of platters: 5 
number of heads: 10 
number of sectors per track: 567-1170 
number of bytes per sector: 512 
time for one revolution: 8.3ms 
average read seek time: 8.2ms 
average write seek time: 9.2ms

since so much time of reading/writing is spent 
seeking, avoiding random access can improve 

performance
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the disk is often the main bottleneck in reading/writing stored data

cells

pages

blocks

solid state drives (SSDs)
common in personal computers

since SSDs don’t involve moving parts, disk 
seeks are not a concern (this is one of the 

reasons SSDs are so much faster than HDDs) 

however, because of how writes are done, the 
SSD controller is careful about how it writes 

new data and makes changes to existing data
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first name | last name | role 
katrina    | lacurts   | lecture 
karen      | sollins   | recitation 
sam        | madden    | recitation 
...

DBMS

the DBMS knows so much about the data and related queries that it can do a 
very good job at predicting which byte it needs next  

it’s in a good position to exploit block-level control over loading or evicting data to memory
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building 32?”



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we 
often measure throughput, latency, and utilization, and 
use techniques such as caching and batching to 
improve performance



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we 
often measure throughput, latency, and utilization, and 
use techniques such as caching and batching to 
improve performance

in reading/writing files, the disk is often the bottleneck. 
performance changes dramatically depending on the 
pattern of reads/writes (e.g., random vs. sequential 
access)



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we 
often measure throughput, latency, and utilization, and 
use techniques such as caching and batching to 
improve performance

in reading/writing files, the disk is often the bottleneck. 
performance changes dramatically depending on the 
pattern of reads/writes (e.g., random vs. sequential 
access)

abstractions such as the filesystem work well in many 
places, but sometimes get in the way, especially when it 
comes to performance. block-level control can make 
sense for certain applications, such as databases



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we 
often measure throughput, latency, and utilization, and 
use techniques such as caching and batching to 
improve performance

in reading/writing files, the disk is often the bottleneck. 
performance changes dramatically depending on the 
pattern of reads/writes (e.g., random vs. sequential 
access)

abstractions such as the filesystem work well in many 
places, but sometimes get in the way, especially when it 
comes to performance. block-level control can make 
sense for certain applications, such as databases

block-level control isn’t perfect 
for every type of database; some 

do just fine with filesystems


