6.1800 Spring 2024

Lecture #26: What matters

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction Iin operating systems: operating systems are all
about providing an abstraction between software and hardware

operating systems enforce modularity on a single machine using virtualization

iIn order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to referto - ~ virtual memory
(and corrupt) each others’ memory

2. programs should beableto @ . bounded buffers
communicate with each other (virtualize communication links)

threads

(virtualize processors)

3. programs should be able to sharea @ >
CPU without one program halting the
progress of the others

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction In networking: an abundance of hierarchy and

layering
1970s: 1978: flexibility and 1993:
ARPAnNet layering early 80s: growth = change late 80s: growth — problems commercialization
—>
hosts.txt distance_—vector TCP, UDP OSPF, EGP, DNS congestion collapse policy routing CIDR

application the things that
actually generate

traffic

: transport sharing the network,
e § reliability (or not)

33022

examples: TCF, UDP

25684

22015

e § hetwork naming, addressing,
- : routing

11007

examples: IP

3669

1ink communication between
two directly-connected
nodes

CAIDA’s IPv4 AS Core,

January 2020 i : examples. ethernet, bluetooth,
(https://www.caida.org/projects/ o o 802.11 (wifi)
cartography/as-core/2020/) ;

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction In distributed systems: transactions are an
abstraction that allow us to reason about fault-tolerance

replicated state machines give

our goal is to build reliable systems from us single-copy consistency even
unreliable components. we want to build with replicated data

systems that serve many clients, store a l l l l l
lot of data, perform well, all while keeping
availability high O l H l
— [0 H B O

transactions — which provide atomicity and isolation — make it

easler for us to reason about fallures

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

atomicity: provided by logging, which gives better performance than shadow copies at
the cost of some added complexity; two-phase commit gives us multi-site atomicity

Isolation: provided by two-phase locking
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction In distributed systems: systems like MapReduce

and GFS abstract failure away from users

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Jjeft @google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map functon that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a tvpical ManReduce computation processes many ter-

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these 1ssues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google-

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
wally different design points.

The file system has successfully met our storage needs.
It is widely deployved within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over & thousand machines, and it is concurrently accessed
by hundreds of clients.

In this paper, we present file system interface extensions
designed to support distributed applications, discuss many
aspects of our design, and report measurements from both
micro-benchmarks and real world use.

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google's
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However. its design
has been driven by kev observations of our application work-
loads and technological environment. both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs. operating system bugs, human errors, and the failures
of disks, memory. connectors, networking. and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recoverv must be integral to the
system.

Second, files are huge by traditional standards. Multi-GB

modularity and abstraction in security: good modularity and abstraction
make It easier 1o reason about the security of a system

principal
(identifies client

on server)

request

i

>

server

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave fault-tolerance/reliability: how does our
as we increase the number of machines, system deal with failures ({)? machines

users, requests, data, etc.? crashing, network links breaking, etc.
i 0 U
[I | B UQ 1 E

o gl

security: how does our system performance: how do we define our performance
cope in the face of targeted requirements, and know if our system is meeting
attacks (@)? them? what do we do if performance is subpar (‘s)?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.”

the look-up algorithm has to scale to the size of the Internet, while dealing with constant
updates and issues of delegation

‘ root ‘
: performance issue: this is a /ot of
com net “edu queries, especially to the root server
: reliability issue: what happens when a
| apple | | google | | berkeley | mit nameserver fails or (security issue) is
: attacked?
‘ drive ‘ ‘ mail ‘ WWw web WWw eecs

control issue: who should own the
root server?
a partial view of the DNS hierarchy. each box
represents a zone. name servers within a zone
keep track of that zone’s mappings

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.”

scalable routing: a few different things allow us to route across the Internet

1. hierarchy of routing: route between

ASes, and then within an AS 3 /“\g

2. path-vector routing: advertisements

. [(A, 2, <B, A>)]
include the path, to better detect

routing loops

outing D ®

3. topological addressing: assign 18.0.0.0, .. ,18.0.0.255
addresses Iin contiguous blocks to |
make advertisements smaller 18.0.0.0/24

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.”

question: how can a single reliable sender, using a sliding-window

porotocol, set its window size to maximize utilization — but prevent

congestion and unfairness — given that there are many other end
points using the network, all with different, changing demands”

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.”

how do we share a file — or deliver content — on the Internet?

client-server CDNs P2P
~m-" N—0
\T/ “T‘)l\ l%
B | = L 7 L

more distributed
more scalable?

we know that a client-server model is (relatively) simple, but doesn’t
scale well; let's understand more about the other two technologies, to
see where they end up Iin terms of complexity, scalability, etc.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.”

certificate authority

cryptographic signatures allow users TTce
to verity identities using public-key alice bob: bob
cryptography alicesk e bobsi
serversg

users generate key pairs; the two keys
IN the pair are related mathematically
server pre-computes signed messages that map

{ , secret_key} names to their public keys
sign(secret key, message) - sig sign(serversc, “alice:) ~ sig
verify(| message, sig) :”éiiéé ;iént

yes/no SRR L SUURINTE
certificate
anyone can verify that the authority signed this
property: it is (virtually) impossible to message given , but the server itself doesn’t
compute sig without secret_key have to distribute the signed messages

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave fault-tolerance/reliability: how does our
as we increase the number of machines, system deal with failures ({)? machines

users, requests, data, etc.? crashing, network links breaking, etc.
i 0 U
[I | W [] 1 E

o gl

security: how does our system performance: how do we define our performance
cope in the face of targeted requirements, and know if our system is meeting
attacks (@)? them? what do we do if performance is subpar (‘s)?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

fault tolerance: how does our system deal with failures” machines crashing,
network links breaking, etc.

replicated state machines give

our goal is to build reliable systems from us single-copy consistency even
unreliable components. we want to build with replicated data

systems that serve many clients, store a l l l l l
lot of data, perform well, all while keeping O '
availability high O l ﬂ l
— {5 EE

transactions — which provide atomicity and isolation — make it

easler for us to reason about fallures

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

atomicity: provided by logging, which gives better performance than shadow copies at
the cost of some added complexity; two-phase commit gives us multi-site atomicity

Isolation: provided by two-phase locking
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave fault-tolerance/reliability: how does our
as we increase the number of machines, system deal with failures ({)? machines

users, requests, data, etc.? crashing, network links breaking, etc.
i 0 U
[I | B UQ 1 E

o gl

security: how does our system performance: how do we define our performance
cope in the face of targeted requirements, and know if our system is meeting
attacks (@)? them? what do we do if performance is subpar (‘s)?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

security: how does our system cope In the face of targeted attacks”

policy: provide authentication for users

threat model: adversary has
access to the entire stored table

policy: provide anonymity

principal
(identifies client
on server)

policy: provide confidentiality and integrity

threat model: adversary can observe network data,
tamper with packets, and insert its own packets

threat model: adversary is on the path

between the client and the server

request server H
>

policy: maintain availability of the service

threat model: adversary controls a botnet, and is aiming
to prevent access to a legitimate service via DDoS attacks

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave fault-tolerance/reliability: how does our
as we increase the number of machines, system deal with failures ({)? machines

users, requests, data, etc.? crashing, network links breaking, etc.
i 0 U
[I | B UQ 1 E

o gl

security: how does our system performance: how do we define our performance
cope in the face of targeted requirements, and know if our system is meeting
attacks (@)? them? what do we do if performance is subpar (‘s)?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave fault-tolerance/reliability: how does our
as we increase the number of machines, system deal with failures ({)? machines

users, requests, data, etc.? crashing, network links breaking, etc.
i 0 U
[I | B UQ 1 E

o gl

security: how does our system performance: how do we define our performance
cope in the face of targeted requirements, and know if our system is meeting
attacks (@)? them? what do we do if performance is subpar (‘s)?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

TECHNOLOGY

Internet Outage That Crashed Dozens Of
Websites Caused By Software Update

Updated July 22, 2021 - 2:22 PM ET

DEEPA SHIVARAM

A widespread internet outage caused several major websites to shut down Thursday

afternoon, including Amazon, Delta, Capital One and Costco.

Akamali, a content distribution network that helps with the spread of data around the
internet, posted on Twitter that a software configuration update caused a bug in its
DNS system.

A DNS, or domain name service, helps match a website's name to its IP address. If the

DNS fails, it becomes impossible to search and connect to a website by name.

source: https:// www.npr.org/2021/07/22/1019333663/internet-outage-dns Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

“We are victims of digital colonialism,” Prime Minister Dalton
Tagelagi of Niue said over a crackling video link from his office in
the capital of Alofi. “This domain, the .nu, recognizes Niue as a
sovereign country. This is how important it is to our identity.”

Critics question that assessment, as there is formally no such thing
as sovereignty in cyberspace, only administrative zones that divide
the web into domains like .nu and, for instance, the .nz suffix
assigned to New Zealand.

Winning the case could help ensure the long-term survival of Niue,
Mr. Tagelagi said. The island’s population is now about a third of
what it was in the 1960s, and the empty homes that dot the island
are a reminder of the people who left for better economic
opportunities. A victory could help fund its bid to join the United
Nations, similar to how Tuvalu obtained U.N. membership after
monetizing .tv.

If Niue manages to get .nu back, it could bring in up to $2 million in
revenue a year, according to Par Brumark, a domain name expert
who is acting on Niue’s behalf in the Swedish case.

https://www.nytimes.com/2024/02/21/world/asia/niue-nu-domain-sweden.html

in the case of DNS, names have
meaning outside of the system, even if
they were only originally intended to
denote “administrative zones that
divide the web into domains”

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

A Change by Apple Is Tormenting
Internet Companies, Especially Meta

Meta’s stock prices plunged after the company reported that
Apples privacy features would cost it billions this year. It's not the
only tech giant to take a hit.

system design choices
iImpact more than just that
SYSte m ,S u Se rs Year-to-date change in stock price of major tech companies

0%

f © v m @& » |[][se3]

-10

-20
Twitter

-30

Meta
* Pinterest
~40

-50 | Snap

| | | |
1 6 13 20 27 3
Jan. Feb.

Source: FactSet By The New York Times

https://www.nytimes.com/2022/02/03/technology/apple-privacy-changes-meta.html Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Understanding How Facebook
Disappeared from the Internet

1)] J k\,)‘_ |

"~ : ,
&, Celso Martinho o Tom Strickx

This post is also available in G, FEEEFX, HZEE, 8150, Deutsch, Frangais, Espanol, Portugués,

Pycckwii, and Italiano.

The Internet - A Network of Networks

"Facebook can't be down, can it?", we thought, for a second.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

https://www.nytimes.com/2023/04/21/us/spacex-rocket-dust-texas.html

SpaceX's Starship Kicked Up a Dust
Cloud, Leaving Texans With a Mess

Residents of Port Isabel said that their city was covered in grime
following SpaceX's rocket launch on Thursday. The city said there
was no "immediate concern for peoples health.”

0 Givethisarticle 2> [[J+

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

https://www.nytimes.com/2023/04/09/business/bitcoin-mining-electricity-pollution.html

The New York Times has identified 34 such large-scale operations,
known as Bitcoin mines, in the United States, all putting immense
pressure on the power grid and most finding novel ways to profit
from doing so. Their operations can create costs — including
higher electricity bills and enormous carbon pollution — for
everyone around them, most of whom have nothing to do with
Bitcoin.

vy
The Real-World Costs of the Digital Race for

Bitcomn

Bitcoin mines cash.in on electricity — by devouring it, sellingit,

evenrturning ieff — andithey cause immense pollution,dn many
cases, the public pays a price.
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

GWh per ye
WE ARE n millions
HERE
2033
Flat electricity demand
A " 4 2022

2007 ©

1989

A New Surge in Power Use Is
Threatening U.S. Climate Goals

A boom in data centers and factories is straining
electric grids and propping up fossil fuels.

By Brad Plumer and Nadja Popovich March 14, 2024 0

https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

‘Denial of service condition’
disrupted US energy
company operations

Zack Whittaker @zackwhittaker / 4 days ago EI Comment

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Data Broker Is Selling Location
Data of People Who Visit

Abortion Clinics

It costs just over $160 to get a week's worth of data on where people who visited Planned

Parenthood came from, and where they went afterwards.

@ By Joseph Cox
Yl ol

https://www.vice.com/en/article/m7vzjb/location-data-abortion-clinics-safegraph-planned-parenthood Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Tracking Internet Shutdowns in so much of life today relies on the

2023 Internet — so much so that
Robbie Mitchell Categories: Internet shutdowns are somgtlmes
¥ Senior Communication and Technology Advisor, Shutdown used as tools of oppression

Internet Society

w [K

January 1, 2024

It is increasingly common for governments to shut down the Internet
on a national or sub-national level to solve specific problems,
including controlling civil unrest, stemming the flow of
misinformation, or preventing cheating on national exams.

As of the end of 2023, governments and other actors across 18
countries intentionally disrupted Internet connectivity or blocked
access to specific Internet services for their citizens. Of the 124 events
Pulse tracked across the year, including four that continued from last
year, 55 have been nationwide disruptions lasting from a couple of
hours to a week, culminating in more than 2,370 days of disruptions.

https://pulse.internetsociety.org/blog/tracking-internet-shutdowns-in-2023-2 Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Section 230 (the legal provision

in question here) doesn’t have Gonzalez v. Google, the case heard today, could subject social media websites

as much to do with the and even search engines to ruinous liability, potentially forcing these companies
Internet’s architecture as other to abandon their business models or even shut down.
laws (e.g., net neutrality), but
the question remains: who gets That said, most of the justices appeared sufficiently spooked by the possibility
to make these decisions? that they could destroy how the modern-day internet operates that they are

likely to find a way to prevent that outcome. As Justice Elena Kagan warned at
one point during the Gonzalez argument, the justices are “not the nine greatest
experts on the internet.” So it makes sense for them to approach a case that
could fundamentally change how foundational websites operate with a degree of
humility.

https://www.vox.com/politics/2023/2/21/23608851/supreme-court-gonzalez-google-section-230-internet-twitter-facebook Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

the look-up algorithm has to scale to the size of the Internet, while dealing with constant
updates and issues of delegation

‘ root ‘
: performance issue: this is a /ot of
com net “edu queries, especially to the root server
: reliability issue: what happens when a
| apple | | google | | berkeley | mit nameserver fails or (security issue) is
: attacked?
‘ drive ‘ ‘ mail ‘ WWw web WWw eecs

control issue: who should own the
root server?
a partial view of the DNS hierarchy. each box
represents a zone. name servers within a zone
keep track of that zone’s mappings

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

how do we share a file — or deliver content — on the Internet?

client-server CDNs P2P
~m-" N—N
\J/ . @
B | = N 7 N

more distributed
more scalable?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

type of what does thlts tl}lpe of : :
management management allow a example protocols : how the protocol works pros/cons?
switch to do : ;
: i1 : drop packets when the queue simple, but queues get full
signal congestion, : DropTal L s full . (among other problems)
Queue . : ; ;
IVI t potentla”y before ... , ...
anagemen queues are full : ; drop or mqu packets before . can keep gqueues from filling
Delay-based prioritize latency- Pr‘ior*%ty serve some queues before orioritized queues can starve
Scheduling sensitive traffic : Queuelng ; others : outthe others
Round-robin try to give each type of traffic . canthandle variable packet
an equal share of bandwidth . SIZes
_ E eﬂforce Wel hted é ... E ..E. ..
Bandwidth-based : (Welg) : round robin, but incorporate . average packet size hard to

: : fairness among different : Weighted Round-robin
Scheduling § types of traffic :

average packet size . get

‘O...........0...0............O.............................O...O........................ ...

.. _ ¢ round robin, but do a better : honestly pretty good
Deficit Round-robin . job with packet sizes :

s in-network resource management a good idea on the Internet?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the Unix system is largely due to the fact that it was not designed to meet any predefined objectives. The first
version was written when one of us (Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7 and set out to
create a more hospitable environment. This (essentially personal) effort was sufficiently successful to gain the interest of the other author and several
colleagues, and later to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting system. When in turn the 11/20
was outgrown, the system had proved useful enough to persuade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata
8/32 machines, upon which it developed to its present form. Our goals throughout the effort, when articulated at all, have always been to build a
comfortable relationship with the machine and to explore ideas and inventions in operating systems and other software. We have not been faced with
the need to satisfy someone else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of Unix are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to write, test, and run programs. The most important expression
of our desire for programming convenience was that the system was arranged for interactive use, even though the original version only supported one
user. We believe that a properly designed interactive system is much more productive and satisfying to use than a ~“batch" system. Moreover, such a
system is rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software. Given the partially antagonistic desires for reasonable
efficiency and expressive power, the size constraint has encouraged not only economy, but also a certain elegance of design. This may be a thinly
disguised version of the "~ salvation through suffering" philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact 1s more important than it might seem. If designers of a system

are forced to use that system, they quickly become aware of its functional and superficial deficiencies and are strongly motivated to correct them

before it is too late. Because all source programs were always available and easily modified on-line, we were willing to revise and rewrite the system

and its software when new 1deas were invented, discovered, or suggested by others.

6.1800 2024

| The acnacte af I Tniv dicriicecaed 1n thic nanaer avhihit ~cleaarlys at leaact the fArcet fyives nf thece Aaciton raancideraticnne The interfacre tna the file cvuctermnm faor

who is impacted by our design and implementation choices?
who makes those choices?

Sally Floyd, Who Helped Things Run
Smoothly Online, Dies at 69

In the early 1990s, Dr. Floyd was one of the inventors of Random

Early Detection, which continues to play a vital role in the
stability of the internet.

One byproduct of Dr. Floyd’s work reflected her passion for
keeping things fair to all internet users. “Her work on congestion
control was about keeping it working for everyone,” Dr. Kohler
said. “For people with fast connections, and for people with slow
connections.”

https://www.nytimes.com/2019/09/04/science/sally-floyd-dead.html

Sally Floyd. “Her work on congestion control,” a colleague said, helped keep the Katrina LaCurts | lacurts@mit.edu | 6.1800 2024
internet “working for everyone.” Carole Leita

where to go next

6.18506 s057/6.052 - Compu’[er Sys’[emg and Socie’[y this class will also have a graduate version next year, I’'m just not
| | sure of the subject number yet

6.18106.030 - Operating Systems
6.58206 520 - Computer Networks
6.5830/6.58315.330/6.814 - Database Systems

6.58405 524 - Distributed Systems
6.58506 526 - Principles of Computer Systems

6.16006 s060/6.053 - Foundations of Computer Security

6.56606 555 - Computer Systems Security more systems
6.56106.557 - Network and Computer Security
6.56206 575 - Cryptography and CryptanalysiS ¥ more math

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

