
Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

6.1800 Spring 2024
Lecture #26: What matters
even if you never want to design a computer system again

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

operating systems enforce modularity on a single machine using virtualization
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

threads
(virtualize processors)

bounded buffers
(virtualize communication links)

modularity and abstraction in operating systems: operating systems are all
about providing an abstraction between software and hardware

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction in networking: an abundance of hierarchy and
layering

1978: flexibility and
layering

link

network

transport

application the things that
actually generate
traffic

sharing the network,
reliability (or not)
examples: TCP, UDP

1993:
commercialization

1970s:
ARPAnet early 80s: growth → change

OSPF, EGP, DNS

late 80s: growth → problems
policy routinghosts.txt

naming, addressing,
routing
examples: IP

communication between
two directly-connected
nodes
examples: ethernet, bluetooth,
802.11 (wifi)

TCP, UDPdistance-vector

routing

congestion collapse CIDR

CAIDA’s IPv4 AS Core,

January 2020

(https://www.caida.org/projects/
cartography/as-core/2020/)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction in distributed systems: transactions are an
abstraction that allow us to reason about fault-tolerance

our goal is to build reliable systems from
unreliable components. we want to build
systems that serve many clients, store a

lot of data, perform well, all while keeping
availability high

A B C D E

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than shadow copies at
the cost of some added complexity; two-phase commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

A B C D E

replicated state machines give
us single-copy consistency even

with replicated data

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction in distributed systems: systems like MapReduce
and GFS abstract failure away from users

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

modularity and abstraction in security: good modularity and abstraction
make it easier to reason about the security of a system

serverprincipal
(identifies client

on server)

request

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

network

scalability: how does our system behave
as we increase the number of machines,

users, requests, data, etc.?

fault-tolerance/reliability: how does our
system deal with failures (☠)? machines

crashing, network links breaking, etc.

security: how does our system
cope in the face of targeted

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance
requirements, and know if our system is meeting

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices?
who makes those choices?

#

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.?

the look-up algorithm has to scale to the size of the Internet, while dealing with constant
updates and issues of delegation

root

edu

mit

eecs

a partial view of the DNS hierarchy. each box
represents a zone. name servers within a zone

keep track of that zone’s mappings

berkeley

wwwweb

com net

googleapple

wwwdrive mail

performance issue: this is a lot of
queries, especially to the root server

reliability issue: what happens when a
nameserver fails or (security issue) is

attacked?

control issue: who should own the
root server?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.?

scalable routing: a few different things allow us to route across the Internet

2. path-vector routing: advertisements
 include the path, to better detect
 routing loops

[(A, 2, <B, A>)]

1. hierarchy of routing: route between
 ASes, and then within an AS

3. topological addressing: assign
 addresses in contiguous blocks to
 make advertisements smaller

18.0.0.0, … ,18.0.0.255

18.0.0.0/24

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.?

question: how can a single reliable sender, using a sliding-window
protocol, set its window size to maximize utilization — but prevent
congestion and unfairness — given that there are many other end

points using the network, all with different, changing demands?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.?

how do we share a file — or deliver content — on the Internet?

client-server CDNs P2P

more scalable?
more distributed

we know that a client-server model is (relatively) simple, but doesn’t
scale well; let’s understand more about the other two technologies, to

see where they end up in terms of complexity, scalability, etc.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

scalability: how does our system behave as we increase the number of
machines, users, requests, data, etc.?

server pre-computes signed messages that map
names to their public keys

anyone can verify that the authority signed this
message given serverpk, but the server itself doesn’t

have to distribute the signed messages

cryptographic signatures allow users
to verify identities using public-key

cryptography

sign(secret_key, message) → sig
verify(public_key, message, sig) →
 yes/no

users generate key pairs; the two keys
in the pair are related mathematically

{public_key, secret_key}

property: it is (virtually) impossible to
compute sig without secret_key

alice: alicepk
bob: bobpk

...

serverpk

serversk

alice
alicesk

bob
bobsk

sign(serversk, “alice: alicepk”) → sig

alice, alicepk, sig

certificate authority

certificate

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

network

scalability: how does our system behave
as we increase the number of machines,

users, requests, data, etc.?

fault-tolerance/reliability: how does our
system deal with failures (☠)? machines

crashing, network links breaking, etc.

security: how does our system
cope in the face of targeted

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance
requirements, and know if our system is meeting

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices?
who makes those choices?

#

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

fault tolerance: how does our system deal with failures? machines crashing,
network links breaking, etc.

our goal is to build reliable systems from
unreliable components. we want to build
systems that serve many clients, store a

lot of data, perform well, all while keeping
availability high

A B C D E

transactions — which provide atomicity and isolation — make it
easier for us to reason about failures

atomicity: provided by logging, which gives better performance than shadow copies at
the cost of some added complexity; two-phase commit gives us multi-site atomicity

our job in lecture is to understand how a system implements these two abstractions.
how do our systems guarantee atomicity? how do they guarantee isolation?

isolation: provided by two-phase locking

A B C D E

replicated state machines give
us single-copy consistency even

with replicated data

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

network

scalability: how does our system behave
as we increase the number of machines,

users, requests, data, etc.?

fault-tolerance/reliability: how does our
system deal with failures (☠)? machines

crashing, network links breaking, etc.

security: how does our system
cope in the face of targeted

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance
requirements, and know if our system is meeting

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices?
who makes those choices?

#

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

security: how does our system cope in the face of targeted attacks?

serverprincipal
(identifies client

on server)

request

threat model: adversary has
access to the entire stored table

policy: provide authentication for users

threat model: adversary can observe network data,
tamper with packets, and insert its own packets

policy: provide confidentiality and integrity

threat model: adversary is on the path
between the client and the server

policy: provide anonymity

threat model: adversary controls a botnet, and is aiming
to prevent access to a legitimate service via DDoS attacks

policy: maintain availability of the service

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

network

scalability: how does our system behave
as we increase the number of machines,

users, requests, data, etc.?

fault-tolerance/reliability: how does our
system deal with failures (☠)? machines

crashing, network links breaking, etc.

security: how does our system
cope in the face of targeted

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance
requirements, and know if our system is meeting

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices?
who makes those choices?

#

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

network

scalability: how does our system behave
as we increase the number of machines,

users, requests, data, etc.?

fault-tolerance/reliability: how does our
system deal with failures (☠)? machines

crashing, network links breaking, etc.

security: how does our system
cope in the face of targeted

attacks (")?

"
"

"☠

☠

☠

☠

☠

☠

performance: how do we define our performance
requirements, and know if our system is meeting

them? what do we do if performance is subpar (#)?

#

who is impacted by our design and implementation choices?
who makes those choices?

#

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024source: https://www.npr.org/2021/07/22/1019333663/internet-outage-dns

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

https://www.nytimes.com/2024/02/21/world/asia/niue-nu-domain-sweden.html

in the case of DNS, names have
meaning outside of the system, even if

they were only originally intended to
denote “administrative zones that

divide the web into domains”

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024https://www.nytimes.com/2022/02/03/technology/apple-privacy-changes-meta.html

system design choices
impact more than just that

system’s users

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

https://www.nytimes.com/2023/04/21/us/spacex-rocket-dust-texas.html

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

https://www.nytimes.com/2023/04/09/business/bitcoin-mining-electricity-pollution.html

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024https://www.vice.com/en/article/m7vzjb/location-data-abortion-clinics-safegraph-planned-parenthood

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

so much of life today relies on the
Internet — so much so that

Internet shutdowns are sometimes
used as tools of oppression

who is impacted by our design and implementation choices?
who makes those choices?

https://pulse.internetsociety.org/blog/tracking-internet-shutdowns-in-2023-2

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

Section 230 (the legal provision
in question here) doesn’t have

as much to do with the
Internet’s architecture as other
laws (e.g., net neutrality), but

the question remains: who gets
to make these decisions?

https://www.vox.com/politics/2023/2/21/23608851/supreme-court-gonzalez-google-section-230-internet-twitter-facebook

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

the look-up algorithm has to scale to the size of the Internet, while dealing with constant
updates and issues of delegation

root

edu

mit

eecs

a partial view of the DNS hierarchy. each box
represents a zone. name servers within a zone

keep track of that zone’s mappings

berkeley

wwwweb

com net

googleapple

wwwdrive mail

performance issue: this is a lot of
queries, especially to the root server

reliability issue: what happens when a
nameserver fails or (security issue) is

attacked?

control issue: who should own the
root server?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

how do we share a file — or deliver content — on the Internet?

client-server CDNs P2P

more scalable?
more distributed

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

Queue
Management

Delay-based
Scheduling

Bandwidth-based
Scheduling

DropTail

Priority
Queueing

Round-robin

signal congestion,
potentially before
queues are full

prioritize latency-
sensitive traffic

enforce (weighted)
fairness among different

types of traffic

type of
management

what does this type of
management allow a

switch to do
example protocols how the protocol works

drop packets when the queue
is full

serve some queues before
others

try to give each type of traffic
an equal share of bandwidth

round robin, but incorporate
average packet size

round robin, but do a better
job with packet sizes

drop or mark packets before
the queue is full

pros/cons?

simple, but queues get full
(among other problems)

can keep queues from filling
up, but complicated

prioritized queues can starve
out the others

can’t handle variable packet
sizes

average packet size hard to
get

honestly pretty good

RED, ECN

Weighted Round-robin

Deficit Round-robin

is in-network resource management a good idea on the Internet?

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

https://www.nytimes.com/2019/09/04/science/sally-floyd-dead.html

who is impacted by our design and implementation choices?
who makes those choices?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2024

Previous Lectures
6.18106.039 - Operating Systems
6.58206.829 - Computer Networks
6.5830/6.58316.830/6.814 - Database Systems

6.56606.858 - Computer Systems Security
6.56106.857 - Network and Computer Security
6.56206.875 - Cryptography and Cryptanalysis

more systems

more math

6.58406.824 - Distributed Systems
6.58506.826 - Principles of Computer Systems

6.18506.S057/6.052 - Computer Systems and Society

where to go next

6.16006.S060/6.053 - Foundations of Computer Security

this class will also have a graduate version next year, I’m just not

sure of the subject number yet

