
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #11: Reliable Transport
adding reliability while also keeping things efficient and fair

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://en.wikipedia.org/wiki/Incompatible_Timesharing_System

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

1993:
commercialization

policy routing

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

CIDR

today: moving up to the transport layer to discuss
reliable transport

CAIDA’s IPv4 AS Core,

January 2020

(https://www.caida.org/projects/
cartography/as-core/2020/)

1978: flexibility and
layering

1970s:
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
hosts.txt TCP, UDPdistance-vector

routing
congestion collapse

(which led to congestion control)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

our (first) goal today is to create a reliable transport
protocol, which delivers each byte of data exactly once,

in-order, to the receiving application

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

our (first) goal today is to create a reliable transport
protocol, which delivers each byte of data exactly once,

in-order, to the receiving application

Sending
Application

Receiving
Application

unreliable networkReliable

Sender

Reliable
Receiver

each byte of data is delivered
exactly once and in-order

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1 sequence numbers: used to order the

packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2 sequence numbers: used to order the

packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

sequence numbers: used to order the
packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

W
=
5 sequence numbers: used to order the

packets

the sender is
allowed to have
W outstanding

packets at
once, but no

more

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5 1

2
3
4
5

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6
7

X

1
2
3
4
5

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

7

X

1
2
3
4
5

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

7

X

1
2
3
4
5

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

question: what
sequence number will

this ACK have?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

7

X

1
2
3
4
5

6

6
6
6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

question: can the sender infer that
packet 7 has been lost?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

timeouts: used to retransmit packets

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

timeouts: used to retransmit packets

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

timeouts: used to retransmit packets

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

timeouts: used to retransmit packets

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

note that the sender could also infer loss
because it has received multiple ACKs with

sequence number 6, but none with sequence
number > 7; we’ll come back to that

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

6

W
=
5

7

X
7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

1
2
3
4
5

6

W
=
5

7

X
7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

1
2
3
4
5

6

8
9
10

W
=
5

7

X
7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

8
9
10

W
=
5

7

X
7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

8
9
10

11

W
=
5

7

X
7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

8
9
10

11

W
=
5

7

X
7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

8
9
10

11

W
=
5

7

X
7

notice that (in this
example) the timeout

expired before the
sender got an ACK

indicating that 7 had
been received

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

8
9
10

11

W
=
5

7

X
7

notice that (in this
example) the timeout

expired before the
sender got an ACK

indicating that 7 had
been received

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

8
9
10

11
11

W
=
5

7

X
7

notice that (in this
example) the timeout

expired before the
sender got an ACK

indicating that 7 had
been received

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

8
9
10

11
11

W
=
5

7

X
7

notice that (in this
example) the timeout

expired before the
sender got an ACK

indicating that 7 had
been received

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

6

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

1
2
3
4
5

6

W
=
5

7

7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

1
2
3
4
5

6

W
=
5

7

7

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

1
2
3
4
5

6

W
=
5

7

7
8
9
10

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

W
=
5

7

7
8
9
10

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11

1
2
3
4
5

6

W
=
5

7

7
8
9
10

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

W
=
5

7

7
8
9
10

sequence numbers: used to order the
packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

timeouts: used to retransmit packets

spurious retransmission: the sender retransmitted
a packet that the receiver had already ACKed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

W
=
5

7

7
8
9
10

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

W
=
5

7

7
8
9
10

question: what should W be?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

W
=
5

7

7
8
9
10

how can a single reliable sender, using a sliding-
window protocol, set its window size to
maximize utilization — but prevent

congestion and unfairness — given that there
are many other end points using the network, all

with different, changing demands?

question: what should W be?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness efficiency: minimize drops, minimize

delay, maximize bottleneck utilization

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness efficiency: minimize drops, minimize

delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness efficiency: minimize drops, minimize

delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

B

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

B

B

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

under-utilization

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

under-utilization

congestion

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

question: what line on this graph
would represent fairness?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

S1 is
 se

nding m
ore

than
 S2

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

S1 is
 se

nding m
ore

than
 S2

S2 is
 se

nding m
ore

than
 S1

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

efficiency
(utilization)

R
1 + R

2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
 =
 R

2

eventually, R1 and R2 will come to oscillate around the fixed point

R 1

(S
1’s

 s
en

di
ng

 ra
te

)

R2

(S2’s sending rate)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5

ti
me
ou
t

7

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

something has
happened to

packet 7

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5

ti
me
ou
t

7

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

something has
happened to

packet 7

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5

ti
me
ou
t

7

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

sender receiver

in practice, if a single packet is lost, the three “dup”
ACKs will be received before the timeout for that

packet expires

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

something has
happened to

packet 7

sender receiver
1
2
3
4
5

6

8
9
10

11

7

X

1
2
3
4
5

6

6
6
6

6

W
=
5

ti
me
ou
t

7

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

in practice, a retransmission due to a timeout happens when there
is significant loss. senders are even more conservative, dropping

their window back down to 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

retransmission due
to timeout

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

in practice, a retransmission due to a timeout happens when there
is significant loss. senders are even more conservative, dropping

their window back down to 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

retransmission due
to timeout

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

in practice, a retransmission due to a timeout happens when there
is significant loss. senders are even more conservative, dropping

their window back down to 1

retransmission due to
fast retransmit/fast recovery

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

W
in

d
o

w
 S

iz
e

Time (RTTs)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

in certain types of networks, this
style of congestion control can
make these problems worse

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

in practice, fairness is tough
to define and assess

in certain types of networks, this
style of congestion control can
make these problems worse

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

congestion control: controlling the source rates to achieve
efficiency and fairness

AIMD: every RTT, if there is no loss,
W = W + 1; else, W = W/2

slow-start: at the start of the
connection, double W every RTT

fast retransmit/fast recovery:
retransmit packet k+1 as soon as four

ACKs with sequence number k are
received

(four = original ACK + 3 “dup” ACKs)

efficiency: minimize drops, minimize
delay, maximize bottleneck utilization

fairness: under infinite offered load,
split bandwidth evenly among all
sources sharing a bottleneck

in practice, fairness is tough
to define and assess

in certain types of networks, this
style of congestion control can
make these problems worse

AIMD is not the final word in
congestion avoidance; modern
versions (e.g. CUBIC TCP) use
different rules to set the window
size

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

1978: flexibility and
layering

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

1993:
commercialization

1970s:
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR
(which led to congestion control)

next time: TCP congestion control doesn’t react to congestion
until after it’s a problem; could we get senders to react before
queues are full?

CAIDA’s IPv4 AS Core,

January 2020

(https://www.caida.org/projects/
cartography/as-core/2020/)

