
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #16: Atomicity, Isolation, Transactions 
introducing abstractions to make fault-tolerance achievable



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

you have an exam tomorrow



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

you have an exam tomorrow

there are a lot of things you can use to study, all on the website 
- lecture outlines, slides

- recitation notes

- practice exams



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

you have an exam tomorrow

there are a lot of things you can use to study, all on the website 
- lecture outlines, slides

- recitation notes

- practice exams

the exam is open book but not open Internet. you will turn your 
network devices off during the exam. download everything you might 
need ahead of time.



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

you have an exam tomorrow

there are a lot of things you can use to study, all on the website 
- lecture outlines, slides

- recitation notes

- practice exams

the exam is open book but not open Internet. you will turn your 
network devices off during the exam. download everything you might 
need ahead of time.

you all can do well on this exam, get some sleep tonight



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.wbur.org/npr/1241674216/climate-change-time-negative-leap-second



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.wbur.org/npr/1241674216/climate-change-time-negative-leap-second



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.wbur.org/npr/1241674216/climate-change-time-negative-leap-second



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.wbur.org/npr/1241674216/climate-change-time-negative-leap-second



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.wbur.org/npr/1241674216/climate-change-time-negative-leap-second

what assumptions are built 
into our systems? what 
happens when those 

assumptions are wrong?



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from 
unreliable components. we want to build systems 
that serve many clients, store a lot of data, perform 

well, all while keeping availability high

RAID allows us to recover from 
single disk failures on one machine

the high-level process of dealing with failures is to identify the faults, 
detect/contain the faults, and handle the faults. in lecture, we will build a 

set of abstractions to make that process more manageable



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank, account_a, account_b, amount): 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank, account_a, account_b, amount): 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount

crash! 💥



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank, account_a, account_b, amount): 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount

crash! 💥

problem: account_a lost amount dollars, but 
account_b didn’t gain amount dollars



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank, account_a, account_b, amount): 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount

crash! 💥

solution: make this action atomic. ensure 
that the system completes both steps or 

neither step.

atomicity



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank, account_a, account_b, amount): 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount

crash! 💥

solution: make this action atomic. ensure 
that the system completes both steps or 

neither step.

atomicity

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

atomicity

idea: write to a file so that a crash in between lines 2 and 3 has no effect

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures
crash! 💥

atomicity

idea: write to a file so that a crash in between lines 2 and 3 has no effect

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures
crash! 💥

atomicity

idea: write to a file so that a crash in between lines 2 and 3 has no effect

current quest: update the bank transfer code to make this action atomic

if the system crashes here, upon recovery, it will 
appear as if the transfer didn’t happen at all 
because we didn’t make any updates to bank_file



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

idea: write to a file so that a crash in between lines 2 and 3 has no effect

atomicity

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failurescrash! 💥

idea: write to a file so that a crash in between lines 2 and 3 has no effect

atomicity

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(bank_file)

problem: a crash during write_accounts() 
leaves bank_file in an intermediate state

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failurescrash! 💥

idea: write to a file so that a crash in between lines 2 and 3 has no effect

atomicity

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

atomicity

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

crash! 💥

atomicity

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

crash! 💥

atomicity

current quest: update the bank transfer code to make this action atomic

if the system crashes here, upon recovery, it will 
appear as if the transfer didn’t happen at all 

because we didn’t make any updates to bank_file. we 
don’t read from tmp_file, so it’s okay if it was left in an 

intermediate state



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

atomicity

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures
crash! 💥

atomicity

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

problem: a crash during rename() potentially 
leaves bank_file in an intermediate state

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures
crash! 💥

atomicity

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

solution: make rename() atomic

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file) crash! 💥

atomicity

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

solution: make rename() atomic

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file) crash! 💥

making rename() atomic is more feasible than 
making write_accounts() atomic; we’ll see why 

as we go along

atomicity

idea: write to a temporary file so that a crash in between lines 2 and 3 
has no effect, and neither does a crash during a write

current quest: update the bank transfer code to make this action atomic



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

       directory entries 
          filename “bank_file” -> inode 1 
          filename “tmp_file” -> inode 2 an action is atomic if it happens 

completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 1 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    // point orig_file’s dirent at inode 2  
    // delete tmp_file’s dirent 
    // remove refcount on inode 1 

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 1 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    // point orig_file’s dirent at inode 2  
    // delete tmp_file’s dirent 
    // remove refcount on inode 1 

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 1 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

       directory entries 
          filename “bank_file” -> inode 2 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    // delete tmp_file’s dirent 
    // remove refcount on inode 1 

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    // remove refcount on inode 1 

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

       directory entries 
          filename “bank_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 0                  refcount: 1

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥
(here, or anywhere above this)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 1 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥
(here, or anywhere above this)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 1 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures

it’s as if rename didn’t happen

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 2 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures

(here, or anywhere after this)

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥

rename happened,
but refcounts might be wrong

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

       directory entries 
          filename “bank_file” -> inode 2 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures

(here, or anywhere after this)

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

       directory entries 
          filename “bank_file” -> inode ? 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

       directory entries 
          filename “bank_file” -> inode ? 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥

crash during this line seems bad..

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

       directory entries 
          filename “bank_file” -> inode ? 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash during this line seems bad..
but is okay because single-sector writes

are themselves atomic

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

relevant data structures

crash! 💥

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

rename(tmp_file, orig_file): 
    tmp_inode = lookup(tmp_file)   // = 2 
    orig_inode = lookup(orig_file) // = 1 

    orig_file dirent = tmp_inode 
    remove tmp_file dirent 
    decref(orig_inode)

crash! 💥

rename happened,
but refcounts might be wrong

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

       directory entries 
          filename “bank_file” -> inode 2 
          filename “tmp_file” -> inode 2 

inode 1: // old data         inode 2: // new data 
    data blocks: [..]            data blocks: [..] 
    refcount: 1                  refcount: 1

relevant data structures

(here, or anywhere after this)

atomicity

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

recover(disk): 
    for inode in disk.inodes: 
        inode.refcount = find_all_refs(disk.root_dir, inode) 
    if exists(tmp_file): 
        unlink(tmp_file)

solution: recover from failure 
(clean things up)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

recover(disk): 
    for inode in disk.inodes: 
        inode.refcount = find_all_refs(disk.root_dir, inode) 
    if exists(tmp_file): 
        unlink(tmp_file)

solution: recover from failure 
(clean things up)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

having a recovery process means that we don’t 
have to worry about getting everything 

completely correct before the failure happens; 
we have a chance to clean things up afterwards

atomicity

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

we’re in an interlude, working on making rename atomic. this 
is the bank transfer code, which we’ll eventually return to

current quest: ensure that rename is atomic, so that our approach to 
the bank transfer code works



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

atomicity



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

atomicity

renaming the file — specifically modifying bank_file’s 
directory entry — is the commit point. if the system 
crashes before the commit point, it’s as if the operation 
didn’t happen; if it crashes after the commit point, the 

operation must complete. the commit point itself must also 
be atomic.



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

atomicity



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

isolation deals with concurrency, and we’ve seen that.  
couldn’t we just put locks around everything?

isn’t that what locks are for?

transfer (bank_file, account_a, account_b, amount): 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file)

atomicity



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

isolation deals with concurrency, and we’ve seen that.  
couldn’t we just put locks around everything?

isn’t that what locks are for?

transfer (bank_file, account_a, account_b, amount): 
    acquire(lock) 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file) 
    release(lock)



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

isolation deals with concurrency, and we’ve seen that.  
couldn’t we just put locks around everything?

isn’t that what locks are for?

transfer (bank_file, account_a, account_b, amount): 
    acquire(lock) 
    bank = read_accounts(bank_file) 
    bank[account_a] = bank[account_a] - amount 
    bank[account_b] = bank[account_b] + amount 
    write_accounts(tmp_file) 
    rename(tmp_file, bank_file) 
    release(lock)

this particular strategy will perform poorly
would force a single transfer at a time 

locks sometimes require global reasoning, which is messy
eventually, we’ll incorporate locks, but in a systematic way



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transactions provide atomicity and isolation



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transactions provide atomicity and isolation
Transaction 1         Transaction 2 
  begin                 begin 
  transfer(A, B, 20)    transfer(B, C, 5) 
  withdraw(B, 10)       deposit(A, 5) 
  end                   end



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

atomicity and isolation — and thus, 
transactions — make it easier to reason 

about failures (and concurrency)

isolation

isolation refers to how and when the 
effects of one action (A1) are visible to 
another (A2). in lecture, we will aim to 
get a high level of isolation, where A1 

and A2 appear to have executed 
serially, even if they are actually 

executed in parallel.

atomicity

an action is atomic if it happens 
completely or not at all. if we can 
guarantee atomicity, it will be much 

easier to reason about failures

transactions provide atomicity and isolation
Transaction 1         Transaction 2 
  begin                 begin 
  transfer(A, B, 20)    transfer(B, C, 5) 
  withdraw(B, 10)       deposit(A, 5) 
  end                   end



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from 
unreliable components. we want to build systems 
that serve many clients, store a lot of data, perform 

well, all while keeping availability high

RAID allows us to recover from 
single disk failures on one machine

the high-level process of dealing with failures is to identify the faults, 
detect/contain the faults, and handle the faults. in lecture, we will build a 

set of abstractions to make that process more manageable



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from 
unreliable components. we want to build systems 
that serve many clients, store a lot of data, perform 

well, all while keeping availability high

the high-level process of dealing with failures is to identify the faults, 
detect/contain the faults, and handle the faults. in lecture, we will build a 

set of abstractions to make that process more manageable



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from 
unreliable components. we want to build systems 
that serve many clients, store a lot of data, perform 

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it 
easier for us to reason about failures

our job in lecture is to understand how a system implements transactions. 
how do our systems guarantee atomicity? how do they guarantee isolation?



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from 
unreliable components. we want to build systems 
that serve many clients, store a lot of data, perform 

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it 
easier for us to reason about failures

atomicity: we have this working for one user and one file via shadow 
copies, but they perform poorly

our job in lecture is to understand how a system implements transactions. 
how do our systems guarantee atomicity? how do they guarantee isolation?



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from 
unreliable components. we want to build systems 
that serve many clients, store a lot of data, perform 

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it 
easier for us to reason about failures

atomicity: we have this working for one user and one file via shadow 
copies, but they perform poorly

our job in lecture is to understand how a system implements transactions. 
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: we don’t really have this yet 
coarse-grained locks perform poorly; fine-grained locks are difficult to reason about



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

transactions provide atomicity and isolation, 
both of which make it easier for us to reason about 
failures because we don’t have to deal with 
intermediate states. 

shadow copies are one way to achieve atomicity.  
they work in certain cases, but perform poorly: — 
requiring us to copy an entire file even for small 
changes — and don’t allow for concurrency.

we haven’t covered how one would use shadow copies in 
general (e.g., outside of the world of banking). and we won’t; 

next time, we’ll work on a scheme that is superior in every way

our main goal for the next few lectures is to implement 
transactions. how do we get the underlying system to provide 

atomicity and isolation so that this abstraction can exist?


