
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #22: Low-level Exploits
smashing stacks, trusting trust

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

username salt slow_hash(password|salt)

user1 TU6kbcuPm7jA./IQYZG.8O rBda9fbnXhUCWi6c9MjlUtQFlK1I4Sq

user2 y7oSC2QsrvXTzEZlDZFdwu tjFcpSrZN6ryOYueyrAtUfFnFaOui2C

user3 4ncYRSB5v3rWiU1nPpA0iu hacrgRlfU44c9XnBckef2fu.ifuB.Ya

user4 SK9H4x4Ha0Owz4NOTwj20. wWk3GjGeMspoqy3VcMghpbkE5OjHQXS

user5 j8YyeDX.9GnsT5Hu94z7tO ViflhwGHl.5H3j0mawzBPdKTiXf5L6.

user6 CIqY72CGM8KNQId1CqXY7. stk3mDJDaaH9Nfgf/ePJrkRoK15.Heu

user7 OGtMXrEZEx0L544Odvrhbe A.7NaJc21Y6I3J6rdJtiIJXVpMvaMgG

user8 RFeT9TVol8cmpQdhqMCV5. yVzcp0OjXBoNjcMWHpAxVulFqdM5W9m

user9 rDAhDK5V6n3TUS3ahf2Z9e Af4wBH1YqLTvxrhBgVGP85IALXRya3C

user10 nvOYvT0/oczOW5lmbVZSUO b4miFmYcRy0/TFVhttntbrrLPLjFDKu

user11 yNL/e3PpBsfBYgwi0Ai/gu bbT5sTcmsklsyXVILfVdJ/HAIEonb..

user12 1zroUl0scwDzgG3GY86pFO MG5LtQ6m/c4gVxbLalpPIJ4O3eXFPry

user13 TAkv7nBQ5amY4V.aIjez0u LHPo8.0XJDGleWWgG87nPvY8/vNPa2G

user14 1J796dTzufUC8ItVIKIyOu pAI7ZRWvVOhxBVW/sttFquJCl/74LTC

user15 /x.Vk/XhUILbk3XjgyVyfO zx1P3YgW8d9m1n9lZ6GW7jsbBALniWi

user16 hyg8T0JPDX3dCf92Zkx4Yu 5Oh.8uSUrokBgqnByYYH/mDEH7my98C

user17 YbaYOSdkA01IF.drWa6CXO ZKbZQtEh4UNoTflWsXs9hZ7wbnnzgC.

user18 yaE.gULeQg.K2SelX191Q. E/syZIC.1.zg5.ZTMZwWX/RmkvpipNu

user19 NLt0SA/QPo2IIbtb7G56lO eOX2p48XcKRXKFY87f56h3W.UEeO7Gi

user20 RFFSWUGGFeX5XNyW8rLToe 0W94ciFDN5stvqVzYsli4t/SNA2pwhS

user21 YWEgwinWuKrNUFvgzQKUNe yatU0vWN//72Ul8OdxGHnClTLWdTfXe

user22 ukqUgoOZWCqIQjH3DwC4xe jg1.OSatbZooR6l4taWv3HBpXNN5Xp2

user23 sPRFpmFnu5G4lAPUkV0wrO mVpzAYGXEgs583nG894R98k1S3YmP1q

user24 KPh8kxp3T2wyfYpapO007O 7FmTSwEMiUHNI78Dmgkq34RmUWloRPW

threat model: adversary has access to the entire stored table
policy: provide authentication for users

last time, our threat model allowed for
an adversary that had access to some
sensitive data stored on our machine
a straightforward adversary in this case is someone like
a system administrator, who is intended to have access

to this data

today, we’ll look at how an adversary
that is not intended to have access to

this data might get it
our threat model for most of today is an adversary with

the ability to run code on our machine, but not
necessarily any particular privileges (e.g., root access)

saved IP, saved BPsaved IP

the program stack needs to enable a few things:1: void function(int a) {
2: int y = a + 2;
3: // do whatever
4: }
5:
6: void main() {
7: int x = 0;
8: function(7);
9: x = 5;
10: // maybe other stuff here
11: }

local vars in main

args to function

local vars in function

st
ac

k
gr

ow
s

do
w

n

1. each function should be able to access its own local
variables, including any arguments passed to it.

SP

2. after a function returns, the next line of the calling function
should execute
here that means that once the call to function returns, the next line in
main — line 9 — should execute

IP = Instruction pointer
SP = Stack pointer
BP = Base pointer (“frame pointer”)

the saved IP will let the code return to line 9 of main after function
ends

BP

to return to main() after function() ends, we use BP to locate
the start of the current stack frame. the previous values of BP
and IP are located at a fixed offset from that, so we can reset BP
and IP, and continue on.

IP will now point to the next instruction in main(), and BP will point to the
start of main()’s stack frame.

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 volatile int modified;
 char buffer[64];

 modified = 0;
 gets(buffer); // sort of like input() in python

 if(modified != 0) {
 printf("you have changed the 'modified' variable\n");
 } else {
 printf("Try again?\n");
 }
}

adversary’s goal: input a
string that overwrites modified

args to main

modified (4 bytes)
buffer (64 bytes)

saved IP, saved BP

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

void win()
{
 printf("code flow successfully changed\n");
}

int main(int argc, char **argv)
{
 volatile int (*fp)();
 char buffer[64];

 fp = 0;

 gets(buffer);

 if(fp) {
 printf("calling function pointer, jumping to 0x%08x\n", fp);
 fp();
 }
}

adversary’s goal: input a string
that overwrites fp so that the

code jumps into win

args to function

fp (4 bytes)
buffer (64 bytes)

saved IP, saved BP

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

void win()
{
 printf("code flow successfully changed\n");
}

int main(int argc, char **argv)
{
 char buffer[64];
 gets(buffer);
}

adversary’s goal: input a string
that overwrites the saved IP so
that the code jumps into win

args to function

buffer (64 bytes)

saved IP, saved BP

SP

BP

in the demo, there is a bit of extra space
between buffer and the saved IP

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modern linux has protections in place to prevent
the attacks on the previous slides, but there are
counter-attacks to those protections

question: you can’t perform stack-smashing
attacks with a language like Python. why not?

example protections: non-executable stacks, address
space layout randomization, etc.

example counter-attacks: arc-injection (“return-to-
libc”), heap smashing, pointer subterfuge

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modern linux has protections in place to prevent
the attacks on the previous slides, but there are
counter-attacks to those protections

bounds-checking is one solution, but it ruins the
ability to create compact C code (note the trade-
off of security vs. performance)

example protections: non-executable stacks, address
space layout randomization, etc.

example counter-attacks: arc-injection (“return-to-
libc”), heap smashing, pointer subterfuge

struct record {
 int age;
 int sal;
 char name[1];
};

struct record *r;
char buf[100];
read(socket, buf, 100)
r = (struct record *)buf;
printf ("%d,%d,%s\n",r->age,r->sal,r->name);

for example, here is some network I/O code in C (exactly what it does
doesn’t matter at all for this example). this generates very compact

assembly, and takes hundreds of lines in Java.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

program
source code

int main() {
 x++;
 ...

program
machine code

011001101001

C compiler
machine code

C compiler
source code

compilers: can we trust them?
compilers take source code as an input, and output machine code

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

C compiler
machine code

C compiler
source code

C compiler
machine code

compilers: can we trust them?
compilers take source code as an input, and output machine code

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

C compiler
machine code

UNIX
source code

UNIX
machine code

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

C compiler
machine code

hacked UNIX
source code

hacked UNIX
machine code
(has backdoor)

this backdoor is easily discovered in the hacked UNIX source

! !

key point: we can determine whether source code is hacked by just reading code itself

(the code that inserts a backdoor would be obvious to someone familiar with the UNIX source)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

hacked
C compiler
machine code

UNIX
source code

hacked UNIX
machine code
(has backdoor)

! !

hacked
C compiler
source code

!

this backdoor does not exist in the UNIX source…
but it does exist in the hacked C compiler source

key point: we can determine whether source code is hacked by just reading code itself
(the code that inserts a backdoor would be obvious to someone familiar with the UNIX source)

the hacked C compiler has code that
inserts a backdoor into UNIX

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

hacked
C compiler
machine code

UNIX
source code

hacked UNIX
machine code
(has backdoor)

! !

C compiler
source code

suppose the adversary lies, and tells you that the clean C compiler source is what
generated the hacked C compiler; can you detect this lie?

the hacked C compiler has code that
inserts a backdoor into UNIX

key point: we can determine whether source code is hacked by just reading code itself
(the code that inserts a backdoor would be obvious to someone familiar with the UNIX source)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

hacked
C compiler
machine code

UNIX
source code

hacked UNIX
machine code
(has backdoor)

the hacked C compiler has code that
inserts a backdoor into UNIX

hacked
C compiler
machine code

!
C compiler
source code

C compiler
machine code

UNIX
source code

UNIX
machine code

C compiler
machine code

! !

key point: we can detect a hacked compiler by recompiling a clean compiler, using that to
compile UNIX, and testing the output against what the hacked compiler produced

these two
binaries
will differ

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

UNIX
source code

!
C compiler
source code

UNIX
source code

!

key point: we can detect the original hacked compiler by recompiling a clean compiler, using
that to compile UNIX, and testing the output against what the hacked compiler produced

?

hacked v2.0
C compiler
machine code

!!

the hacked v2.0 C compiler has code that inserts a
backdoor into UNIX and code to insert backdoor-

inserting code into C compilers

hacked v2.0
C compiler
machine code

!

! hacked UNIX
machine code
(has backdoor)

hacked
C compiler
machine code

!

hacked
C compiler
machine code

! ! hacked UNIX
machine code
(has backdoor)

these two
binaries
will not
differ

!

!

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

compilers: can we trust them?
compilers take source code as an input, and output machine code

Karger, P.A., and Schell, R.R.
Multics Security Evaluation: Vulnerability Analysis
ESD-TR-74-193, Vol II, June 1974, page 52

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 in the news

https://arstechnica.com/security/2024/03/hackers-can-extract-secret-encryption-keys-from-apples-mac-chips/

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

low-level attacks can be insidious; as we
implement solutions, there are often counter-
attacks, and many solutions come at the cost of
performance

however, just because we can’t achieve perfect
security does not mean that we cannot make
progress; more sophisticated attacks are often
more difficult for adversaries to carry out, and in
some cases might not be worth the effort

while thompson’s “hack” (attack?) illustrates to
us that, to some extent, we cannot trust code we
didn’t write ourselves, it also advocates for policy-
based solutions rather than technology-based

today’s lecture + tomorrow’s recitation
should not stop you from ever touching a

computer again

