
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #20: Replicated State Machines
high availability + single-copy consistency

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://e360.yale.edu/features/artificial-intelligence-climate-energy-emissions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.nytimes.com/2023/04/21/us/spacex-rocket-dust-texas.html

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.cbsnews.com/news/beavers-shut-down-internet-tumbler-ridge-british-
columbia-canada-chewing-stealing-cables-dam/

https://slate.com/technology/2014/08/shark-attacks-
threaten-google-s-undersea-internet-cables-video.html

how does the physical
infrastructure of our systems

impact the environment?

when is it harmful? can it be helpful?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high

A B C D E

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity; two-phase
commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking * shadow copies are used
in some systems

our lingering problem is that we aren’t
replicating data across multiple machines

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

client coordinator A-M server

A-amount

ok

A-M server

B+amount

ok

to increase availability, let’s try replicating data on two servers
attempt 1: nothing special, just two copies of the data

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

client coordinator A-M server

A=20

ok

A-M server

to increase availability, let’s try replicating data on two servers
attempt 1: nothing special, just two copies of the data

coordinator client

A=30

ok

result: A=30 result: A=20

problem: replica servers can become inconsistent

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers
attempt 1: nothing special, just two copies of the data

Oh no.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

(backup)

C

S1

S2

(primary)
primary chooses order of
operations, decides all non-
deterministic values

primary ACKs coordinator only
after it’s sure that backup has all
updates

to increase availability, let’s try replicating data on two servers

clients communicate only
with C, not with replicas

C sends requests to
primary server

attempt 2: make one replica the primary replica, and have coordinators in place to help manage failures

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

(backup)

C

S1

S2

(primary)
primary chooses order of
operations, decides all non-
deterministic values

primary ACKs coordinator only
after it’s sure that backup has all
updates

to increase availability, let’s try replicating data on two servers

clients communicate only
with C, not with replicas

C sends requests to
primary server

A=20

A=20

ACK

all coordinators send requests to the
primary server, which avoids the

problem we saw in our first attempt

attempt 2: make one replica the primary replica, and have coordinators in place to help manage failures

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

(primary)

C

S1

S2

(failed)

to increase availability, let’s try replicating data on two servers

☠

ideally, S1 recovers at some point, or we get some other replacement machine, and we go
back to having both a primary and a backup. but for the purposes of this example, we’re just

concerned about correctly switching over to the backup server

if primary fails, C switches to backup
C knows how to contact backup server

clients communicate only
with C, not with replicas

C sends requests to
primary server

attempt 2: make one replica the primary replica, and have coordinators in place to help manage failures

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

C1

to increase availability, let’s try replicating data on two servers

(backup)

S1

S2

(primary)

C2

suppose that all machines remain up, but that there is a network partition that
effectively splits this network in half

a network partition means that
machines on the same side of
this line can communicate with

each other, but not with
machines on the other side

for a single transaction, a client
would communicate with a single

coordinator

attempt 2: make one replica the primary replica, and have coordinators in place to help manage failures

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

C1

to increase availability, let’s try replicating data on two servers

S1

S2C2

because two different replicas both think that they are the primary
replica, our data can become inconsistent

a network partition means that
machines on the same side of
this line can communicate with

each other, but not with
machines on the other side

for a single transaction, a client
would communicate with a single

coordinator

C1 keeps using S1 as primary,
with no backup

C2 begins using S2 as primary,
with no backup

attempt 2: make one replica the primary replica, and have coordinators in place to help manage failures

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

pri
mar

y

backup

(primary)

(backup)view server keeps a table
that maintains a sequence of

views

view server alerts
primary/backups
about their roles

view # | primary | backup
 1 S1 S2

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(primary)

(backup)

coordinators make requests to view
server to find out which replica is

primary

S1

primary?

view server keeps a table
that maintains a sequence of

views

view # | primary | backup
 1 S1 S2

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(primary)

(backup)

coordinators make requests to view
server to find out which replica is

primary

coordinators contact
primary (as before)

"

"

primary/backup ping view
server so that view server can

discover failures

primary sends updates to,
gets ACKs from backup (as

before)view server keeps a table
that maintains a sequence of

views

view # | primary | backup
 1 S1 S2

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

question: in our set-up, there is one view server for this entire system, whereas
there can be multiple coordinators. why might having a single view server help

us when failures (such as the examples you’ve already seen) occur?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

view # | primary | backup
 1 S1 S2

(failed)

(backup)

"

☠
lack of pings indicates
to VS that S1 is down

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

what happens if the primary replica fails?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

view # | primary | backup
 1 S1 S2
 2 S2

(failed)

(primary)
"

☠
lack of pings indicates
to VS that S1 is down

primary

notice there is no longer a backup. once again, we’d
hope to eventually bring S1 back online, or find a new

machine to act as a backup. but in this example, we’re
only interested in safely making S2 the new primary.

if C communicates with S1, C won’t get a
response; when C next asks VS who the

primary is, VS will respond with S2

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

what happens if the primary replica fails?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(primary)

(backup)

"

"
view # | primary | backup
 1 S1 S2

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(primary)

(backup)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(presumed failed)

(backup)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2
 2 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

lack of pings indicates
to VS that S1 is down

VS makes S2 primary

at this stage, VS thinks S2 is
primary; S2 and S1 think S1 is

primary

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(presumed failed)

(backup)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2
 2 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

at this stage, VS thinks S2 is
primary; S2 and S1 think S1 is

primary

if S1 receives any requests
from C, it will behave as

primary with S2 as backup

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(presumed failed)

(backup)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2
 2 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

at this stage, VS thinks S2 is
primary; S2 and S1 think S1 is

primary

if S1 receives any requests
from C, it will behave as

primary with S2 as backup

if S2 receives any requests from
C, it will reject them; it believes

that it is the backup (and so does
not communicate directly with C)

new detail: backups reject any
requests from coordinators

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(presumed failed)

(primary)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2
 2 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

at this stage, VS and S2 think
S2 is primary; S1 thinks S1 is

primary

if S1 receives any requests
from C, it won’t be able to get
an ACK from S2, and so will

reject

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(presumed failed)

(primary)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2
 2 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

at this stage, VS and S2 think
S2 is primary; S1 thinks S1 is

primary

if S1 receives any requests
from C, it won’t be able to get
an ACK from S2, and so will

reject

if S2 receives any requests
from C, it will respond as the
primary (in line with what VS

expects)

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(primary)

"

"

what happens if a network partition prevents S1 from communicating with VS?

view # | primary | backup
 1 S1 S2
 2 S2

in a sense, this is the worst possible partition: VS is going to presume S1 has failed (and so
switch to using S2 as a backup), while S1 can still communicate with everyone except VS

at this stage, VS and S2 think
S2 is primary; S1 thinks S1 is

primary

if S1 receives any requests
from C, it won’t be able to get
an ACK from S2, and so will

reject

if S2 receives any requests
from C, it will respond as the
primary (in line with what VS

expects)

once S1 can communicate with VS
again, VS will respond notifying it that

it is not in the current view

important rule: if a machine is primary in view
n, it must have been primary or backup in view
n-1 (with the exception of view 1, when we’re
just starting)

new detail: primaries reject any
updates from other replicas

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

to increase availability, let’s try replicating data on two servers

S1

S2

C VS

(primary)

(backup)

"

"

what happens if VS fails?

view # | primary | backup
 1 S1 S2

☠

find out in Tuesday’s recitation

attempt 3: use a view server to determine which replica is primary, in hopes that we can deal with network partitions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

replicated state machines

S1

S2

C VS

(primary)

(backup)

coordinators make requests to view
server to find out which replica is

primary

S1

primary?

coordinators contact
primary (as before)

"

"

primary/backup ping view
server so that view server can

discover failures

primary sends updates to,
gets ACKs from backup (as

before)view server keeps a table
that maintains a sequence of

views

view # | primary | backup
 1 S1 S2

backups will reject any requests
that they get directly from

coordinators; primary will reject any
update that comes from a backup

primary must get an ACK from its
backups before completing the update

if a machine is primary in view n, it must have
been primary or backup in view n-1 (with the
exception of view 1, when we’re just starting)

(both of these events can happen in the case
of certain types of failures)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

our goal is to build reliable systems from
unreliable components. we want to build systems
that serve many clients, store a lot of data, perform

well, all while keeping availability high
A B C D E

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than
shadow copies* at the cost of some added complexity; two-phase
commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking * shadow copies are used
in some systems

A B C D E

replicated state machines give
us single-copy consistency even

with replicated data

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

replicated state machines (RSMs) provide
single-copy consistency: externally, it appears as
if there is a single copy of the data, though internally
there are replicas

RSMs use a primary/backup mechanism for
replication. the view server ensures that only one
replica acts as the primary, and can recruit new
backups if servers fail

to extend this model to handle view-server failures,
we need a mechanism to provide distributed
consensus; see tomorrow’s recitation

