
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #7: Performance + Other Concerns
performance, with a deep dive into storage and filesystems

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://downdetector.com/status/att/

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://about.att.com/pages/network-update

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://about.att.com/pages/network-update

sometimes
performance issues are
a result of human error

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

failures in one system can impact people who don’t use that service at all

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

threads
(virtualize processors)

bounded buffers
(virtualize communication links)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

threads
(virtualize processors)

you’ve also seen virtualization as a technique for running multiple operating
systems on the same physical hardware

bounded buffers
(virtualize communication links)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

threads
(virtualize processors)

today: performance more generally, with a focus on storage, and how the
abstractions that an operating system provides impact our systems

bounded buffers
(virtualize communication links)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
la

te
nc

y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
la

te
nc

y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
la

te
nc

y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
la

te
nc

y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

high utilization
many users→many requests,

system is working as
hard as it can

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
la

te
nc

y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

high utilization
many users→many requests,

system is working as
hard as it can

question: how do you expect latency to change
as the system progresses through these stages?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
la

te
nc

y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

high utilization
many users→many requests,

system is working as
hard as it can

question: how do you expect latency to change
as the system progresses through these stages?

in a real system, we’d expect variation in latency,
and we might start to see an increase as the system

is moderately utilized; this is a simplified graph

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
th

ro
ug

hp
ut

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

high utilization
many users→many requests,

system is working as
hard as it can

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
th

ro
ug

hp
ut

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

high utilization
many users→many requests,

system is working as
hard as it can

question: how do you expect throughput to change
as the system progresses through these stages?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users
th

ro
ug

hp
ut

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

low utilization
few users, few requests

moderate utilization
more users→more requests,

but the system isn’t
“maxed out” yet

high utilization
many users→many requests,

system is working as
hard as it can

question: how do you expect throughput to change
as the system progresses through these stages?

throughput hits a maximum: there is a
number of requests per unit of time beyond

which the system simply cannot handle

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users

th
ro

ug
hp

ut

number of users

la
te

nc
y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance issues have influenced a lot of the system designs you’ve seen so far

utilization: what fraction of
resources are being utilized? this
puts our performance
measurements in context

number of users

th
ro

ug
hp

ut

number of users

la
te

nc
y

latency: how long does it take to
complete a single request?

example: how long does it take to retrieve
a particular piece of data in an OS?

throughput: how many
requests per unit of time?

example: how many reads or writes
can a system do to a disk at once?

our general approach to improving performance is to
measure our systems to find a bottleneck, and then to
relax the bottleneck with general techniques such as
caching, parallelism, etc.

we’ll make this concrete with an example: performance in
reading/writing to a file

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

hard disk drives (HDDs)
common in datacenters

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

hard disk drives (HDDs)
common in datacenters

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors

hard disk drives (HDDs)
common in datacenters

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors

hard disk drives (HDDs)
common in datacenters

solid state drives (SSDs)
common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors cells

hard disk drives (HDDs)
common in datacenters

solid state drives (SSDs)
common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors cells

pages

hard disk drives (HDDs)
common in datacenters

solid state drives (SSDs)
common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors cells

pages

blocks

hard disk drives (HDDs)
common in datacenters

solid state drives (SSDs)
common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors

hard disk drives (HDDs)
common in datacenters

example HDD specs (Hitachi 7K400)

capacity: 400GB
number of platters: 5
number of heads: 10
number of sectors per track: 567-1170
number of bytes per sector: 512
time for one revolution: 8.3ms
average read seek time: 8.2ms
average write seek time: 9.2ms

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors

hard disk drives (HDDs)
common in datacenters

example HDD specs (Hitachi 7K400)

capacity: 400GB
number of platters: 5
number of heads: 10
number of sectors per track: 567-1170
number of bytes per sector: 512
time for one revolution: 8.3ms
average read seek time: 8.2ms
average write seek time: 9.2ms

since so much time of reading/writing is spent
seeking, avoiding random access can improve

performance

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

cells

pages

blocks

solid state drives (SSDs)
common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

cells

pages

blocks

solid state drives (SSDs)
common in personal computers

since SSDs don’t involve moving parts, disk
seeks are not a concern (this is one of the

reasons SSDs are so much faster than HDDs)

however, because of how writes are done, the
SSD controller is careful about how it writes

new data and makes changes to existing data

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the disk is often the main bottleneck in reading/writing stored data

platters

tracks

sectors cells

pages

blocks

hard disk drives (HDDs)
common in datacenters

solid state drives (SSDs)
common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

platters

tracks

sectors

hard disk drives (HDDs)

cells

pages

blocks

solid state drives (SSDs)
common in datacenters common in personal computers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

first name | last name | building | room
katrina | lacurts | 38 | 476
karen | sollins | 32 | G534
sam | madden | 32 | G983
...

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

first name | last name | role
katrina | lacurts | lecture
karen | sollins | recitation
sam | madden | recitation
...

first name | last name | building | room
katrina | lacurts | 38 | 476
karen | sollins | 32 | G534
sam | madden | 32 | G983
...

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

first name | last name | role
katrina | lacurts | lecture
karen | sollins | recitation
sam | madden | recitation
...

first name | last name | building | room
katrina | lacurts | 38 | 476
karen | sollins | 32 | G534
sam | madden | 32 | G983
...

“what’s Katrina’s office
number?”

“how many recitation
instructors have offices in

building 32?”

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

first name | last name | role
katrina | lacurts | lecture
karen | sollins | recitation
sam | madden | recitation
...

first name | last name | building | room
katrina | lacurts | 38 | 476
karen | sollins | 32 | G534
sam | madden | 32 | G983
...

“what’s Katrina’s office
number?”

“how many recitation
instructors have offices in

building 32?”

DBMS

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

first name | last name | role
katrina | lacurts | lecture
karen | sollins | recitation
sam | madden | recitation
...

first name | last name | building | room
katrina | lacurts | 38 | 476
karen | sollins | 32 | G534
sam | madden | 32 | G983
...

how should the data be stored as files? 
one file for everything? one file per table? per row? per column? per cell?

“what’s Katrina’s office
number?”

“how many recitation
instructors have offices in

building 32?”

DBMS

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so far, we have always imagined reading/writing data via the abstraction of a filesystem.
does that abstraction ever get in the way?

first name | last name | building | room
katrina | lacurts | 38 | 476
karen | sollins | 32 | G534
sam | madden | 32 | G983
...

first name | last name | role
katrina | lacurts | lecture
karen | sollins | recitation
sam | madden | recitation
...

DBMS

the DBMS knows so much about the data and related queries that it can do a
very good job at predicting which byte it needs next  

it’s in a good position to exploit block-level control over loading or evicting data to memory

“what’s Katrina’s office
number?”

“how many recitation
instructors have offices in

building 32?”

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we
often measure throughput, latency, and utilization, and
use techniques such as caching and batching to
improve performance

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we
often measure throughput, latency, and utilization, and
use techniques such as caching and batching to
improve performance

in reading/writing files, the disk is often the bottleneck.
performance changes dramatically depending on the
pattern of reads/writes (e.g., random vs. sequential
access)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we
often measure throughput, latency, and utilization, and
use techniques such as caching and batching to
improve performance

in reading/writing files, the disk is often the bottleneck.
performance changes dramatically depending on the
pattern of reads/writes (e.g., random vs. sequential
access)

abstractions such as the filesystem work well in many
places, but sometimes get in the way, especially when it
comes to performance. block-level control can make
sense for certain applications, such as databases

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

performance is important throughout systems. we
often measure throughput, latency, and utilization, and
use techniques such as caching and batching to
improve performance

in reading/writing files, the disk is often the bottleneck.
performance changes dramatically depending on the
pattern of reads/writes (e.g., random vs. sequential
access)

abstractions such as the filesystem work well in many
places, but sometimes get in the way, especially when it
comes to performance. block-level control can make
sense for certain applications, such as databases

block-level control isn’t perfect
for every type of database; some

do just fine with filesystems

