6.1800 Spring 2024

Lecture #22: Low-level Exploits

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

username salt

slow _hash(password|salt)

userl

usere6é
user?7
users8
user9

userlo

userll
userl2

userl3

userls
userl5
userle
userl?/

userls

userlo
userao

user2l

user3

E

TU6kbcuPm73jA. /IQYZG. 80

y70SC2QsrvXTzEZ1DZFdwu
AncYRSB5v3rWiUlnPpA@iu
SK9H4x4Hal0wz4NOTwj20.
j8YyeDX.9GnsT5HU94z7t0
CIqY72CGMBKNQId1CgXY7.
OGtMXrEZExOL5440dvrhbe
RFeT9TVol8cmpQdhgMCV5.
rDAhDK5V6n3TUS3ahf2Z9e
nvOYvTO/0oczOW51mbVZSUO
yNL/e3PpBsfBYgwi0@A1/gu
1zroUlOscwDzgG3GY86pFO
TAkv7nBQ5amY4V.aljezoOu
1J796dTzufUC8ItVIKIyOu
/X.Vk/XhUILbk3XjgyVyfO
hyg8TOJIPDX3dCf92Zkx4Yu
YbaYOSdkAO1IF.drWa6CXo
yaE.gULeQg.K25SelX191Q.
NLtOSA/QP0o2IIbtb7G5610
RFFSWUGGFeX5XNyW8rLToe
YWEgwinWuKrNUFvgzQKUNe
ukqugo0ZWCqIQjH3DwC4xe
SPRFpmFnu5G41APUkVOWro

I/ Ol < s ina DT Y v 2 L\ o m e INNAN™T\

rBda9tbnXhUCWi6c9Mj1UtQF1K1I4Sq
tjFcpSrZN6ryOYueyrAtUfFnFaOui2C
hacrgRl1fU44c9XnBckef2fu.ifuB.Ya
wik3GjGeMspoqy3VcMghpbk E507HQXS
ViflhwGH1.5H3j0mawzBPdKTiXf5L6.
stk3mDJDaaHONfgf/ePJrkRoK15.Heu
A.7Nalc21Y6I3J6rdJtiIIXVpMvaMgG
yVzcpOOjXBoNjcMWHpAXVuUlFgqdM5WOm
Af4AwBH1YgLTvxrhBgVGP85IALXRya3C
bAmiFmYcRyO/TFVhttntbrrLPLjFDKu
bbT5sTcmsklsyXVILfVd]/HAIEonbD..
MG5LtQ6m/c4gVxbLalpPIJ403eXFPry
LHP08.0XJIDG1leWWgG87nPvY8/VNPa2G
pAI7ZRWvVOhxBVW/sttFqulCl/74LTC
zx1P3YgW8doOm1n91Z6GW7jsbBALNiWi
50h.8uSUrokBggnByYYH/mDEH7my98C
ZKbZQtEh4UNoTf1lWsXs9hZ7wbnnzgC.
E/syZIC.1.zg5.ZTMZwWWX/RmkvpipNu
e0X2p48XcKRXKFY87f56h3W.UEe07G1
OW94ciFDN5stvqVzYslidt/SNA2pwhS
yatUOVvWN//72U180dxGHNCI1TLWdATfXe
jgl.0SatbZooR614taWv3HBpXNN5Xp2
mVpzAYGXEgs583nG894R98k1S3YmP1g

oA T Cy M2 ITIHINIT™"TOMN v~ o A~ 1D I NIT ADD

policy: provide authentication for users
threat model: adversary has access to the entire stored table

last time, our threat model allowed for
an adversary that had access to some
sensitive data stored on our machine

a straightforward adversary in this case is someone like
a system administrator, who is intended to have access
to this data

today, we’ll look at how an adversary
that is not intended to have access to
this data might get it

our threat model for most of today is an adversary with
the abillity to run code on our machine, but not
necessarily any particular privileges (e.g., root access)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

void function(int a) { the program stack needs to enable a few things:
int y = a + 2;
// do whatever 1. each function should be able to access its own local
} variables, including any arguments passed to it.

2. after a function returns, the next line of the calling function

void main() { should execute

int x = 0;

here that means that once the call to function returns, the next line in

function (7), main — line 9 — should execute
X = 5;
// maybe other stuff here . ,
1 to return to main() after function() ends, we use BP to locate

the start of the current stack frame. the previous values of BP
and IP are located at a fixed offset from that, so we can reset BP
and IP, and continue on.

_] IP will now point to the next instruction in main(), and BP will point to the
local vars in main start of main()’s stack frame.

args to function

the saved IP will let the code return to line 9 of main after function
saved IP, saved BP ends

stack grows down

IP = Instruction pointer
SP = Stack pointer
«—SP BP = Base pointer (“frame pointer”)

local vars In function

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

adversary’s goal: input a args to main
string that overwrites modified

saved IP, saved BP

int main(int argc, char **argv) modified (4 bytes)

{ buffer (64 bytes)
volatile int modified;
char buffer[64];

modified = 0O;
gets(buffer); // sort of like input() in python

if(modified != 0) {
printf("you have changed the 'modified' variable\n");
} else {
printf("Try again?\n");
}
¥

fiinclude <stdlib.h> adversary’s goal: input a string | args to function
finclude cunistd.h> that overwrites fp so that the
#include <stdio.h> | p ‘ saved IP, saved BP
#include <string.h> code jumps into win
fp (4 bytes)

void win() buffer (64 bytes)
{

printf("code flow successfully changed\n");
¥

int main(int argc, char **argv)

{
volatile int (*fp)();

char buffer[64];

'Fp=@,

gets(buffer);

if(fp) {
printf("calling function pointer, jumping to 0x%08x\n", fp);
fp();

}

ilnciuce <5t?'1Jic3-E> adversary’s goal: input a string args to function
incilude <unistd.n> :

sinclude <stdio. hs thﬁt ovherwrltgs .the sayed IR SO saved IP. saved BP
#include <string.h> that the code Jumps INTO Win BPp ——

buffer (64 bytes)

sp—

void win()
{ In the demo, there is a bit of extra space
between buffer and the saved IP

printf("code flow successfully changed\n");
}

int main(int argc, char **argv)

{
char buffer[64];

gets(buffer);
}

mOderﬂ Hﬂux has protections in p\ace 1O prevent example protections: non-executable stacks, address
: ; | t domization, etc.

the attacks on the previous slides, but there are SPAce JayoUL rentizaton, e

counter-attacks to those prOteCtiOﬂS example counter-attacks: arc-injection (“return-to-

libc”), heap smashing, pointer subterfuge

question: you can't perform stack-smashing
attacks with a language like Python. why not?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

mOderﬂ Hﬂux has protections in p\ace 1O prevent example protections: non-executable stacks, address
; : | t domization, etc.

the attacks on the previous slides, but there are SPece EYEHTAntization, e

counter-attacks to those protections example counter-attacks: arc-injection (“return-to-

libc”), heap smashing, pointer subterfuge

bounds-checking is one solution, but it ruins the Str{ﬂita;?‘”d {
ability to create compact C code (note the trade- int sal;
off of security vs. performance) , char naneli];

struct record *r;

char buf[100];

read(socket, buf, 100)

r = (struct record *)buf;

printf ("%d,%d,%s\n",r->age,r->sal,r->name);

for example, here is some network |/O code in C (exactly what it does
doesn’t matter at all for this example). this generates very compact
assembly, and takes hundreds of lines in Java.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

C compiler

source code

program - . 0 program
source code g 0 C c9mp11er 0 I machine code
g Mmachine code

X++;

.-----------1

911001101001 §

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

. [
source code g Mmachine code
[[

C compiler
machine code

C compiler

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

UNIX — : C compiler : —) UNIX

source code ¢ Mmachine code
[]

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

I- BN BN BN BN BN BN OB B -I 6----------------------5
‘E!' 0 hacked UNIX ;

hacked UNIX ——> ' C compiler —p !

y o chine code machine code
r
source code : : (has backdoor)

this backdoor is easily discovered in the hacked UNIX source

key point: we can determine whether source code is hacked by just reading code itself

(the code that inserts a backdoor would be obvious to someone familiar with the UNIX source) Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

hacked
C compiler
source code

g- hacked i E hacked UNIX
UNIX ; — >, C compiler ! I i machine code :
source code machine code | . (has backdoor)

the hacked C compiler has code that
inserts a backdoor into UNIX

this backdoor does not exist in the UNIX source...
but it does exist in the hacked C compiler source

key point: we can determine whether source code is hacked by just reading code itself

(the code that inserts a backdoor would be obvious to someone familiar with the UNIX source) Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

C compiler
source code

E hacked UNIX E
UNIX > i

C compiler machine code
source code

machine code : + (has backdoor)

the hacked C compiler has code that
inserts a backdoor into UNIX

suppose the adversary lies, and tells you that the clean C compiler source is what
generated the hacked C compiler; can you detect this lie?

key point: we can determine whether source code is hacked by just reading code itself

(the code that inserts a backdoor would be obvious to someone familiar with the UNIX source) Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

UNIX —f

source code

IEE'L

hacked
I C compiler
machine code

the hacked C compiler has code that
inserts a backdoor into UNIX

source code

hacked UNIX
machine code
(has backdoor)

g Mmachine code

machine code

C compiler E— hack?d " C compiler : binaries
source code : C compiler : : hi d :
' machine code 1 Machine code will differ
i]]]
|- Bl B BN BN BN BN BN BN O . E‘ """""""""""""
UNIX —— ' C compiler —_—! UNIX

key point: we can detect a hacked compiler by recompiling a clean compiler, using that to
compile UNIX, and testing the output against what the hacked compiler produced

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the hacked v2.0 C compiler has code that inserts a

compilers: can we trust them? backdoor into UNIX and code to insert backdoor-

: . . inserting code into C compilers
compilers take source code as an input, and output machine code

Il B BB BB B BB . -I g----------------------:
wq k 2. hacked UNIX :

C compiler * machine code
source code

machine code : + (has backdoor)

w________ these two
binaries

Il B BB BB B BB . -I
whacked v2.0 0

0
: hacked I
C compiler —_— : ——
C 1 0 i 0 =
source code : compLier : C compiler will not
: machine code . Mmachine code | _

w hacked E hacked UNIX
UNLIX > C compiler : machine code

source code machine code (has backdoor) :

key point: we can detect the original hacked compiler by recompiling a clean compiler, using

that to compile UNIX, and testing the output against what the hacked compiler produced Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?

compilers take source code as an input, and output machine code

REFERENCES

1. Bobrow, D.G., Burchfiel,].D., Murphy, D.L., and Tomlinson, R.S.
TENEX, a paged time-sharing system for the PDP-10. Commun. ACM
15, 3 (Mar. 1972), 135-143.

2. Kernighan, B.W,, and Ritchie, D.M. The C Programming Language.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

3. Ritchie, D.M., and Thompson, K. The UNIX time-sharing system.
Commun. ACM 17, (July 1974), 365-375.

4. Unknown Air Force Document.

Karger, P.A., and Schell, R.R.

Multics Security Evaluation: Vulnerability Analysis
ESD-TR-74-193, Vol Il, June 1974, page 52

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Iin the news

THE SHIFT

Did One Guy Just Stop
a Huge Cyberattack?

A Microsoft engineer noticed something was off on a piece of
software he worked on. He soon discovered someone was
probably trying to gain access to computers all over the world.

https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.nhtml

According to some researchers who have gone back and looked at

the evidence, the attacker appears to have used a pseudonym, “Jia

Tan,” to suggest changes to xz Utils as far back as 2022. (Many

open-source software projects are governed via hierarchy;

developers suggest changes to a program’s code, then more

experienced developers known as “maintainers” have to review

and approve the changes.)

The attacker, using the Jia Tan name, appears to have spent

several years slowly gaining the trust of other xz Utils developers

and getting more control over the project, eventually becoming a

maintainer, and finally inserting the code with the hidden backdoor ;&’ 1 , B ' /73 = // 2 —~~7 =
earlier this year. (The new, compromised version of the code had K_\ e 7 S =7 L A==
| — A —F e . N\

been released, but was not yet in widespread use.) d =0 &

N a 0)24/04/(= oloqaVv/pDreve peratta

6.1800 In the news
Unpatchable vulnerability in Apple chip leaks

secret encryption keys

Fixing newly discovered side channel will likely take a major toll on performance.

DAN GOODIN -3/21/2024, 10:40 AM

A newly discovered vulnerability baked into Apple’s M-series of chips allows attackers to extract secret keys

fromm Macs when they perform widely used cryptographic operations, academic researchers have revealed in
a paper published Thursday.

The flaw—a side channel allowing end-to-end key extractions when Apple chips run implementations of
widely used cryptographic protocols—can't be patched directly because it stems from the microarchitectural
design of the silicon itself. Instead, it can only be mitigated by building defenses into third-party
cryptographic software that could drastically degrade M-series performance when executing cryptographic
operations, particularly on the earlier M1 and M2 generations. The vulnerability can be exploited when the

targeted cryptographic operation and the malicious application with normal user system privileges run on
the same CPU cluster.

https://arstechnica.com/security/2024/03/hackers-can-extract-secret-encryption-keys-from-apples-mac-chips/ Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

low-level attacks can be insidious; as we
implement solutions, there are often counter-
attacks, and many solutions come at the cost of
performance

however, just because we can’t achieve perfect
security does not mean that we cannot make

progress;

more difficu

ore sophisticated attacks are often
t for adversaries to carry out, and In

some cases might not be worth the effort

while thompson’s “hack” (attack?) illustrates to
us that, to some extent, we cannot trust code we
didn’t write ourselves, it also advocates for policy-
based solutions rather than technology-based

today’s lecture + tomorrow’s recitation
should not stop you from ever touching a
computer again

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

