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6.1800 Spring 2024
Lecture #11: Reliable Transport 
adding reliability while also keeping things efficient and fair
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https://en.wikipedia.org/wiki/Incompatible_Timesharing_System
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link

network

transport

application the things that 
actually generate 
traffic

sharing the network, 
reliability (or not)
examples: TCP, UDP

1993: 
commercialization

policy routing

naming, addressing, 
routing
examples: IP

communication between 
two directly-connected 
nodes
examples: ethernet, bluetooth, 
802.11 (wifi)

CIDR

today: moving up to the transport layer to discuss 
reliable transport

CAIDA’s IPv4 AS Core,

January 2020


(https://www.caida.org/projects/
cartography/as-core/2020/)

1978: flexibility and 
layering

1970s: 
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
hosts.txt TCP, UDPdistance-vector


routing
congestion collapse

(which led to congestion control)
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reliability (or not)
examples: TCP, UDP

naming, addressing, 
routing
examples: IP

communication between 
two directly-connected 
nodes
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802.11 (wifi)

our (first) goal today is to create a reliable transport 
protocol, which delivers each byte of data exactly once, 

in-order, to the receiving application

Sending 
Application

Receiving 
Application

unreliable networkReliable

Sender

Reliable 
Receiver

each byte of data is delivered 
exactly once and in-order
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question: what should W be?
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how can a single reliable sender, using a sliding-
window protocol, set its window size to 
maximize utilization — but prevent 

congestion and unfairness — given that there 
are many other end points using the network, all 

with different, changing demands?

question: what should W be?
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question: what line on this graph 
would represent fairness?
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fairness: under infinite offered load, 
split bandwidth evenly among all 
sources sharing a bottleneck

AIMD: every RTT, if there is no loss, 
W = W + 1; else, W = W/2

slow-start: at the start of the 
connection, double W every RTT
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W = W + 1; else, W = W/2

slow-start: at the start of the 
connection, double W every RTT



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve 
efficiency and fairness

something has 
happened to 

packet 7

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W 
= 
5

ti
me
ou
t

7

efficiency: minimize drops, minimize 
delay, maximize bottleneck utilization

fairness: under infinite offered load, 
split bandwidth evenly among all 
sources sharing a bottleneck

AIMD: every RTT, if there is no loss, 
W = W + 1; else, W = W/2

slow-start: at the start of the 
connection, double W every RTT

fast retransmit/fast recovery: 
retransmit packet k+1 as soon as four 

ACKs with sequence number k are 
received


(four = original ACK + 3 “dup” ACKs)
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fairness: under infinite offered load, 
split bandwidth evenly among all 
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in practice, a retransmission due to a timeout happens when there 
is significant loss. senders are even more conservative, dropping 
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style of congestion control can 
make these problems worse
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AIMD: every RTT, if there is no loss, 
W = W + 1; else, W = W/2

slow-start: at the start of the 
connection, double W every RTT

fast retransmit/fast recovery: 
retransmit packet k+1 as soon as four 
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received


(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize 
delay, maximize bottleneck utilization

fairness: under infinite offered load, 
split bandwidth evenly among all 
sources sharing a bottleneck

in practice, fairness is tough 
to define and assess

in certain types of networks, this 
style of congestion control can 
make these problems worse

AIMD is not the final word in 
congestion avoidance; modern 
versions (e.g. CUBIC TCP) use 
different rules to set the window 
size
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1978: flexibility and 
layering

link

network

transport

application the things that 
actually generate 
traffic

sharing the network, 
reliability (or not)
examples: TCP, UDP

1993: 
commercialization

1970s: 
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing, 
routing
examples: IP

communication between 
two directly-connected 
nodes
examples: ethernet, bluetooth, 
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR
(which led to congestion control)

next time: TCP congestion control doesn’t react to congestion 
until after it’s a problem; could we get senders to react before 
queues are full?

CAIDA’s IPv4 AS Core,

January 2020


(https://www.caida.org/projects/
cartography/as-core/2020/)


