6.1800 Spring 2024 Lecture #10: Routing at scale, and with policy Katrina's favorite protocol to teach

6.1800 in the news

This post is also available in <u>简体中文, 繁體中文, 日本語, 한국어</u>, Deutsch, Français, Español, Português, Русский, and Italiano.

"Facebook can't be down, can it?", we thought, for a second.

Understanding How Facebook Disappeared from the Internet

10/04/2021

The Internet - A Network of Networks

last time: neither distance-vector nor link-sta will scale to the size of the Internet, nor do eit address policy routing

change late 8	Sos: growth \rightarrow problem	1993: ns commercializa
S congestion co	ollapse policy routing Cl	IDR
36692	application	the things that actually generate traffic
33022 29353 25684 22015 18346 14676 11007 7338	transport	sharing the netwo reliability (or n examples: TCP, UDP
3669 0	network	naming, addressin routing examples: IP
ate routing ther let us	link	communication bet two directly-conn nodes examples: ethernet, bluetoc 802.11 (wifi)
	•	

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

ork, not)

ıg,

ween wected

oth,

this time: scale and policy! (so we're thinking about the Internet specifically tod any network)

change late 80s:	growth → problems	1993: commercializatio
S congestion collaps	se policy routing CID	R
	application	the things that actually generate traffic
36692 33022 29353 25684 22015 18346 14676 11007	transport	<pre>sharing the network reliability (or not examples: TCP, UDP</pre>
notice that we'r highlighting the n layer; we'll talk ab	network etwork out why	naming, addressing, routing examples: IP
day, not just	link	communication betwe two directly-connec nodes examples: ethernet, bluetooth, 802.11 (wifi)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

ork, not)

ween lected neither one of these algorithms will scale to the size of the internet, nor do either of them allow for *policy* routing

link state

distance vector

what's in an advertisement

its link costs to each of its **neighbors**

its **current costs** to every node it's aware of

who gets a node's advertisement

effectively, every other **node** (via flooding)

only its **neighbors**

what happens when things fail?

flooding makes linkstate routing very resilient to failure

failures can be complicated because of timing

what limits scale?

the **overhead** of flooding

failure handling

scalable routing: a few different things allow us to route across the Internet

1. **hierarchy of routing:** route between ASes, and then within an AS

2. **path-vector routing:** advertisements include the path, to better detect routing loops

3. **topological addressing:** assign addresses in contiguous blocks to make advertisements smaller

now that we have scale, we want a means to implement policy

typically a provider will charge more money to its customers than it pays its own still makes a profit here provider, so E

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

question: suppose traffic travels the path A-D-E-F-C. which of those ASes make money as a result?

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

question: suppose traffic travels the path A-D-E-F-C. which of those ASes make money as a result?

if **E** allows its two peers to send traffic through it to their respective customers, it makes no money

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

a provider wants its customers to send and receive as much traffic through the provider as possible

we're focusing on the middle node (E) right now; ignore the gray nodes

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell all neighbors about their customers, and tell their customers about all neighbors*

* they'll also tell all neighbors about themselves; for example, E lets G know that it can reach all machines within E

question: after all advertisements have been sent, does C know about a route to G?

notice that peers *do not* tell each other about their own providers; they would lose money providing that transit

this slide represents one "round" of advertisements from node E; other routes will be discovered in subsequent rounds (see next slide)

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell all neighbors about their customers, and tell their customers about all neighbors*

peers tell each other about their customers

* they'll also tell all neighbors about themselves; for example, E lets G know that it can reach all machines within E

in this example, some of our ASes are unable to send traffic to G; they do not know about any routes to it

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell all neighbors about their customers, and tell their customers about all neighbors*

peers tell each other about their customers

* they'll also tell all neighbors about themselves; for example, E lets G know that it can reach all machines within E

in this example, some of our ASes are unable to send traffic to G; they do not know about any routes to it

in fact, there are quite a few ASes here that are disconnected from one another

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell all neighbors about their customers, and tell their customers about all neighbors*

peers tell each other about their customers

* they'll also tell all neighbors about themselves; for example, E lets G know that it can reach all machines within E

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free^{*}) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell all neighbors about their customers, and tell their customers about all neighbors*

peers tell each other about their customers

* they'll also tell all neighbors about themselves; for example, E lets G know that it can reach all machines within E

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free^{*}) mutual access to each other's customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are also reflected in import policies

which routes to use

ASes set their own *import policies*. typically, if an AS hears about multiple routes to a destination, it will prefer to use its customers first, then peers, then providers

if that's not enough, a variety of other attributes are provided

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

BGP is an **application layer** protocol, even though it deals with routing

application	the things that
	actually generate
	traffic

transport	sharing the	netv	vork,
-	reliability	(or	not)
	examples: TCP, UE	\mathcal{P}	

network

link

naming, addressing, routing examples: IP

communication between two directly-connected nodes

examples: ethernet, bluetooth, 802.11 (wifi)

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

does **BGP** scale?

it works on the Internet (which is good), but the size of routing tables, route instability, multihoming, and iBGP all cause scaling issues

is **BGP** secure?

it is not!

BGP basically relies on the honor system

holly @girlziplocked

What's a dirty secret that everybody in your industry knows about but anyone outside of your line of work would be scandalized to hear? Show this thread

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

does **BGP** scale?

it works on the Internet (which is good), but the size of routing tables, route instability, multihoming, and iBGP all cause scaling issues

is **BGP** secure?

it is not!

does **BGP** matter?

absolutely — it is a huge part of the Internet's infrastructure

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

Understanding How Facebook Disappeared from the Internet

10/04/2021

Celso Martinho 🚺 Tom Strickx

This post is also available in 简体中文, 繁體中文, 日本語, 한국어, Deutsch, Français, Español, Português, Русский, and Italiano.

The Internet - A Network of Networks

"Facebook can't be down, can it?", we thought, for a second.

https://blog.cloudflare.com/october-2021-facebook-outage/

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

This was the source of yesterday's outage. During one of these routine maintenance jobs, a command was issued with the intention to assess the availability of global backbone capacity, which unintentionally took down all the connections in our backbone network, effectively disconnecting Facebook data centers globally. Our systems are designed to audit commands like these to prevent mistakes like this, but a bug in that audit tool prevented it from properly stopping the command.

https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/

on the Internet, we have to solve all of the networking problems (addressing, routing, ti massive scale, while supporting a diverse applications and competing economic interests

change late 80s:	growth → problems	1993: commercializatio
S congestion collaps	se policy routing CID	R
36692	application	the things that actually generate traffic
1 33022 29353 25684 22015 18346 18346 14676 11007 7338 2660 2660	transport	sharing the network reliability (or not examples: TCP, UDP
	network	naming, addressing, routing examples: IP
"normal" ransport) at	link	communication betwe two directly-connec nodes examples: ethernet, bluetooth, 802.11 (wifi)
nterests		

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

ork, ot)

ween ected