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6.1800 in the news SPECIAL SEMINAR

Reconstructing the History of Incompatible Computing

Lars Brinkhoff and Oscar Vermeulen
ITS Reconstruction Project

MIT Museum Collections Workshop (3™ floor)
(MIT Museum, 314 Main St, Gambrill Center, Cambridge, MA)

April 1, 2024
2:30-4:30 pm

NOTE: The seminar is free and open to all but an MIT ID
(or an admission ticket) is required for entry to the museum.
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6.1800 Iin the news

ITS, and the software developed on it, were technically and culturally influential far beyond their core user
community. Remote "guest” or "tourist” access was easily available via the early ARPAnet, allowing many
interested parties to informally try out features of the operating system and application programs. The wide-
open ITS philosophy and collaborative online community were a major influence on the hacker culture, as
described in Steven Levy's book Hackers,'*] and were the direct forerunners of the free and open-source

software, open-design, and Wiki movements.
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1970s: 1978: flexibility and 1993:

ARPANet layering early 80s: growth = change  late 80s: growth — problems commercialization
————————————————————eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeellp>
hosts.txt  distance-vector TCP, UDP OSPF, EGP, DNS congestion collapse  policy routing  CIDR
routing (which led to congestion control)

application the things that
actually generate
traffic

— 36692
33022
29353

25684

o . transport sharing the network,
- : reliability (or not)
examples: TCF, UDP

7338

3669

network naming, addressing,

CAIDA’s IPv4 AS Core, routing

January 2020
(https://www.caida.org/projects/
cartography/as-core/2020/)

examples: IP

1ink communication between
two directly-connected
: hodes
today: moving up to the transport layer to discuss examples: ethernet. blustooth,
reliable transport 802.11 (wifi)
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our (first) goal today Is to create a reliable transport
protocol, which delivers each byte of data exactly once,
in-order, to the receiving application
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our (first) goal today is to create a reliable transport
protocol, which delivers each byte of data exactly once,

in-order, to the receiving application
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reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
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reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application
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reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
sequence numbers: used to order the
packets
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reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

the sender is ?ender‘ receliver

allowed to have  1n :
W outstanding no
packets at = |
once, but no '
more

sequence numbers: used to order the
packets
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question: what should W be?

how can a single reliable sender, using a sliding-
window protocol, set its window size to
maximize utilization — but prevent
congestion and unfairness — given that there
are many other end points using the network, all
with different, changing demands®

timeout
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congestion control: controlling the source rates to achieve
efficiency and fairness

the network is fully utilized
when the bottleneck link is “full”

fairness

question: what line on this graph
would represent fairness?

R
(S1’s sending rate)

R> B

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck
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eventually, R1 and R2 will come to oscillate around the fixed point
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congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,

' ' ' ' . split bandwidth evenly among alll
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congestion control: controlling the source rates to achieve

efficiency and fairness

Window Size

—
AN

—i
V)

—k
o

(00)

5 10 15 20 25
Time (RTTs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

slow-start: at the start of the
connection, double W every RTT
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congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

fairness: under infinite offered load,

sl — . — — ] split bandwidth evenly among all
. sources sharing a bottleneck
| '
D | S | e,
N 20 T I L . : . .
U; AIMD: every RTT, if there is no loss,
S sF ] £ B S 7 _ § W =W+ 1;else,W = W/2
= :
= et 4 N\ NSl o4 : _
; ; ; : slow-start: at the start of the
at /0 v\ /1 / . connection, double W every RTT
2 /SO RURRRUUR _<A -
O I I I I
0 5 10 15 20 25
Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024



congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

sender receiver

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W =W+ 1;¢else, W = W/2

timeout

slow-start: at the start of the
connection, double W every RTT
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congestion control: controlling the source rates to achieve ,
efficiency and fairness . efficiency: minimize drops, minimize
. delay, maximize bottleneck utilization

sender receiver

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

% . AIMD: every RTT, if there is no loss,
“E’ something has : W =W+ 1;¢else,W = W/2
gy happened to :

5 packet 7

slow-start: at the start of the
connection, double W every RTT
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congestion control: controlling the source rates to achieve

efficiency and fairness

timeout

S

ender
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1970s: 1978: flexibility and 1993:

ARPAnNet layering early 80s: growth = change  late 80s: growth — problems commercialization
T
hosts.txt  distance-vector TCP, UDP OSPF, EGP, DNS congestion collapse  policy routing  CIDR

(which led to congestion control)

application the things that
actually generate
traffic
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33022

29353

» ; transport sharing the network,
- : reliability (or not)

examples: TCE UDP

18346

14676
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7338
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network naming, addressing,

routing

CAIDA's IPv4 AS Core, examples: IP

January 2020
(https://www.caida.org/projects/ - ’ :
cartography/as-core/2020/) | 1ink communication between
: two directly-connected
hodes
next time: TCP congestion control doesn’t react to congestion o 1 eonerne luetoom

until after it's a problem; could we get senders to react before

?
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