
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #19: Distributed Transactions
getting atomicity across machines

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

in-network resource management

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority
Queueing

Round-robin

signal congestion,
potentially before
queues are full

prioritize latency-
sensitive traffic

enforce (weighted)
fairness among different

types of traffic

type of
management

what does this type of
management allow a

switch to do
example protocols how the protocol works

drop packets when the queue
is full

serve some queues before
others

try to give each type of traffic
an equal share of bandwidth

round robin, but incorporate
average packet size

round robin, but do a better
job with packet sizes

drop or mark packets before
the queue is full

pros/cons?

simple, but queues get full
(among other problems)

can keep queues from filling
up, but complicated

prioritized queues can starve
out the others

can’t handle variable packet
sizes

average packet size hard to
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

is in-network resource management a good idea on the Internet?

recall this slide from Lecture 12…

6.1800 in the news

https://arstechnica.com/tech-policy/2024/04/isps-can-charge-extra-for-fast-gaming-under-fccs-internet-rules-critics-say/
https://cyberlaw.stanford.edu/blog/2024/04/harmful-5g-fast-lanes-are-coming-fcc-needs-stop-them

6.1800 in the news

https://www.fcc.gov/ecfs/document/104151947304135/1

6.1800 in the news

https://cyberlaw.stanford.edu/blog/2024/04/harmful-5g-fast-lanes-are-coming-fcc-needs-stop-them

6.1800 in the news

https://www.fcc.gov/ecfs/document/104151947304135/1

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

* shadow copies are used
in some systems

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

client coordinator A-M server

begin

ok

A-amount

ok
B+amount

ok
commit

ok

transactions across multiple machines (no failures yet)
transfer(A, B, amount)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

client coordinator A-M server N-Z server

begin

ok

A-amount

ok
Z+amount

ok
commit

ok

transactions across multiple machines (no failures yet)
transfer(A, Z, amount)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

client coordinator A-M server N-Z server

begin

ok

A-amount

ok
Z+amount

ok
commit

X

transactions across multiple machines (now with failures)
transfer(A, Z, amount)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

client coordinator A-M server N-Z server

begin

ok

A-amount

ok
Z+amount

ok
commit

X

problem: one server committed, the other did not
(we’d have a similar problem if the N-Z server crashed)

transactions across multiple machines (now with failures)

goal: develop a protocol that can
provide multi-site atomicity in the

face of all sorts of failures

(message loss, message reordering, worker
failure, coordinator failure)

message failures solved with
reliable transport protocol

(sequence numbers + ACKs)

transfer(A, Z, amount)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

at this point, the client is ready to
commit the transaction

assume all of the parts of
the transaction pre-commit

are happening here

client coordinator A-M server

ok

N-Z server

commit
prepare
prepare

commit

commit

ok

to understand why this protocol provides atomicity, we’ll start by
examining how it behaves under a variety of different types of failures

we will eventually understand why it requires two phases

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

client coordinator A-M server N-Z server

ok worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

☠

abort

you can assume that the coordinator detects failures with a HELLO
protocol, or something similar

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

client coordinator A-M server N-Z server

commit
prepare

ok

X
timeout; resend

prepare
prepare

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

client coordinator A-M server N-Z server

commit

ok

timeout; resend

prepare
prepare

prepare X

thanks to sequence numbers,
A-M will ACK the second
prepare message but not

reprocess it

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

client coordinator A-M server N-Z server

commit
prepare
prepare

ok

☠

abort

abort

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure during prepare phase:
coordinator can safely abort
transaction, will send explicit abort
messages to live workers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

ok

commit
prepare
prepare

commit

commit

ok

N-Z server☠

if workers fail after the commit point, we cannot
abort the transaction. workers must be able to
recover into a prepared state, and then commit

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure during prepare phase:
coordinator can safely abort
transaction, will send explicit abort
messages to live workers

worker failure during commit phase:
coordinator cannot abort the
transaction; prepared workers must
commit the transaction during
recovery

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

ok

commit
prepare
prepare

commit

commit

ok

N-Z server☠

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure during prepare phase:
coordinator can safely abort
transaction, will send explicit abort
messages to live workers

worker failure during commit phase:
coordinator cannot abort the
transaction; prepared workers must
commit the transaction during
recovery

workers write PREPARE records once prepared. the
recovery process — reading through the log — will
indicate which transactions are prepared but not

committed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

commit?

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

ok

commit
prepare
prepare

commit

commit

ok

N-Z server

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure during prepare phase:
coordinator can safely abort
transaction, will send explicit abort
messages to live workers

worker failure during commit phase:
coordinator cannot abort the
transaction; prepared workers must
commit the transaction during
recovery

commit

question: why does the N-Z server need to ask the
coordinator whether it’s okay to commit this

transaction (i.e., why can’t it just automatically commit
after recovering and seeing the PREPARE record)?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

commit?

two-phase commit: nodes agree that they’re ready to commit before committing

client coordinator A-M server

ok

commit

commit

commit

ok

N-Z server

commit

the prepare phase of 2PC gives servers the
chance to abort the transaction even if they

haven’t failed entirely (e.g., in the case of data
corruption, local resource constraints, etc.)

broader question: why do we need two phases at all?
we’ve waited until this point to ask this question because it’s helpful to

understand how 2PC deals with failures first

for instance, suppose we get rid of the prepare phase, and
as long as one server commits, we force any that fail after

that point to recover into a committed state?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

N-Z server

broader question: why do we need two phases at all?
we’ve waited until this point to ask this question because it’s helpful to

understand how 2PC deals with failures first

notice that the N-Z server did not fail here, but still aborted
the transaction

client coordinator A-M server

commit
prepare
prepare

ok

abort

abort

abort

the prepare phase of 2PC gives servers the
chance to abort the transaction even if they

haven’t failed entirely (e.g., in the case of data
corruption, local resource constraints, etc.)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

commit
prepare

ok

N-Z server

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure during prepare phase:
coordinator can safely abort
transaction, will send explicit abort
messages to live workers

worker failure during commit phase:
coordinator cannot abort the
transaction; prepared workers must
commit the transaction during
recovery

☠

now it’s time to deal with coordinator failures

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

commit
prepare

ok

N-Z server

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure or coordinator failure
during prepare phase: coordinator can
safely abort transaction, will send
explicit abort messages to live
workers

worker failure during commit phase:
coordinator cannot abort the
transaction; prepared workers must
commit the transaction during
recovery

coordinator recovers

abort

abort

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

ok

commit
prepare
prepare

commit

ok

N-Z server

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure during commit phase:
coordinator cannot abort the
transaction; prepared workers must
commit the transaction during
recovery

worker failure or coordinator failure
during prepare phase: coordinator can
safely abort transaction, will send
explicit abort messages to live
workers

☠

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

ok

commit
prepare
prepare

commit

ok

N-Z server

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure or coordinator
failure during commit phase:
coordinator cannot abort the
transaction; machines must commit
the transaction during recovery

worker failure or coordinator failure
during prepare phase: coordinator can
safely abort transaction, will send
explicit abort messages to live
workers

coordinator recovers

commit

commit

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

client coordinator A-M server

ok

commit
prepare
prepare

commit

ok

N-Z server

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure or coordinator
failure during commit phase:
coordinator cannot abort the
transaction; machines must commit
the transaction during recovery

worker failure or coordinator failure
during prepare phase: coordinator can
safely abort transaction, will send
explicit abort messages to live
workers

coordinator recovers

commit

commit

performance issue: notice that if the coordinator fails
during the prepare phase, it will block the transaction

from progressing
there is also much more latency here than we would experience if we

were running transactions on a single machine

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure or coordinator
failure during commit phase:
coordinator cannot abort the
transaction; machines must commit
the transaction during recovery

worker failure or coordinator failure
during prepare phase: coordinator can
safely abort transaction, will send
explicit abort messages to live
workers

client coordinator A-M server

ok

N-Z server

commit
prepare
prepare

commit

commit

ok

problem: in our example, when workers fail, some of the
data (e.g., accounts A-M) is completely unavailable

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit: nodes agree that they’re ready to commit before committing

message loss at any stage: handled
by reliable transport; coordinator
will time out and resend message

worker failure before prepare phase:
coordinator can safely abort
transaction without additional
communication to workers

worker failure or coordinator
failure during commit phase:
coordinator cannot abort the
transaction; machines must commit
the transaction during recovery

worker failure or coordinator failure
during prepare phase: coordinator can
safely abort transaction, will send
explicit abort messages to live
workers

client coordinator A-M server

ok

N-Z server

commit
prepare
prepare

commit

commit

ok

solution: replicate data. but to address this problem, we need to
worry about keeping multiple copies of the same piece of data

consistent, and what type of consistency we even want

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high

A B C D E

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity; two-phase
commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking * shadow copies are used
in some systems

our lingering problem is that we aren’t
replicating data across multiple machines

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

two-phase commit allows us to achieve multi-
site atomicity; transactions remain atomic even
when they require communication with multiple
machines.

in two-phase commit, failures prior to the commit
point can be aborted. failures after the commit
point cannot; machines must commit the
transaction in recovery

two-phase commit is often abbreviated 2PC.
two-phase locking (last week’s topic) is often

abbreviated 2PL. they are not the same!

our remaining issue deals with availability and
replication: we will replicate data across sites to
improve availability, but must deal with keeping
multiple copies of the data consistent.

there are also performance issues in two-phase
commit (e.g., the fact that the coordinator can

block transactions from progressing if it fails), but
we won’t deal with those problems in this class

