6.1800 Spring 2024

Lecture #11: Reliable Transport

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news SPECIAL SEMINAR

Reconstructing the History of Incompatible Computing

Lars Brinkhoff and Oscar Vermeulen
ITS Reconstruction Project

MIT Museum Collections Workshop (3™ floor)
(MIT Museum, 314 Main St, Gambrill Center, Cambridge, MA)

April 1, 2024
2:30-4:30 pm

NOTE: The seminar is free and open to all but an MIT ID
(or an admission ticket) is required for entry to the museum.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Iin the news

ITS, and the software developed on it, were technically and culturally influential far beyond their core user
community. Remote "guest” or "tourist” access was easily available via the early ARPAnet, allowing many
interested parties to informally try out features of the operating system and application programs. The wide-
open ITS philosophy and collaborative online community were a major influence on the hacker culture, as
described in Steven Levy's book Hackers,'*] and were the direct forerunners of the free and open-source

software, open-design, and Wiki movements.

https://en.wikipedia.org/wiki/Incompatible_Timesharing_System Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

1970s: 1978: flexibility and 1993:

ARPANet layering early 80s: growth = change late 80s: growth — problems commercialization
————————————————————eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeellp>
hosts.txt distance-vector TCP, UDP OSPF, EGP, DNS congestion collapse policy routing CIDR
routing (which led to congestion control)

application the things that
actually generate
traffic

— 36692
33022
29353

25684

o . transport sharing the network,
- : reliability (or not)
examples: TCF, UDP

7338

3669

network naming, addressing,

CAIDA’s IPv4 AS Core, routing

January 2020
(https://www.caida.org/projects/
cartography/as-core/2020/)

examples: IP

1ink communication between
two directly-connected
: hodes
today: moving up to the transport layer to discuss examples: ethernet. blustooth,
reliable transport 802.11 (wifi)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our (first) goal today Is to create a reliable transport
protocol, which delivers each byte of data exactly once,
in-order, to the receiving application

application

transport

network

1ink

the things that
actually generate
traffic

sharing the network,
reliability (or not)

examples: TCP, UDP

haming, addressing,
routing

examples: IP

communication between
two directly-connected
hodes

examples. ethernet, bluetooth,
802.11 (wifi)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our (first) goal today is to create a reliable transport
protocol, which delivers each byte of data exactly once,

in-order, to the receiving application

Sending
Application

\4

Reliable
Sender

each byte of data is delivered
exactly once and in-order

unreliable network

Receiving
Application

A

Reliable
Recelver

application

transport

network

1ink

the things that
actually generate
traffic

sharing the network,
reliability (or not)

examples: TCP, UDP

haming, addressing,
routing

examples: IP

communication between
two directly-connected
nodes

examples. ethernet, bluetooth,
802.11 (wifi)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

\

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

8 . sequence numbers: used to order the
. packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1

> sequence numbers: used to order the
\ . packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
sequence numbers: used to order the
packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no '
more

sequence numbers: used to order the
packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ‘
allowed to have |n |
W outstanding no
packets at = |
once, but no ;
more

sender receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no ;
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is f_’ender‘ receiver
allowed tohave 1 | 2 . sequence numbers: used to order the
W outstanding TR ;
packets at =i 2 : packets
once, but no 5 1 f

more

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no ;
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is f_’ender‘ receiver
allowed tohave 1 | 2 . sequence numbers: used to order the
W outstanding TR :
packets at =i 2 : packets
once, but no 5 1 f

more

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no ;
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no '
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no ;
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to

question: what . confirm that a packet has been received
sequence number will | o |
this ACK have? : an ACK with sequence number k indicates that the receiver
/ : has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no '
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no '
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no '
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

this is known as a sliding-window protocol

the wi f outstandi -ACK kets slid I th b
e window of outstanding (un-ACKed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have 1n :
W outstanding no
packets at = |
once, but no ;
more

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

question: can the sender infer that
packet 7 has been lost?

this is known as a sliding-window protocol

the wind f outstandi -ACKed kets slid I th b
e window of outstanding (un ed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ‘
allowed to have (0
W outstanding no

sender receiver
sequence numbers: used to order the

packets at = | packets
once, but no :
more
acknowledgments (“ACKs™): used to
confirm that a packet has been received
Ty
8 an ACK with sequence number k indicates that the receiver
Qi has received all packets up to and including k
o
+

timeouts: used to retransmit packets

this is known as a sliding-window protocol

the wind f outstandi -ACKed kets slid I th b
e window of outstanding (un ed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have |n :

, sequence numbers: used to order the
W outstanding N

packets at = | packets
once, but no :
more
acknowledgments (“ACKs™): used to
confirm that a packet has been received
Ty
8 an ACK with sequence number k indicates that the receiver
Qi has received all packets up to and including k
o
+

timeouts: used to retransmit packets

this is known as a sliding-window protocol

the wind f outstandi -ACKed kets slid I th b
e window of outstanding (un ed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ‘
allowed to have (0
W outstanding no

sender receiver
sequence numbers: used to order the

packets at = | packets
once, but no :
more
acknowledgments (“ACKs™): used to
confirm that a packet has been received
Ty
8 an ACK with sequence number k indicates that the receiver
Qi has received all packets up to and including k
o
+

timeouts: used to retransmit packets

this is known as a sliding-window protocol

the wind f outstandi -ACKed kets slid I th b
e window of outstanding (un ed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have |n :

, sequence numbers: used to order the
W outstanding N

packets at = | packets
once, but no :
more
acknowledgments (“ACKs™): used to
confirm that a packet has been received
Ty
8 an ACK with sequence number k indicates that the receiver
Qi has received all packets up to and including k
o
+

timeouts: used to retransmit packets

note that the sender could also infer loss
because it has received multiple ACKs with
seguence number 6, but none with sequence
number > 7:; we’ll come back to that

this is known as a sliding-window protocol

the wind f outstandi -ACKed kets slid I th b
e window of outstanding (un ed) packets slides along the sequence number space Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

S

o
N
= |

ender

receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

S

o
N
= |

ender

receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

S

LN

||
= |

ender

receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

S

LN

ender

A

receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

S

ender

receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

S

ender

receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeout

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
i

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeout

timeouts: used to retransmit packets

notice that (in this
example) the timeout
expired before the
sender got an ACK
indicating that 7 had <
been received

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
i

timeout

notice that (in this
example) the timeout
expired before the
sender got an ACK
indicating that 7 had
been received

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
i

timeout

notice that (in this
example) the timeout
expired before the
sender got an ACK
indicating that 7 had
been received

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
i

timeout

notice that (in this
example) the timeout
expired before the
sender got an ACK
indicating that 7 had
been received

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

1 2 . sequence numbers: used to order the
i3 :
=S 5 packets

. § :

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

1 2 . sequence numbers: used to order the
Il 3 .
=i 4 é packets

. § :

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
R
.*

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

1 2 . sequence numbers: used to order the
Il 3 .
=S é packets

. § :

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.*

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

n 2 sequence numbers: used to order the
R E . packets
=i 4 5

. 5 f

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

.* .* Ry Y
. . . .
s \d . .
d . . .
. . . .
. 'Y . .
. Y . .
. . . .
. . . .
. . . .
. . . .
. Y . .
. Y . .
. . . .
. . . .
. . . .
. . . .
. Y . .
. . . .
d . . .
. . Y .
. . . .
. . . .
. Y . .
. . . .
s . . .
d . . .
. Y . .
. Y . .
. Y . .
. . . .
. . . .
. . . .
. Y . .
. Y . .
. Y . .
. . . .
. . . .
. . . .
. Y . .
. Y . .
. . . .
d . . .
. . . .
. Y . .
. . . .
. . . .
. . . .
d . . .
d . . .
. . . .
. . Y .
. Y . .
. . . .
. . . .
. . . .
. Y . .
. Y . .
. Y . .
. . . .
. . . .
. . . .
. Y . .
. Y . .
. . . .
d . . .
. . . .
. Y . .
. . . .
. . . .
. . . .
d . . .
. . Y .
. Y . .
. . . .
. Y . .
. . . .
. . . .
. . . .
. Y . .
. . R o
.* . . .

.* . . o
. . . .
d . . .
. . . .

. . . .

. . . .

. . . .

. . . .

d . . .

.* . . R

\d .* . .

.* . R
. Y
.* . .
. . .
. . .
. .
. Y .
. Y Y
® . -*
. “ “

d .

.* .
. .
. .
. .
. .
. .
. .
. .
.* .*
. o

[3

R
.
.
.
.
.
.
.
.*
.*

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

1 2 . sequence numbers: used to order the
i3 :
=S 5 packets

. § :

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
i

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeout

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
i

sequence numbers: used to order the
packets

acknowledgments (“ACKs™): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeout

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

o
N
= |

1
2
3
4
.. §

timeout

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

o
N
= |

VMipHhWNER

question: what should W be?

timeout

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

LN |
I

question: what should W be?

how can a single reliable sender, using a sliding-
window protocol, set its window size to
maximize utilization — but prevent
congestion and unfairness — given that there
are many other end points using the network, all
with different, changing demands®

timeout

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every R

1f there 1s no loss,

W =W+ 1;else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,

' ' ' ' . split bandwidth evenly among alll

e - S L ’ . sources sharing a bottleneck

A s s St -

[V R Y WY R S ——— -
N
> st SV SV 4] AIMD: every RTT, if there is no loss,
S W =W+ 1;else, W = W/2
s s/ /S /A :

4 IR (S S SR R AR S AR . A -

2 W -

O I I I I

0 5 10 15 20 25
Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R>

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R>

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R>

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R>

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R> B

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R> B

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize

delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

0?9@ . AIMD: every RTT, if there is no loss,
\ 3 W =W+ 1;¢else,W = W/2

R
(S1’s sending rate)
&

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

R
(S1’s sending rate)

R> B

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
. split bandwidth evenly among all
B . sources sharing a bottleneck

the network is fully utilized
when the bottleneck link is “full”

AIMD: every RTT, if there is no loss,

fairness W =W+ 1;else, W = W/2

R
(S1’s sending rate)

R> B

(S2’s sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

the network is fully utilized
when the bottleneck link is “full”

fairness

question: what line on this graph
would represent fairness?

R
(S1’s sending rate)

R> B

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

R
(S1’s sending rate)

R> B

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

B
Q
Y, /
the network is fully utilized
= when the bottleneck link is “full”
©
-~ £ fairness

o é the network is fair when S1 and
» Sz are sending at the same rate
)

Ro B

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

B
&V
00 . -
N the network is fully utilized
—~ @ when the bottleneck link is “full”
2 o
c &
- g 6\0"“ fairness

- é 900 the network is fair when S and
» 9@ S, are sending at the same rate
% %

Ro2 B

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

B
SV
RS . N
N the network is fully utilized
—~ 4 when the bottleneck link is “full”
2 o
c &
2 & 2 '
— £ & fairness
r 2 o >
@ e N the network is fair when S; and
1% 9@ 0&0 S2 are sending at the same rate
2 % &
OOQ
O
O
)
0\9
SV
Ro2 B

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R
(S1’s sending rate)

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R

(S1’s sending rate)

()

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R

(S1’s sending rate)

()

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R

(S1’s sending rate)

()

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R

(S1’s sending rate)

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R

(S1’s sending rate)

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R

(S1’s sending rate)

R>

(S2's sending rate)

the network is fully utilized
when the bottleneck link is “full”

fairness

the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
9 D357
Py the network is fully utilized

= oL when the bottleneck link is “full”

5> PO . . AIMD: every RTT, if there is no loss,
_ 8 o fairness : .
@ © _ W =W+ 1;else, W = W/2

D] 5 the network is fair when S1 and

» Sz are sending at the same rate

op)

R> B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
9 1.7 %8
P the network is fully utilized

= oL when the bottleneck link is “full”

> : . AIMD: every RTT, if there is no loss,
_ 8 o fairness : .
@ © _ W =W+ 1;else, W = W/2

D ; < the network is fair when S and

o o S, are sending at the same rate

R2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
9 13357
P the network is fully utilized

= oL when the bottleneck link is “full”

5> PO . . AIMD: every RTT, if there is no loss,
_ 8 o fairness : .
2 - W =W+ 1;else, W = W/2

D § < the network is fair when S and

o ¢ S, are sending at the same rate

)

Ro B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
9 13357
P the network is fully utilized

= oL when the bottleneck link is “full”

5> PO . . AIMD: every RTT, if there is no loss,
_ 8 o fairness : .
@ © _ W =W+ 1;else, W = W/2

© i v the network is fair when S1 and

o ¢ S, are sending at the same rate

)

Ro B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
9 1.7 %8
Py the network is fully utilized

= oL when the bottleneck link is “full”

o A2 : . AIMD: every RTT, it there is no loss,
_ 8 o L fairness :
@ © _ W =W+ 1;else, W = W/2

D g s the network is fair when S, and

o ¢ S, are sending at the same rate

g

R2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
» 13357
P the network is fully utilized

= oL when the bottleneck link is “full”

= A2 i e _ . AIMD: every RTT, if there is no loss,
_ 8 ¢ L fairness :
o © _ ; W=W+ 1;else,W = W/2

D g < the network is fair when S and :

o ¢ S, are sending at the same rate

)

R2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
XY 5
» 13357
P the network is fully utilized

= oL when the bottleneck link is “full”

- e _ . AIMD: every RTT, it there is no loss,
_ 8 ¢ L fairness :
r G _ ; W=W+ 1;¢else, W = W/2

D g < the network is fair when S and :

o ¢ S, are sending at the same rate

)

R2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

=) . sources sharing a bottleneck
Y :
» 13357
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

= S i e : . AIMD: every RTT, if there is no loss,
= A fairness : .
o © i NS ; W=W+ 1;else,W = W/2

D S 5 the network is fair when S and :

o ¢ S, are sending at the same rate '

o
R2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

=) . sources sharing a bottleneck
Y :
» 13357
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

= S e _ . AIMD: every RTT, it there is no loss,
= A fairness : .
or © %7 \g ; W =W+ 1;¢else,W = W/2

© i s the network is fair when Sy and :

o ¢ S, are sending at the same rate :

D g

~ .s’

R2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

=) . sources sharing a bottleneck
Y :
9 .57 %8
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

= S e _ . AIMD: every RTT, if there is no loss,
= A fairness : .
or © %7 \g ; W =W+ 1;¢else,W = W/2

© i s the network is fair when Sy and :

1% ¢ ' S2 are sending at the same rate :

% pd

~ .s’

Ro B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

=) . sources sharing a bottleneck
Y :
9 D357
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

= S e : . AIMD: every RTT, if there is no loss,
= A fairness : .
r G i N\ o - W =W+ 1;else,W = W/2

D L R * the network is fair when S and

1% ¢ ' S2 are sending at the same rate

4 e

~ .s’

Ro B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
Y :
X .57/ P
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

5> .,..v‘ i foii oo . AIMD: every RTT, if there is no loss,
- £ RPN : .
@ © F % o \a - W =W+ 1;else, W = W/2

D L R * the network is fair when S; and

1% ¢ ' S2 are sending at the same rate

» e

%

~ .s’

Ro2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

B . sources sharing a bottleneck
Y :
X .57/ P
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

5> .,..v‘ ;e . foii oo . AIMD: every RTT, if there is no loss,
_ C EEENY | : .
T T 2% o \a W =W+ 1 ¢else,W = W/2

D L R * the network is fair when S; and

1% ¢ ' S2 are sending at the same rate

» e

%

~ .s’

Ro2 B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

=) . sources sharing a bottleneck
Y :
9 .57 %8
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

= ..,.v‘ i eF . foiace . AIMD: every RTT, if there is no loss,
— £ J oINS : -
@ © ’ o W =W+ 1;¢else,W = W/2

© By . the network is fair when S; and

% ¢ ' S2 are sending at the same rate

» s

D R

~— .s’ .‘.’

Ro B

(S2's sending rate)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all

=) . sources sharing a bottleneck
Y :
9 .57 %8
o7 the network is fully utilized

= o\ when the bottleneck link is “full”

= . 5 : '

= ..,.v‘ i eF . foiace . AIMD: every RTT, if there is no loss,
— £ J oINS : -
@ © ’ o W =W+ 1;¢else,W = W/2

© By . the network is fair when S; and

% ¢ ' S2 are sending at the same rate

» s

D R

~— .s’ .‘.’

Ro B

(S2's sending rate)

eventually, R1 and R2 will come to oscillate around the fixed point

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,

' ' ' ' . split bandwidth evenly among alll

e - S L ’ . sources sharing a bottleneck

A s s St -

[V R Y WY R S ——— -
N
> st SV SV 4] AIMD: every RTT, if there is no loss,
S W =W+ 1;else, W = W/2
s s/ /S /A :

4 IR (S S SR R AR S AR . A -

2 W -

O I I I I

0 5 10 15 20 25
Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

Window Size

—
AN

—i
V)

—k
o

(00)

5 10 15 20 25
Time (RTTs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,

sl — . — —] split bandwidth evenly among all
. sources sharing a bottleneck
| '
D | S | e,
N 20 T I L . : . .
U; AIMD: every RTT, if there is no loss,
S sF] £ B S 7 _ § W =W+ 1;else,W = W/2
= :
= et 4 N\ NSl o4 : _
; ; ; : slow-start: at the start of the
at /0 v\ /1 / . connection, double W every RTT
2 /SO RURRRUUR _<A -
O I I I I
0 5 10 15 20 25
Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

sender receiver

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

timeout

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

sender receiver

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

% . AIMD: every RTT, if there is no loss,
“E’ something has : W =W+ 1;¢else,W = W/2
gy happened to :

5 packet 7

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

timeout

S

ender

receiver

something has
happened to
packet 7

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

sender receiver

in practice, If a single packet is lost, the three “dup”
ACKs will be received before the timeout for that
packet expires

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

timeout

S

ender

receiver

something has
happened to
packet 7

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

16

14

12

10

Window Size
(@0

In practice, a retransmission due to a timeout happens when there
IS significant loss. senders are even more conservative, dropping

5 10 15 20
Time (RTTs)

their window back down to 1

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

16

14

12

10

Window Size
(@0

In practice, a retransmission due to a timeout happens when there
IS significant loss. senders are even more conservative, dropping

retransmission due

to timeout -

—

5 10 15 20
Time (RTTs)

their window back down to 1

25

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

16

14

12

10

Window Size
(@0

In practice, a retransmission due to a timeout happens when there
IS significant loss. senders are even more conservative, dropping

retransmission due

to timeout -

—

5 10 15 20
Time (RTTs)

their window back down to 1

25

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve :
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization
In certain types of networks, this

style of congestion control can

fairness: under infinite offered load,
make these problems worse

split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve

efficiency and fairness

In certain types of networks, this
style of congestion control can
make these problems worse

in practice, fairness is tough
to define and assess

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

In certain types of networks, this
style of congestion control can
make these problems worse

in practice, fairness is tough
to define and assess

AIMD is not the final word Iin
congestion avoidance; modern
versions (e.g. CUBIC TCP) use
different rules to set the window
size

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are

received
(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

1970s: 1978: flexibility and 1993:

ARPAnNet layering early 80s: growth = change late 80s: growth — problems commercialization
T
hosts.txt distance-vector TCP, UDP OSPF, EGP, DNS congestion collapse policy routing CIDR

(which led to congestion control)

application the things that
actually generate
traffic

36692
33022

29353

» ; transport sharing the network,
- : reliability (or not)

examples: TCE UDP

18346

14676

11007

7338

3669

network naming, addressing,

routing

CAIDA's IPv4 AS Core, examples: IP

January 2020
(https://www.caida.org/projects/ - ’ :
cartography/as-core/2020/) | 1ink communication between
: two directly-connected
hodes
next time: TCP congestion control doesn’t react to congestion o 1 eonerne luetoom

until after it's a problem; could we get senders to react before

?
queues are fU” ' Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

