
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #18: Isolation
what do we want from isolation, and how do we get it?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.scientificamerican.com/article/how-the-solar-eclipse-will-impact-electricity-supplies/

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: we don’t really have this yet
(coarse-grained locks perform poorly; fine-grained locks are difficult to reason about)

* shadow copies are used
in some systems

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

* shadow copies are used
in some systems

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

goal: run transactions T1, T2, .., TN concurrently, and have it “appear” as if they ran sequentially

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

goal: run transactions T1, T2, .., TN concurrently, and have it “appear” as if they ran sequentially

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

goal: run transactions T1, T2, .., TN concurrently, and have it “appear” as if they ran sequentially

when we run two transactions concurrently, we’ll
always run the steps of a single transaction in
order (e.g., T1.1 before T1.2). but we might

interleave steps of T2 in between steps of T1.

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

goal: run transactions T1, T2, .., TN concurrently, and have it “appear” as if they ran sequentially

naive approach: actually run them sequentially, via
(perhaps) a single global lock

when we run two transactions concurrently, we’ll
always run the steps of a single transaction in
order (e.g., T1.1 before T1.2). but we might

interleave steps of T2 in between steps of T1.

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

goal: run transactions T1, T2, .., TN concurrently, and have it “appear” as if they ran sequentially

naive approach: actually run them sequentially, via
(perhaps) a single global lock

what does this even mean?

when we run two transactions concurrently, we’ll
always run the steps of a single transaction in
order (e.g., T1.1 before T1.2). but we might

interleave steps of T2 in between steps of T1.

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

it seems like the middle schedule is out; x=20; y=10 is not possible in either of our serialized schedules

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

it seems like the middle schedule is out; x=20; y=10 is not possible in either of our serialized schedules

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

T1.1 read(x) // x=0
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y) // y=30
T1.3 write(y, tmp+10)

result: x=20; y=40

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

but take a closer look at the third schedule; in the first step, T1.1 reads x=0, and in the fourth step, T1.2
reads y=30. those two reads together aren’t possible in a sequential schedule. is that okay?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30
T1 reads x=0; y=0

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40
T1 reads x=20; y=30

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

T1.1 read(x) // x=0
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y) // y=30
T1.3 write(y, tmp+10)

result: x=20; y=40

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

but take a closer look at the third schedule; in the first step, T1.1 reads x=0, and in the fourth step, T1.2
reads y=30. those two reads together aren’t possible in either sequential schedule. is that okay?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

goal: run transactions T1, T2 concurrently, and have it “appear” as if they ran sequentially

(assume x, y initialized to zero)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40

T1.1 read(x)
T2.1 write(x, 20)
T1.2 tmp = read(y)
T2.2 write(y, 30)
T1.3 write(y, tmp+10)

result: x=20; y=10

T1.1 read(x) // x=0
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y) // y=30
T1.3 write(y, tmp+10)

result: x=20; y=40

let’s look at a few different schedules of T1 and T2 (this is not an exhaustive list)

but take a closer look at the third schedule; in the first step, T1.1 reads x=0, and in the fourth step, T1.2
reads y=30. those two reads together aren’t possible in either sequential schedule. is that okay?

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

result: x=20; y=30
T1 reads x=0; y=0

T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

result: x=20; y=40
T1 reads x=20; y=30

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

there are many ways for multiple transactions to “appear” to
have been run in sequence; we say there are different notions

of serializability. what type of serializability you want
depends on what your application needs.

it depends.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 read(x) -> T2.1 write(x, 20)
T1.2 tmp = read(y) -> T2.2 write(y, 30)

T1.3 write(y, tmp+10) -> T2.2 write(y, 30)

order of conflicts

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T2.1 -> T1.1

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T2.1 -> T1.1
T2.2 -> T1.2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
T2.1 write(x, 20)
T2.2 write(y, 30)

T1.1 -> T2.1
T1.2 -> T2.2
T1.3 -> T2.2

order of conflicts T2.1 write(x, 20)
T2.2 write(y, 30)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

notice that, if we execute T1 and T2 serially, then in the ordering of the conflicts we see either all of T1’s
operations occurring first, or all of T2’s operations occurring first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1

order of conflicts

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2

order of conflicts

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

conflicts: two operations conflict if they operate on the same object and at least one of them is a write

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

on the left schedule, the order of conflicts is the same as if we had run T2 entirely before T1; on the right
schedule, the order of conflicts isn’t the same as either serial schedule

in any schedule, two conflicting operations A and B will have an order: either A is executed before B, or B is
executed before A. we’ll call this the order of the conflict (in that schedule).

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

this schedule is conflict serializable

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

this schedule is conflict serializable this schedule is not conflict serializable

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

order of conflicts T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

order of conflicts
T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

this schedule is conflict serializable this schedule is not conflict serializable

we can express the order of conflicts more succinctly with a conflict graph: there is an edge from Ti to
Tj if and only if Ti and Tj have a conflict between them and the first step in the conflict occurs in Ti

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

conflict graph T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

conflict graph

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

this schedule is conflict serializable this schedule is not conflict serializable

we can express the order of conflicts more succinctly with a conflict graph: there is an edge from Ti to
Tj if and only if Ti and Tj have a conflict between them and the first step in the conflict occurs in Ti

T2 T1 T2 T1

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

T1 T2 T3 T4

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

T1 T2 T3 T4

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

T1 T2 T3 T4

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

T1 T2 T3 T4

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

T1 T2 T3 T4

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

interlude: practice with conflict graphs

T1
begin
T1.1 read(x)
T1.2 write(y, 10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

T3
begin
T3.1 read(y)
T3.2 write(z, 40)
commit

T4
begin
T4.1 read(y)
commit

T1.1 read(x)
T2.1 write(x, 20)
T3.1 read(y)
T4.1 read(y)
T1.2 write(y, 10)
T2.2 write(y, 30)
T3.2 write(z, 40)

what is the conflict graph
for this schedule?

T1 T2 T3 T4

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

conflict graph T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

conflict graph

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

this schedule is conflict serializable this schedule is not conflict serializable

we can express the order of conflicts more succinctly with a conflict graph: there is an edge from Ti to
Tj if and only if Ti and Tj have a conflict between them and the first step in the conflict occurs in Ti

T2 T1 T2 T1

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

T2.1 write(x, 20)
T1.1 read(x)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

conflict graph T1.1 read(x)
T2.1 write(x, 20)
T2.2 write(y, 30)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)

conflict graph

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

this schedule is conflict serializable this schedule is not conflict serializable

we can express the order of conflicts more succinctly with a conflict graph: there is an edge from Ti to
Tj if and only if Ti and Tj have a conflict between them and the first step in the conflict occurs in Ti

T2 T1 T2 T1

a schedule is conflict serializable if and only if it has an acyclic conflict graph

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

T2
begin
T2.1 write(x, 20)
T2.2 write(y, 30)
commit

(assume x, y initialized to zero)

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, tmp+10) and T2.2 write(y, 30)

a schedule is conflict serializable if the order of all of its conflicts is the same as the order of the conflicts
in some sequential schedule.

our goal (in lecture) is to run transactions concurrently, but to produce a
schedule that is conflict serializable

how does a system do that? one way might be to generate all possible schedules
and check their conflict graphs, and run one of the schedules with an acyclic

conflict graph, but this will take some time

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

T1
begin
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
acquire(y.lock)
T1.1 read(x)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
release(x.lock)
release(y.lock)
commit

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
release(x.lock)
release(y.lock)
commit

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
release(x.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
release(y.lock)
commit

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
T1.1 read(x)
release(x.lock)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
release(y.lock)
commit

we can’t do this; it breaks the third rule of 2PL

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

if we release locks after commit, that is
technically strict two-phase locking

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL still gives us options for where we place the locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

if we release locks after commit, that is
technically strict two-phase locking

there are some lingering issues related to possible deadlocks and
performance; we’ll deal with those, but let’s first try to understand

why 2PL produces a conflict-serializable schedule

notice that with this approach to 2PL, we will effectively force these
two transactions to run serially. we’ll address that in a few slides!

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
to cause the conflict, each pair of

conflicting transactions must have
some shared variable that they

conflict on

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T2 acquires x1.lock

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T2 acquires x1.lock

T2 acquires x2.lock
T3 acquires x2.lock

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T2 acquires x1.lock

T2 acquires x2.lock
T3 acquires x2.lock

Tk acquires xk.lock
T1 acquires xk.lock

…

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T2 acquires x1.lock

T2 acquires x2.lock
T3 acquires x2.lock

Tk acquires xk.lock
T1 acquires xk.lock

…

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

in order for the schedule to
progress, T1 must have released its

lock on x1 before T2 acquired it

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T1 releases x1.lock
T2 acquires x1.lock

T2 acquires x2.lock
T3 acquires x2.lock

Tk acquires xk.lock
T1 acquires xk.lock

…

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

in order for the schedule to
progress, T1 must have released its

lock on x1 before T2 acquired it

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T1 releases x1.lock
T2 acquires x1.lock

T2 acquires x2.lock
T3 acquires x2.lock

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

Tk acquires xk.lock
T1 acquires xk.lock

…
in order for the schedule to

progress, T1 must have released its
lock on x1 before T2 acquired it

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1 T2 T3 Tk…
x1 x2 x3 xk-1

xk

to cause the conflict, each pair of
conflicting transactions must have

some shared variable that they
conflict on

T1 acquires x1.lock
T1 releases x1.lock
T2 acquires x1.lock

T2 acquires x2.lock
T3 acquires x2.lock

in the schedule, each pair of
transactions needs to acquire a

lock on their shared variable
the order of the conflict tells us which

transaction acquired the lock first

Tk acquires xk.lock
T1 acquires xk.lock

…
in order for the schedule to

progress, T1 must have released its
lock on x1 before T2 acquired it

contradiction: this is not a
valid 2PL schedule

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

problem: 2PL can result in deadlock

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

problem: 2PL can result in deadlock

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(y.lock)
T2.1 write(y, 30)
acquire(x.lock)
T2.2 write(x, 20)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

problem: 2PL can result in deadlock

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(y.lock)
T2.1 write(y, 30)
acquire(x.lock)
T2.2 write(x, 20)
commit
release(x.lock)
release(y.lock)

for example, suppose T2 wrote to y before x

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

problem: 2PL can result in deadlock

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(y.lock)
T2.1 write(y, 30)
acquire(x.lock)
T2.2 write(x, 20)
commit
release(x.lock)
release(y.lock)

for example, suppose T2 wrote to y before x

one solution to this problem is a global ordering on locks; but
we hate that! a better solution is to take advantage of atomicity

and abort one of the transactions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

problem: performance

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

problem: performance

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

1. each shared variable has two
locks: one for reading, one for
writing

problem: performance

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

1. each shared variable has two
locks: one for reading, one for
writing

2. before any operation on a variable,
the transaction must acquire the
appropriate lock

problem: performance

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

1. each shared variable has two
locks: one for reading, one for
writing

2. before any operation on a variable,
the transaction must acquire the
appropriate lock

problem: performance

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

3. multiple transactions can hold
reader locks for the same variable
at once; a transaction can only
hold a writer lock for a variable if
there are no other locks held for
that variable

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

1. each shared variable has two
locks: one for reading, one for
writing

2. before any operation on a variable,
the transaction must acquire the
appropriate lock

4. after a transaction releases a lock,
it may not acquire any other locks

problem: performance

T1
begin
acquire(x.lock)
T1.1 read(x)
acquire(y.lock)
T1.2 tmp = read(y)
T1.3 write(y, tmp+10)
commit
release(x.lock)
release(y.lock)

T2
begin
acquire(x.lock)
T2.1 write(x, 20)
acquire(y.lock)
T2.2 write(y, 30)
commit
release(x.lock)
release(y.lock)

3. multiple transactions can hold
reader locks for the same variable
at once; a transaction can only
hold a writer lock for a variable if
there are no other locks held for
that variable

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

1. each shared variable has two
locks: one for reading, one for
writing

2. before any operation on a variable,
the transaction must acquire the
appropriate lock

4. after a transaction releases a lock,
it may not acquire any other locks

problem: performance

T1
begin
acquire(x.reader_lock)
T1.1 read(x)
acquire(y.reader_lock)
T1.2 tmp = read(y)
acquire(y.writer_lock)
T1.3 write(y, tmp+10)
commit
release(x.reader_lock)
release(y.reader_lock)
release(y.writer_lock)

T2
begin
acquire(x.writer_lock)
T2.1 write(x, 20)
acquire(y.writer_lock)
T2.2 write(y, 30)
commit
release(x.writer_lock)
release(y.writer_lock)3. multiple transactions can hold

reader locks for the same variable
at once; a transaction can only
hold a writer lock for a variable if
there are no other locks held for
that variable

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase locking (2PL)
with reader-/writer- locks

1. each shared variable has two
locks: one for reading, one for
writing

2. before any operation on a variable,
the transaction must acquire the
appropriate lock

4. after a transaction releases a lock,
it may not acquire any other locks

problem: performance

T1
begin
acquire(x.reader_lock)
T1.1 read(x)
acquire(y.reader_lock)
T1.2 tmp = read(y)
acquire(y.writer_lock)
T1.3 write(y, tmp+10)
commit
release(x.reader_lock)
release(y.reader_lock)
release(y.writer_lock)

T2
begin
acquire(x.writer_lock)
T2.1 write(x, 20)
acquire(y.writer_lock)
T2.2 write(y, 30)
commit
release(x.writer_lock)
release(y.writer_lock)3. multiple transactions can hold

reader locks for the same variable
at once; a transaction can only
hold a writer lock for a variable if
there are no other locks held for
that variable

we will often release reader locks before the commit

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

* shadow copies are used
in some systems

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

different types of serializability allow us to specify
precise what we want when we run transactions in
parallel. conflict-serializability is a relatively strict
form of serializability.

two-phase locking allows us to generate conflict-
serializable schedules. we can improve its
performance by allowing concurrent reads via
reader- and writer- locks.

2PL does not produce every possible
conflict-serializable schedule — that’s okay!
the claim is only that the schedules it does

produce are conflict-serializable

