
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #12: In-network resource management
continuing to share a network, this time with help from switches

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

reliable transport protocols deliver each byte of data exactly once, in-order, to the receiving application

sender receiver
ti
me
ou
t

1
2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W
=
5 sequence numbers: used to order the

packets

acknowledgments (“ACKs”): used to
confirm that a packet has been received

timeouts: used to retransmit packets

the sender is
allowed to have
W outstanding

packets at
once, but no

more

this is known as a sliding-window protocol
the window of outstanding (un-ACKed) packets slides along the sequence number space

an ACK with sequence number k indicates that the receiver
has received all packets up to and including k

the receiver will hold
onto packets 8-11

until it receives
packet 7, and then

deliver all of them, in-
order, to the
application

note that the sender could also infer loss
because it has received multiple ACKs with

sequence number 6, but none with sequence
number > 7; we’ll come back to that

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

1978: flexibility and
layering

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

1993:
commercialization

1970s:
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR
(which led to congestion control)

question: TCP congestion control doesn’t react to congestion
until after it’s a problem; could we get senders to react before
queues are full?

CAIDA’s IPv4 AS Core,

January 2020

(https://www.caida.org/projects/
cartography/as-core/2020/)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

1978: flexibility and
layering

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

1993:
commercialization

1970s:
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR
(which led to congestion control)

question: TCP congestion control doesn’t react to congestion
until after it’s a problem; could we get senders to react before
queues are full?

CAIDA’s IPv4 AS Core,

January 2020

(https://www.caida.org/projects/
cartography/as-core/2020/)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

pmax

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

pmax

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED: drop packets before the queue is full, with
increasing probability as the queue grows. prevents
queue lengths from oscillating, decreases delay, flows
don’t synchronize.

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

pmax

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop (or mark) packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED (drops) / ECN (marks): drop (or mark) packets
before the queue is full: with increasing probability as
the queue grows. prevents queue lengths from
oscillating, decreases delay, flows don’t synchronize.
but complex and hard to pick parameters

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

pmax

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop (or mark) packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED (drops) / ECN (marks): drop (or mark) packets
before the queue is full: with increasing probability as
the queue grows. prevents queue lengths from
oscillating, decreases delay, flows don’t synchronize.
but complex and hard to pick parameters

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

pmax

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

queue management: given a queue, when should it drop (or mark) packets?

droptail: drop packets only when the queue is full.
simple, but leads to high delays and synchronizes
flows.

RED (drops) / ECN (marks): drop (or mark) packets
before the queue is full: with increasing probability as
the queue grows. prevents queue lengths from
oscillating, decreases delay, flows don’t synchronize.
but complex and hard to pick parameters

average queue size

dr
op

 p
ro

ba
bi

lit
y

0

1

qmin qmax

never drop always drop
drop more frequently

as queue size
increases

pmax

as long as our switches are taking a more
active role, let’s see what else they can do

(we’ll return to queue management later in the lecture)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

delay-based scheduling: can we give latency guarantees for some types of traffic?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

priority queueing: put latency-sensitive traffic in its
own queue and serve that queue first (can extend
this idea to multiple queues/types of traffic)

delay-based scheduling: can we give latency guarantees for some types of traffic?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

priority queueing: put latency-sensitive traffic in its
own queue and serve that queue first (can extend
this idea to multiple queues/types of traffic)

delay-based scheduling: can we give latency guarantees for some types of traffic?

question: what could go wrong here?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

priority queueing: put latency-sensitive traffic in its
own queue and serve that queue first. does not
prevent the latency-sensitive traffic from “starving
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

priority queueing: put latency-sensitive traffic in its
own queue and serve that queue first. does not
prevent the latency-sensitive traffic from “starving
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?

as long as our switches are taking a more
active role, let’s see what else they can do

(we’ll return to priority queueing later in the lecture)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:

 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:

 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:

 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:

 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:

 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p
 deficit round robin also doesn’t require a mean

packet size, which is another good thing

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:

 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p
 deficit round robin also doesn’t require a mean

packet size, which is another good thing

question: suppose one of our queues is
empty for many rounds. should it
accumulate credit while empty?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:
 if q is not empty:
 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p
 else:
 q.credit = 0

deficit round robin also doesn’t require a mean
packet size, which is another good thing

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

round robin: can’t handle variable packet sizes
(and in its most basic form doesn’t allow us to
weight traffic differently)

bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

deficit round robin: handles variable packet sizes
(even within the same queue), near-perfect fairness
and low packet processing overhead

in each round:

 for each queue q:
 if q is not empty:
 q.credit += q.quantum

 while q.credit >= size of next packet p:
 q.credit -= size of p
 send p
 else:
 q.credit = 0

now let’s start revisiting some of our
previous strategies

deficit round robin also doesn’t require a mean
packet size, which is another good thing

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

priority queueing: put latency-sensitive traffic in its
own queue and serve that queue first. does not
prevent the latency-sensitive traffic from “starving
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

priority queueing: put latency-sensitive traffic in its
own queue and serve that queue first. does not
prevent the latency-sensitive traffic from “starving
out” the other traffic (in other queues).

delay-based scheduling: can we give latency guarantees for some types of traffic?

can solve this problem by doing
something similar to bandwidth-based

scheduling across the two queues

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

in-network resource management

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority
Queueing

Round-robin

signal congestion,
potentially before
queues are full

prioritize latency-
sensitive traffic

enforce (weighted)
fairness among different

types of traffic

type of
management

what does this type of
management allow a

switch to do
example protocols how the protocol works

drop packets when the queue
is full

serve some queues before
others

try to give each type of traffic
an equal share of bandwidth

round robin, but incorporate
average packet size

round robin, but do a better
job with packet sizes

drop or mark packets before
the queue is full

pros/cons?

simple, but queues get full
(among other problems)

can keep queues from filling
up, but complicated

prioritized queues can starve
out the others

can’t handle variable packet
sizes

average packet size hard to
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

in-network resource management

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority
Queueing

Round-robin

signal congestion,
potentially before
queues are full

prioritize latency-
sensitive traffic

enforce (weighted)
fairness among different

types of traffic

type of
management

what does this type of
management allow a

switch to do
example protocols how the protocol works

drop packets when the queue
is full

serve some queues before
others

try to give each type of traffic
an equal share of bandwidth

round robin, but incorporate
average packet size

round robin, but do a better
job with packet sizes

drop or mark packets before
the queue is full

pros/cons?

simple, but queues get full
(among other problems)

can keep queues from filling
up, but complicated

prioritized queues can starve
out the others

can’t handle variable packet
sizes

average packet size hard to
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

we didn’t cover weighted round-robin; this is just to give you a sense that there
are algorithms that exist “between” round-robin and deficit round-robin

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

in-network resource management

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority
Queueing

Round-robin

signal congestion,
potentially before
queues are full

prioritize latency-
sensitive traffic

enforce (weighted)
fairness among different

types of traffic

type of
management

what does this type of
management allow a

switch to do
example protocols how the protocol works

drop packets when the queue
is full

serve some queues before
others

try to give each type of traffic
an equal share of bandwidth

round robin, but incorporate
average packet size

round robin, but do a better
job with packet sizes

drop or mark packets before
the queue is full

pros/cons?

simple, but queues get full
(among other problems)

can keep queues from filling
up, but complicated

prioritized queues can starve
out the others

can’t handle variable packet
sizes

average packet size hard to
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

in-network resource management

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority
Queueing

Round-robin

signal congestion,
potentially before
queues are full

prioritize latency-
sensitive traffic

enforce (weighted)
fairness among different

types of traffic

type of
management

what does this type of
management allow a

switch to do
example protocols how the protocol works

drop packets when the queue
is full

serve some queues before
others

try to give each type of traffic
an equal share of bandwidth

round robin, but incorporate
average packet size

round robin, but do a better
job with packet sizes

drop or mark packets before
the queue is full

pros/cons?

simple, but queues get full
(among other problems)

can keep queues from filling
up, but complicated

prioritized queues can starve
out the others

can’t handle variable packet
sizes

average packet size hard to
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

is in-network resource management a good idea on the Internet?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

1978: flexibility and
layering

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

1993:
commercialization

1970s:
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR
(which led to congestion control)

question: TCP congestion control doesn’t react to congestion
until after it’s a problem; could we get senders to react before
queues are full? yes, if switches take a more active role

CAIDA’s IPv4 AS Core,

January 2020

(https://www.caida.org/projects/
cartography/as-core/2020/)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.nytimes.com/2019/09/04/science/sally-floyd-dead.html

