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6.1800 Spring 2024
Lecture #12: In-network resource management 
continuing to share a network, this time with help from switches
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reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application
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acknowledgments (“ACKs”): used to 
confirm that a packet has been received

timeouts: used to retransmit packets

the sender is 
allowed to have 
W outstanding 

packets at 
once, but no 

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver 
has received all packets up to and including k

the receiver will hold 
onto packets 8-11 

until it receives 
packet 7, and then 

deliver all of them, in-
order, to the 
application

note that the sender could also infer loss 
because it has received multiple ACKs with 

sequence number 6, but none with sequence 
number > 7; we’ll come back to that
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1978: flexibility and 
layering

link

network

transport

application the things that 
actually generate 
traffic

sharing the network, 
reliability (or not)
examples: TCP, UDP

1993: 
commercialization

1970s: 
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing, 
routing
examples: IP

communication between 
two directly-connected 
nodes
examples: ethernet, bluetooth, 
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR
(which led to congestion control)

question: TCP congestion control doesn’t react to congestion 
until after it’s a problem; could we get senders to react before 
queues are full?

CAIDA’s IPv4 AS Core,

January 2020


(https://www.caida.org/projects/
cartography/as-core/2020/)
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queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently 

as queue size 
increases



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently 

as queue size 
increases

pmax



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently 

as queue size 
increases

pmax



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED: drop packets before the queue is full, with 
increasing probability as the queue grows. prevents 
queue lengths from oscillating, decreases delay, flows 
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently 

as queue size 
increases

pmax



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop (or mark) packets?

droptail: drop packets only when the queue is full. 
simple, but leads to high delays and synchronizes 
flows.

RED (drops) / ECN (marks): drop (or mark) packets 
before the queue is full: with increasing probability as 
the queue grows. prevents queue lengths from 
oscillating, decreases delay, flows don’t synchronize. 
but complex and hard to pick parameters
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as long as our switches are taking a more 
active role, let’s see what else they can do

(we’ll return to queue management later in the lecture)
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delay-based scheduling: can we give latency guarantees for some types of traffic?
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priority queueing: put latency-sensitive traffic in its 
own queue and serve that queue first (can extend 
this idea to multiple queues/types of traffic)

delay-based scheduling: can we give latency guarantees for some types of traffic?
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priority queueing: put latency-sensitive traffic in its 
own queue and serve that queue first (can extend 
this idea to multiple queues/types of traffic)

delay-based scheduling: can we give latency guarantees for some types of traffic?

question: what could go wrong here?
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priority queueing: put latency-sensitive traffic in its 
own queue and serve that queue first. does not 
prevent the latency-sensitive traffic from “starving 
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?
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bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?
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round robin: can’t handle variable packet sizes 
(and in its most basic form doesn’t allow us to 
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?
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round robin: can’t handle variable packet sizes 
(and in its most basic form doesn’t allow us to 
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bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes 
(even within the same queue), near-perfect fairness 
and low packet processing overhead

in each round: 

  for each queue q: 

    q.credit += q.quantum 
 
    while q.credit >= size of next packet p: 
      q.credit -= size of p 
      send p 
  deficit round robin also doesn’t require a mean 

packet size, which is another good thing

question: suppose one of our queues is 
empty for many rounds. should it 
accumulate credit while empty?
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round robin: can’t handle variable packet sizes 
(and in its most basic form doesn’t allow us to 
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bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes 
(even within the same queue), near-perfect fairness 
and low packet processing overhead

in each round: 

 for each queue q: 
  if q is not empty: 
    q.credit += q.quantum 
 
    while q.credit >= size of next packet p: 
      q.credit -= size of p 
      send p 
  else: 
     q.credit = 0 
  

now let’s start revisiting some of our 
previous strategies

deficit round robin also doesn’t require a mean 
packet size, which is another good thing
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priority queueing: put latency-sensitive traffic in its 
own queue and serve that queue first. does not 
prevent the latency-sensitive traffic from “starving 
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?
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priority queueing: put latency-sensitive traffic in its 
own queue and serve that queue first. does not 
prevent the latency-sensitive traffic from “starving 
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?

can solve this problem by doing 
something similar to bandwidth-based 

scheduling across the two queues
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in-network resource management

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority 
Queueing

Round-robin

signal congestion, 
potentially before 
queues are full

prioritize latency-
sensitive traffic

enforce (weighted) 
fairness among different 

types of traffic

type of 
management

what does this type of 
management allow a 

switch to do
example protocols how the protocol works

drop packets when the queue 
is full

serve some queues before 
others

try to give each type of traffic 
an equal share of bandwidth

round robin, but incorporate 
average packet size

round robin, but do a better 
job with packet sizes

drop or mark packets before 
the queue is full

pros/cons?

simple, but queues get full 
(among other problems)

can keep queues from filling 
up, but complicated

prioritized queues can starve 
out the others

can’t handle variable packet 
sizes

average packet size hard to 
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin
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we didn’t cover weighted round-robin; this is just to give you a sense that there 
are algorithms that exist “between” round-robin and deficit round-robin
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is in-network resource management a good idea on the Internet?
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6.1800 in the news

https://www.nytimes.com/2019/09/04/science/sally-floyd-dead.html


