Lecture #13: The application layer
serving content as content evolves
bandwidth-based scheduling: can we allocate specific amounts of bandwidth to some traffic?

Round Robin: can’t handle variable packet sizes (and in its most basic form doesn’t allow us to weight traffic differently)

Deficit Round Robin: handles variable packet sizes (even within the same queue), near-perfect fairness and low packet processing overhead

```
The quantums for each queue are chosen to be **proportionate to the packet sizes**. too big and we have poor short-term fairness, too small and it just takes too long to build credit.
```

In each round:

```
for each queue q:
    if q is not empty:
        q.credit += q.quantum
        while q.credit >= size of next packet p:
            q.credit -= size of p
            send p
        else:
            q.credit = 0
```

```
deficit round robin also doesn’t require a mean packet size, which is another good thing
```

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024
6.1800 in the news

Ready for New iPhone Emojis? Here Are the 118 Icons Coming in iOS 17.4

The iPhone adds more emoji you never knew you needed.

Gael Cooper
Jan 29, 2024 2:56 a.m. PT

Phoenix, lime and brown mushroom are only a few of the many new emoji coming in iOS 17.4.

Emojipedia
You won’t be able to find these new emoji on your keyboard just yet, though. While version 15.1.0 of the Unicode was approved on Sept. 12 (you can read all of it here), there’s always a lag between the approval and its release. Emojipedia had estimated that the new emoji would be available in early 2024.
TCP, DNS, OSPF (link-state routing), etc., all have standards that describe the protocols in detail including packet formats.

You won't be able to find these new emoji on your keyboard just yet, though. While version 15.1.0 of the Unicode was approved on Sept. 12 (you can read all of it here), there's always a lag between the approval and its release. Emojipedia had estimated that the new emoji would be available in early 2024.
6.1800 in the news

Ready for New iPhone Emojis? Here Are the 118 Icons Coming in iOS 17.4

The iPhone adds more emoji you never knew you needed.

who sets the standards?

Having a company like Apple literally influencing our language is probably not a great way of doing things.

Keith Weinstein is a Computer Science Professor at Stanford.

read this comic and let my friend keith explain it to you!

https://thenib.com/who-makes-emoji/

today: how do all of the lower layers affect application-layer protocols? specifically, how do we deliver content on the Internet?
how do we share a file — or deliver content — on the Internet?
how do we share a file — or **deliver content** — on the Internet?

client-server
how do we share a file — or deliver content — on the Internet?
how do we share a file — or **deliver content** — on the Internet?

client-server

CDNs

P2P
how do we share a file — or **deliver content** — on the Internet?

- **client-server**
- **CDNs**
- **P2P**

more distributed
more scalable?
how do we share a file — or **deliver content** — on the Internet?

- **client-server**
- **CDNs**
- **P2P**

we know that a **client-server model is (relatively) simple, but doesn’t scale well**; let's understand more about the other two technologies, to see where they end up in terms of complexity, scalability, etc.
how do we share a file — or **deliver content** — on the Internet?

We know that a **client-server model** is (relatively) simple, but doesn’t **scale well**; let’s understand more about the other two technologies, to see where they end up in terms of complexity, scalability, etc.

As part of this endeavor, we’ll also see why the underlying network matters in these designs.
_client-server

CDNs

P2P

.torrent file

file name
.torrent file

file name

file size
.torrent file
- file name
- file size
- information about the "blocks" of the file

client-server

CDNs

P2P
client-server

CDNs

P2P

.torrent file
- file name
- file size
- information about the “blocks” of the file

tracker
- list of peers
client-server

- File name
- File size
- Information about the “blocks” of the file
- Tracker URL

tracker

- List of peers

CDN

P2P
P2P

- .torrent file
 - file name
 - file size
 - information about the "blocks" of the file
 - tracker URL

client-server

- CDN

tracker

- list of peers
client-server

CDNs

P2P

1. download .torrent file from known website

.tron file

- file name
- file size
- information about the “blocks” of the file
- tracker URL

tracker

list of peers
1. download .torrent file from known website

2. contact tracker for list of peers

Note: The .torrent file contains:
- File name
- File size
- Information about the "blocks" of the file
- Tracker URL

CDNs

P2P
1. download .torrent file from known website

2. contact tracker for list of peers
1. download .torrent file from known website

2. contact tracker for list of peers

- tracker
 - list of peers

- .torrent file
 - file name
 - file size
 - information about the “blocks” of the file
 - tracker URL

- seeders have the entire file
1. download .torrent file from known website

2. contact tracker for list of peers

3. communicate with (some) peers to download and upload blocks

tracker
list of peers

seeder have the entire file

CDNs

P2P

client-server

.torrent file
- file name
- file size
- information about the “blocks” of the file
- tracker URL

network diagram with nodes and arrows representing client-server, CDs, and P2P connections.
1. download .torrent file from known website
2. contact tracker for list of peers
3. communicate with (some) peers to download and upload blocks

.toorrent file
- file name
- file size
- information about the “blocks” of the file
- tracker URL

tracker
- list of peers

seeders have the entire file
question: are there any incentives for peers to upload data to another peer? are there any drawbacks?
How do we incentivize users to upload?

Round t
how do we incentivize users to upload?

round t
how do we incentivize users to upload?

round t

13 ← □
10 ← □
4 ← □
12 ← □
7 ← □
9 ← □
15 ← □
how do we incentivize users to upload?

round t

13
10
4
12
7
9
15
how do we incentivize users to upload?

round t

round $t+1$

13

10

4

12

7

9

15

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024
How do we incentivize users to upload?

Round t

- 13
- 10
- 4
- 12
- 7
- 9
- 15

Round t+1

Client-server

CDNs

P2P
how do we incentivize users to upload?

round t

13
10
4
12
7
9
15

round $t+1$

CDNs

P2P

client-server
.torrent file
file name
file size
information about the “blocks” of the file
tracker URL

tracker
list of peers

client-server

CDNs

P2P
question: are there any central points of failure in this network?
.torrent file
- file name
- file size
- information about the "blocks" of the file
- tracker URL

Most modern BitTorrent clients used a decentralized tracker, where no machine in the tracker network knows the full set of peers.
.torrent file
- file name
- file size
- information about the “blocks” of the file
- tracker URL

Client-server

CDNs

P2P
client-server

CDNs

P2P
requires some specific organization of the content (e.g., well-defined “blocks”), the ability to discover other peers, and some incentives to get users to upload. In practice, scalability is limited by end-users’ upload constraints.
requires some specific organization of the content (e.g., well-defined “blocks”), the ability to discover other peers, and some incentives to get users to upload. In practice, scalability is limited by end-users’ upload constraints.
1. geographically distribute the servers
1. geographically distribute the servers
client-server

1. geographically distribute the servers

2. replicate a particular piece of content p on some of them

CDNs

P2P
1. geographically distribute the servers

2. replicate a particular piece of content p on some of them
1. geographically distribute the servers

2. replicate a particular piece of content p on some of them

3. when a client requests p, direct them to the “best” server that has a copy of p
1. geographically distribute the servers

2. replicate a particular piece of content p on some of them

3. when a client requests p, direct them to the “best” server that has a copy of p
1. geographically distribute the servers

2. replicate a particular piece of content p on some of them

3. when a client requests p, direct them to the “best” server that has a copy of p

question: what do you think makes a server the “best”?
client-server

1. geographically distribute the servers

CDNs

2. replicate a particular piece of content p on some of them

P2P

3. when a client requests p, direct them to the “best” server that has a copy of p
CDNs requires a great deal of coordination and organization among the edge servers (all of which are owned by a single company). Not as “organic” as P2P networks, but can provide better performance guarantees, in part by finding alternate routes and improving transport-layer performance.

P2P requires some specific organization of the content (e.g., well-defined “blocks”), the ability to discover other peers, and some incentives to get users to upload. In practice, scalability is limited by end-users’ upload constraints.
CDNs requires a great deal of coordination and organization among the edge servers (all of which are owned by a single company). Not as “organic” as P2P networks, but can provide better performance guarantees, in part by finding alternate routes and improving transport-layer performance.

P2P requires some specific organization of the content (e.g., well-defined “blocks”), the ability to discover other peers, and some incentives to get users to upload. In practice, scalability is limited by end-users’ upload constraints.
CDNs requires a great deal of coordination and organization among the edge servers (all of which are owned by a single company). Not as “organic” as P2P networks, but can provide better performance guarantees, in part by finding alternate routes and improving transport-layer performance.

P2P requires some specific organization of the content (e.g., well-defined “blocks”), the ability to discover other peers, and some incentives to get users to upload. In practice, scalability is limited by end-users’ upload constraints.

doesn’t scale well, but a lot (*a lot*) less complicated than CDNs!
the technologies for sharing content on the Internet have changed as the way we use the Internet has changed
the technologies for sharing content on the Internet have changed as the way we use the Internet has changed.

the underlying network affects how well these technologies work, and there are also interesting challenges in terms of how to keep data up-to-date and consistent across multiple machines, and how to deal with failures.

these are challenges we’ll address starting after spring break.
on the Internet, we have to solve all of the “normal” networking problems (addressing, routing, transport) at massive scale, while supporting a diverse group of applications and competing economic interests.