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6.1800 Spring 2024
Lecture #26: What matters 
even if you never want to design a computer system again
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operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to 
(and corrupt) each others’ memory

2. programs should be able to 
communicate with each other

3. programs should be able to share a 
CPU without one program halting the 
progress of the others

virtual memory

threads 
(virtualize processors)

bounded buffers 
(virtualize communication links)

modularity and abstraction in operating systems: operating systems are all 
about providing an abstraction between software and hardware
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modularity and abstraction in networking: an abundance of hierarchy and 
layering

1978: flexibility and 
layering

link

network

transport

application the things that 
actually generate 
traffic

sharing the network, 
reliability (or not)
examples: TCP, UDP

1993: 
commercialization

1970s: 
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing, 
routing
examples: IP

communication between 
two directly-connected 
nodes
examples: ethernet, bluetooth, 
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR

CAIDA’s IPv4 AS Core,

January 2020


(https://www.caida.org/projects/
cartography/as-core/2020/)
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modularity and abstraction in distributed systems: transactions are an 
abstraction that allow us to reason about fault-tolerance

our goal is to build reliable systems from 
unreliable components. we want to build 
systems that serve many clients, store a 

lot of data, perform well, all while keeping 
availability high

A B C D E

transactions — which provide atomicity and isolation — make it 
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than shadow copies at 
the cost of some added complexity; two-phase commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions. 
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

A B C D E

replicated state machines give 
us single-copy consistency even 

with replicated data
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modularity and abstraction in distributed systems: systems like MapReduce 
and GFS abstract failure away from users
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modularity and abstraction in security: good modularity and abstraction 
make it easier to reason about the security of a system

serverprincipal
(identifies client 

on server)

request
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network

scalability: how does our system behave 
as we increase the number of machines, 

users, requests, data, etc.?

fault-tolerance/reliability: how does our 
system deal with failures (☠)? machines 

crashing, network links breaking, etc.

security: how does our system 
cope in the face of targeted 

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance 
requirements, and know if our system is meeting 

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices? 
who makes those choices?

#
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scalability: how does our system behave as we increase the number of 
machines, users, requests, data, etc.?

the look-up algorithm has to scale to the size of the Internet, while dealing with constant 
updates and issues of delegation

root

edu

mit

eecs

a partial view of the DNS hierarchy. each box 
represents a zone. name servers within a zone 

keep track of that zone’s mappings

berkeley

wwwweb

com net

googleapple

wwwdrive mail

performance issue: this is a lot of 
queries, especially to the root server

reliability issue: what happens when a 
nameserver fails or (security issue) is 

attacked?

control issue: who should own the 
root server?
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scalability: how does our system behave as we increase the number of 
machines, users, requests, data, etc.?

scalable routing: a few different things allow us to route across the Internet

2. path-vector routing: advertisements  
    include the path, to better detect  
    routing loops

[(A, 2, <B, A>)]

1. hierarchy of routing: route between  
    ASes, and then within an AS

3. topological addressing: assign  
    addresses in contiguous blocks to  
    make advertisements smaller

18.0.0.0, … ,18.0.0.255 

18.0.0.0/24
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scalability: how does our system behave as we increase the number of 
machines, users, requests, data, etc.?

question: how can a single reliable sender, using a sliding-window 
protocol, set its window size to maximize utilization — but prevent 
congestion and unfairness — given that there are many other end 

points using the network, all with different, changing demands?
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scalability: how does our system behave as we increase the number of 
machines, users, requests, data, etc.?

how do we share a file — or deliver content — on the Internet?

client-server CDNs P2P

more scalable?
more distributed

we know that a client-server model is (relatively) simple, but doesn’t 
scale well; let’s understand more about the other two technologies, to 

see where they end up in terms of complexity, scalability, etc.
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scalability: how does our system behave as we increase the number of 
machines, users, requests, data, etc.?

server pre-computes signed messages that map 
names to their public keys

anyone can verify that the authority signed this 
message given serverpk, but the server itself doesn’t 

have to distribute the signed messages

cryptographic signatures allow users 
to verify identities using public-key 

cryptography

sign(secret_key, message) → sig 
verify(public_key, message, sig) → 
  yes/no

users generate key pairs; the two keys 
in the pair are related mathematically

{public_key, secret_key}

property: it is (virtually) impossible to 
compute sig without secret_key

alice: alicepk 
bob: bobpk 

...

serverpk

serversk

alice
alicesk

bob
bobsk

sign(serversk, “alice: alicepk”) → sig

alice, alicepk, sig

certificate authority

certificate
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network

scalability: how does our system behave 
as we increase the number of machines, 

users, requests, data, etc.?

fault-tolerance/reliability: how does our 
system deal with failures (☠)? machines 

crashing, network links breaking, etc.

security: how does our system 
cope in the face of targeted 

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance 
requirements, and know if our system is meeting 

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices? 
who makes those choices?

#



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

fault tolerance: how does our system deal with failures? machines crashing, 
network links breaking, etc.

our goal is to build reliable systems from 
unreliable components. we want to build 
systems that serve many clients, store a 

lot of data, perform well, all while keeping 
availability high

A B C D E

transactions — which provide atomicity and isolation — make it 
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than shadow copies at 
the cost of some added complexity; two-phase commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions. 
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

A B C D E

replicated state machines give 
us single-copy consistency even 

with replicated data
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network

scalability: how does our system behave 
as we increase the number of machines, 

users, requests, data, etc.?

fault-tolerance/reliability: how does our 
system deal with failures (☠)? machines 

crashing, network links breaking, etc.

security: how does our system 
cope in the face of targeted 

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance 
requirements, and know if our system is meeting 

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices? 
who makes those choices?

#
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security: how does our system cope in the face of targeted attacks?

serverprincipal
(identifies client 

on server)

request

threat model: adversary has 
access to the entire stored table

policy: provide authentication for users

threat model: adversary can observe network data, 
tamper with packets, and insert its own packets

policy: provide confidentiality and integrity

threat model: adversary is on the path 
between the client and the server

policy: provide anonymity

threat model: adversary controls a botnet, and is aiming 
to prevent access to a legitimate service via DDoS attacks

policy: maintain availability of the service
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network

scalability: how does our system behave 
as we increase the number of machines, 

users, requests, data, etc.?

fault-tolerance/reliability: how does our 
system deal with failures (☠)? machines 

crashing, network links breaking, etc.

security: how does our system 
cope in the face of targeted 

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance 
requirements, and know if our system is meeting 

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices? 
who makes those choices?

#
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network

scalability: how does our system behave 
as we increase the number of machines, 

users, requests, data, etc.?

fault-tolerance/reliability: how does our 
system deal with failures (☠)? machines 

crashing, network links breaking, etc.

security: how does our system 
cope in the face of targeted 

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance 
requirements, and know if our system is meeting 

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices? 
who makes those choices?

#
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who is impacted by our design and implementation choices? 
who makes those choices?
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who is impacted by our design and implementation choices? 
who makes those choices?

https://www.nytimes.com/2024/02/21/world/asia/niue-nu-domain-sweden.html

in the case of DNS, names have 
meaning outside of the system, even if 

they were only originally intended to 
denote “administrative zones that 

divide the web into domains”
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system design choices 
impact more than just that 

system’s users

who is impacted by our design and implementation choices? 
who makes those choices?
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who is impacted by our design and implementation choices? 
who makes those choices?
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https://www.nytimes.com/2023/04/21/us/spacex-rocket-dust-texas.html

who is impacted by our design and implementation choices? 
who makes those choices?
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https://www.nytimes.com/2023/04/09/business/bitcoin-mining-electricity-pollution.html

who is impacted by our design and implementation choices? 
who makes those choices?
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who is impacted by our design and implementation choices? 
who makes those choices?

https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html
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who is impacted by our design and implementation choices? 
who makes those choices?
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who is impacted by our design and implementation choices? 
who makes those choices?
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so much of life today relies on the 
Internet — so much so that 

Internet shutdowns are sometimes 
used as tools of oppression

who is impacted by our design and implementation choices? 
who makes those choices?

https://pulse.internetsociety.org/blog/tracking-internet-shutdowns-in-2023-2
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Section 230 (the legal provision 
in question here) doesn’t have 

as much to do with the 
Internet’s architecture as other 
laws (e.g., net neutrality), but 

the question remains: who gets 
to make these decisions?

https://www.vox.com/politics/2023/2/21/23608851/supreme-court-gonzalez-google-section-230-internet-twitter-facebook

who is impacted by our design and implementation choices? 
who makes those choices?



Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the look-up algorithm has to scale to the size of the Internet, while dealing with constant 
updates and issues of delegation

root

edu

mit

eecs

a partial view of the DNS hierarchy. each box 
represents a zone. name servers within a zone 

keep track of that zone’s mappings

berkeley

wwwweb

com net

googleapple

wwwdrive mail

performance issue: this is a lot of 
queries, especially to the root server

reliability issue: what happens when a 
nameserver fails or (security issue) is 

attacked?

control issue: who should own the 
root server?

who is impacted by our design and implementation choices? 
who makes those choices?
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how do we share a file — or deliver content — on the Internet?

client-server CDNs P2P

more scalable?
more distributed

who is impacted by our design and implementation choices? 
who makes those choices?
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Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority 
Queueing

Round-robin

signal congestion, 
potentially before 
queues are full

prioritize latency-
sensitive traffic

enforce (weighted) 
fairness among different 

types of traffic

type of 
management

what does this type of 
management allow a 

switch to do
example protocols how the protocol works

drop packets when the queue 
is full

serve some queues before 
others

try to give each type of traffic 
an equal share of bandwidth

round robin, but incorporate 
average packet size

round robin, but do a better 
job with packet sizes

drop or mark packets before 
the queue is full

pros/cons?

simple, but queues get full 
(among other problems)

can keep queues from filling 
up, but complicated

prioritized queues can starve 
out the others

can’t handle variable packet 
sizes

average packet size hard to 
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

is in-network resource management a good idea on the Internet?

who is impacted by our design and implementation choices? 
who makes those choices?
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who is impacted by our design and implementation choices? 
who makes those choices?
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https://www.nytimes.com/2019/09/04/science/sally-floyd-dead.html

who is impacted by our design and implementation choices? 
who makes those choices?
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Previous Lectures
6.18106.039 - Operating Systems
6.58206.829 - Computer Networks
6.5830/6.58316.830/6.814 - Database Systems

6.56606.858 - Computer Systems Security 
6.56106.857 - Network and Computer Security 
6.56206.875 - Cryptography and Cryptanalysis

more systems

more math

6.58406.824 - Distributed Systems 
6.58506.826 - Principles of Computer Systems

6.18506.S057/6.052 - Computer Systems and Society

where to go next

6.16006.S060/6.053 - Foundations of Computer Security

this class will also have a graduate version next year, I’m just not

sure of the subject number yet


