
 CSOUP
 Census System for data Organization, Usage, and Protection

 6.1800 Design Project Report

 Authors: Christopher Wang, Selena Zhang, Vincent Lin

 Recitation Instructor: Larry Rudolph

 WRAP Instructor: Thomas Pickering

 May 9th, 2023

 2

 1 Introduction
 The government of Fictlandia aims to increase census participation by ensuring Fictlandians only need
 to fill out one census form per year. Consequently, we designed the Census System for data
 Organization, Usage, and Protection , or CSOUP .

 CSOUP prioritizes correctness and security . Correctness means that no data is lost or corrupted a�er
 entering our system. Complete and accurate data enables the equitable provision of public services
 like education and healthcare, and it ensures all votes are counted. We monitor correctness at each
 stage of our system to prevent losses during input, corruption during storage, or drops during
 transmission. Since correctness is context-dependent, we discuss it throughout the paper.

 We define security to mean that only authorized parties can access unreleased record data. We enforce
 two layers of protection: (1) users can obtain only data they are authorized to access, and (2) users can
 decrypt only data they are authorized to see. Security is critical to respecting Fictlandiansʼ safety, since
 data leaks could expose the locations of vulnerable populations and marginalized groups. Increasing
 census participation requires Fictlandians to trust their data is protected. We encrypt all census
 information before storing it and discuss security in the encryption and key management modules.
 CSOUP upholds correctness and security at the expense of some performance and storage.

 Abbreviations

 CSOUP: Census System for data Organization, Usage, and Protection
 PMM: physical municipal machines. Each municipality has one PMM for every hundred thousand
 residents.
 VMM: virtual municipal machine. Each VMM is paired with each physical municipal machine and runs
 on the national cloud.
 VDD: virtual distributed database. Each municipality has one VDD distributed across all VMMs for that
 municipality.
 WAL: write-ahead log.
 DBMS: database management system.
 BP: Bureau of Privacy. An independent set of government officials that checks any data access is
 compliant with current regulation.

 3

 2 System Overview

 Fig. 1: System diagram of CSOUP showing the main modules, communication between them, and their
 implementations on machines. Dashed lines indicate network transmission. Acronyms: WAL =
 write-ahead log, VDD = virtual distributed database, DBMS = database management system. A
 larger-size diagram is provided at the end of this document.

 CSOUP consists of six modules that interact via specified inputs and outputs, each of which can be
 implemented independently. Below, we describe the input , encryption , storage , and distribution
 modules, as well as the key management and user so�ware modules that assist their functionality.

 The input module (section 3.1) takes in census form submissions, passes them to the encryption
 module, and acknowledges receipt of the submission once the data has been securely stored. In our
 implementation, the input module manages network traffic between CSOUP and residents by
 accepting electronically-submitted census forms, preventing too many users from submitting
 simultaneously, and monitoring census submission levels to mitigate last-minute submission surges
 close to the census deadline. Administrative assistants also use scanners to digitize mailed census
 forms into records and scanned PDFs.

 The encryption module (section 3.2) secures records by encrypting different fields of the census
 records with different sets of keys (depending on which users can access those fields) before passing
 the records to the storage module. This ordering of modules ensures that no unencrypted data is
 stored or sent again over the network before being encrypted.

 The key management module (section 3.3) enables keys to be correctly distributed to keyholders, and
 helps create, destroy, and rotate keys. It interacts with two independent government bodies, the

 4

 Bureau of Privacy and the Bureau of Key Administration, whose roles are discussed later in more
 detail.

 The storage module (section 3.4) ensures that large quantities of census data are stably stored for the
 systemʼs lifetime. The storage module is also responsible for receiving data queries from the
 distribution module and returning the corresponding dataset. At the implementation level, our system
 achieves this by storing records in triplicate in the VDD, which is managed by a DBMS, and periodically
 scanning the triplicates to detect and correct any corruption. The DBMS responds to data queries and
 handles storage balancing across VMMs.

 The distribution module (section 3.5) receives pull requests from users and ensures that users receive
 the data that they are authorized to access. This includes authenticating users, verifying that their
 requests are valid, and querying the storage module for the corresponding data.

 The user so�ware module (section 3.6), which each user installs on a local machine, provides the
 interface for users to make requests for data. It also takes in the userʼs key, requests a corresponding
 key from the Bureau of Privacy, and returns a combined key to the user, who can then use that key to
 decrypt the data.

 A config file, located on a central server hosted in the national cloud, stores values such as the dates
 for data collection and distribution, frequency of data error checking, the number of keys in use, the
 key refresh rate, etc. This ensures that changing timelines, frequencies, and keys does not require
 hardcoding values or changing code; PMMs and VMMs can communicate with the central server to get
 the values in the config file.

 3 System Modules and Implementation
 Below, we discuss the implementation of, and interactions between, each of the modules in greater
 depth.

 3.1 Input
 The input module is contained within the PMMs in each municipality, which host a web server to
 handle electronically submitted census forms, which the PMM converts to records. At least one
 administrative assistant in each municipality also digitizes paper forms using a scanner into records
 and PDFs. Upon receiving each record and PDF, the input module passes it on to the encryption
 module. Below, we describe further implementation details for form submission.

 5

 3.1.1 Connecting to the Web Server
 In periods of low network traffic, Fictlandians (or “clients”) maintain a continuous connection to the
 web server and complete a web form. The web server saves progress as the user answers each
 question, preventing them from losing progress if they accidentally quit, their computer crashes, etc.

 Each PMM can only support 125 clients submitting the online form in parallel. If too many connect
 simultaneously, our system supports offline completion of the form and submission when the
 connection is restored. Too many users submitting at once, however, risks data loss if the PMM cannot
 receive all the submissions. To maintain correctness at the input level, the PMMs in our system limit
 traffic with a modified version of Explicit Congestion Notification (ECN) with website monitoring. If the
 number of clients attempting to connect to the server exceeds a preset threshold, then the system will
 notify, uniformly at random, a number of these clients (in proportion to the excess) that their
 submission cannot be processed now. By preemptively preventing submissions, the system
 proactively reduces the risk of data loss.

 3.1.2 Network Transmission of Online Submissions
 Our system consistently protects against unnoticed data loss with the following network protocol,
 herea�er referred to as the whole-data ack protocol : when a client page submits the online form to the
 web server in the input module, the input module will respond with an “ack” for the whole
 submission. Once the client page receives the “ack,” the client knows their submission has been
 received and can safely disconnect. Otherwise, if the client times out waiting for the “ack,” then their
 submission failed and they should resubmit. (If the input moduleʼs “ack” gets dropped, the client
 might resend data that the input module already received. To handle this, the input module keeps
 track of recently received submissions and discards any duplicates.) We apply this whole-data ack
 protocol on top of TCP to ensure that both individual packets (TCP) and whole data submissions (our
 protocol) are transmitted correctly and completely.

 One problem is that if the input module acknowledges a submission immediately upon receipt, then a
 PMM crash could cause the submission data to be lost before it has been written to disk. The data
 would then be lost from the system, but the client would continue to believe that the submission was
 successfully received. To handle this scenario, we also enforce correctness using a technique we term
 as a delayed multi-ack chain : When the input module receives a submission, instead of “ack”ing it
 immediately, it first forwards the data to the encryption module. The encryption module encrypts and
 sends the data to the storage module, waits for an “ack” from the storage module, and then sends an
 “ack” back to the input module now that the data has been successfully written to disk. At this point,
 the data will not be lost even if the PMM crashes. A�er receiving this “ack”, the input module sends
 back its own “ack” packet to the web server acknowledging the form submission.

 6

 The chain of “ack”s is shown in the diagram in Fig. 1. This delayed multi-ack chain technique comes at
 the cost of latency, since the client has to wait longer for a response on whether their submission was
 received, but upholds correctness : The ack chain ensures that if such a PMM crash occurs, the client
 will not receive an “ack” and will attempt to resubmit until the data is securely written to disk.

 3.1.3 Monitoring Participation
 If too many residents wait until the end of February to submit the census, a traffic surge just before the
 collection period closes could overwhelm system bandwidth. Dropping submissions during the surge
 would significantly impair the completeness of the data.

 To mitigate this, the input module tracks submissions received throughout January and February and
 compares participation to the estimated number of residents in the municipality (which can be
 estimated from last yearʼs data, or specified in the config file). On checkpointed dates, the system will
 notify the municipal government if the number of records received is too low. If many municipalities
 within each state fall below the reasonable threshold, the state and/or national governments will also
 be notified. This allows the governments to take action to raise participation rates by, for example,
 increasing advertising and door-to-door campaigns. The config file specifies the checkpoint dates and
 expected participation numbers.

 3.2 Encryption
 To ensure security , we prevent users from decrypting any data they are not authorized to access, even
 if they have mistakenly obtained it. To achieve this goal, CSOUP encrypts all census records except for
 three parts: field headers, high-level location information, and timestamp of submission. Examples of
 field headers include “name,” “date of birth,” “gender,” etc., but all values associated with each header
 are encrypted. High-level location information includes the state and municipality in which each
 record was submitted. These fields are le� unencrypted so that the data is searchable and
 partitionable in aggregate, allowing the appropriate data to be distributed to each user (e.g. a state
 government should only receive data from its own state). The encryption module receives keys from
 the central key management module via a secure network connection, ensuring that the records are
 encrypted via the same keys that users can then later decrypt it with.

 Our encryption scheme also protects against error cases where users receive more information per
 record than they have permission to view. For example, the national government requires a strict
 subset of the information given to the state government. If the national government administrator
 obtained information that is only needed by states and municipalities, they should not be able to
 decrypt those fields. To enforce this layer of security, our system encrypts different sets of record fields
 with different keys: fields accessible by the national government (e.g name, birthdate, gender) would
 be encrypted with one key, but licensed car ownership and income supplement eligibility – which are
 state-only – would be encrypted with another. Similarly, municipal-only fields that are not required by

 7

 states are encrypted with yet another key, as are municipal-only fields that are not required by school
 boards.

 Notably, encrypting records trades off with storage space and performance, since it triples the size of
 each record. A limitation of our systemʼs security is that it does not encrypt PDFs; it is not possible for
 our system to do so while still meeting the national governmentʼs storage requirements, as discussed
 in section 4.3.

 The encryption module forwards all PDFs and encrypted records to the storage module, which
 responds with an “ack” for each PDF and record once it has been written to disk. This allows the
 encryption module to “ack” the input module in return, as described in section 3.1.2.

 3.3 Key Management
 CSOUP ensures that only parties authorized to decrypt records can decrypt them, which requires
 distributing the correct keys to the correct parties. The key management module coordinates the
 creation, distribution, and rotation of keys.

 We aim to prevent any one government agency from having unilateral access to view data, which
 degrades regulatory oversight and creates a single point of failure in the case of a malicious attack or
 information leakage. We also aim to minimize the risk that a complete encryption key is leaked during
 network transmission, which would compromise security.

 To achieve these goals, we propose that a group of national government officials , herea�er termed
 the Bureau of Privacy (BP), oversee key access and distribution; these officials should be independent
 of governmental users of census data. CSOUP uses key splitting for all census information: the BP has
 half of the key for any information, and authorized users have the other. Section 3.6 discusses how
 users obtain the combined key that allows them to decrypt the data.

 Incorporating this key splitting process with the BP enhances security in three ways: (1) It prevents
 unilateral access to data. For any user to decrypt data, both our system and an independent
 government bureau must independently approve that userʼs access to data by each sharing one key.
 (2) It centralizes enforcement so that changes in access can be enforced immediately. If any data
 access rights are revoked, it may take time for all users to be notified and change their systems
 appropriately. The BP, however, can be notified immediately, and if the newly deauthorized user
 attempts to request data, the BP will simply not provide them with a key. (3) It reduces the risk of
 distribution because even if an adversary obtains one key, they cannot decrypt the data without both
 keys.

 8

 Introducing the BP, however, creates a major performance drawback: It will take longer for any user to
 access their census data, because each user must wait for the BPʼs approval before they can decrypt
 records, and any delays within the BP will also delay the users. One risk is that the BPʼs approval
 process may bottleneck data access during the distribution period: If many users happen to request
 information on the same day, some will inevitably have to wait on the BP to verify and approve the
 others. Regardless, we implement this design decision because we prioritize security over
 performance, as leakage of records to unauthorized users could cause Fictlandians to fear that
 participating could endanger their safety or privacy. Slow performance can be mitigated by the surge
 protection measures implemented in other stages of the pipeline (for instance, reminders for timely
 requests sent to users at the distribution level).

 A top-level ROLE account can distribute, add, and delete keys. Upon the dismissal of an employee, the
 ROLE administrator rotates any keys accessible by their role. Since building a foolproof system is
 impossible, we keep an audit lot to help identify any malfunctions in key distribution. Any time a key is
 distributed, rotated, or changed in any way, the change is automatically written to the audit log and
 cannot be deleted.

 3.4 Storage
 The storage module receives PDFs and encrypted records from the encryption module, and is
 responsible for persistently storing them and responding to data queries from the distribution
 module. Below, we detail the implementations for each of these functions.

 3.4.1 Census Records
 To increase our systemʼs availability in responding to data queries, the storage module stores
 encrypted records in the virtual distributed database (VDD) shared by each municpalityʼs VMMs.

 We do not store records on the PMMs because we prioritize availability over latency. Since the VMMs
 are highly fault-tolerant and distributed, they provide higher availability for accessing records and
 greater network bandwidth. Since the VMMs are geographically farther, however, VMM-only storage
 increases latency for municipalities to access data. We prioritize availability because it is important to
 meet distribution timelines. Data access, however, is not latency-sensitive.

 Given the latency of database inserts (300ms for encrypted records), one potential risk is data loss
 resulting from a PMM crash between the storage module receiving a record and inserting it in the
 database. To avoid this, each PMM uses a write-ahead log to log each record received from the
 encryption module. Once the record is logged, an “ack” is returned to the encryption module to
 confirm that the data has been written to disk; this “ack” is forwarded back to the user to confirm their
 submission. Once a VMM receives and inserts the record into the VDD, it informs the PMM to then
 commit the transaction.

 9

 The write-ahead log enforces correctness : if the PMM or the network fails before a record is installed in
 the VDD, then upon system recovery, the PMM will reference the log and determine that this change
 was never committed. Thus, it will re-attempt to send it to the VMM until the record is successfully
 installed, ensuring that no individual record is lost.

 To additionally uphold the correctness of PMM-VMM transmission, we apply the same whole-data ack
 protocol from section 3.1.2: on top of TCP, the PMM waits for an “ack” from the VMM for each record,
 and resubmits if it does not receive one.

 We allocate a new table for each yearʼs census records, where the table columns consist of the fields
 for each record. Since each record is encrypted at the field level and not at the full record level, each
 recordʼs (encrypted) data may be stored and sorted by all fields of the census. This ensures security
 within the storage module while maintaining organization within the VDD.

 3.4.2 Census PDFs
 PDFs are persistently stored in PMM file systems. Each PDF is assigned a UUID to identify it in the file
 system, and each digital record created from the PDF stores this UUID, as well as a unique identifier for
 the machine on which itʼs stored, for future reference. CSOUP initially stores all PDFs in PMM file
 systems, but begins moving PDFs by oldest timestamp into cloud storage at 80% capacity to mitigate
 the scaling bottleneck posed by the PDFsʼ large file size. Assessment of this bottleneck is described
 further in section 4.3.

 3.4.3 Database Management System
 The VDD within each municipality is coordinated by a database management system (DBMS) for
 storage and data retrieval functionality. The DBMS storage responsibilities include the storage
 correctness functionalities in section 3.4.4. The DBMS data retrieval responsibilities include receiving
 and processing distribution requests and parallelizing VMMs when sending data by delegating up to
 100,000 records from the VDD to each VMM for distribution, allowing for distribution to scale with
 municipality size. The mechanics of communication with the distribution module for data retrieval are
 described in section 3.5.

 3.4.4 Correctness
 One major point of concern with any long-lasting system is the integrity of data while idle in storage.
 Given that our system must store records for 70 years before being publicly released (and a�erward as
 well), data degradation is a substantial threat to the correctness of persistent data. All previously
 collected census data must be regularly maintained and ready to distribute accurately at all times to
 accommodate users such as researchers, who may request data at any time, as well as users during
 the normal distribution period.

 10

 CSOUP enforces correctness in the storage module by triplicating records in the VMMs as a means of
 both detection and recovery of compromised data integrity. This trades off with storage space because
 three times the storage is required for each record. Ultimately, however, this cost is not as significant
 given the storage bottleneck posed by PDFs, which occupy orders of magnitude more space than
 records (section 4.3).

 Detection
 To detect data degradation within the VDD, the DBMS executes monthly parity checksumming. To
 ensure the correctness and availability of data, data integrity must be monitored throughout the year
 as well as just before the distribution period to mitigate any long-term effects of data degradation. The
 frequency of checksumming, local time of checksumming, etc. are specified in the config file.

 Recovery
 A�er detecting a corrupted record, the DBMS obtains its triplicates and restores the majority value. To
 locate the other two copies, each record stores the unique identifier of the other two copies. This
 allows the DBMS to quickly access duplicates and resolve data corruption efficiently.

 3.5. Distribution
 The distribution module, implemented on a central server in the national cloud, allows users to
 request census data via a so�ware module they install on their machine, and is responsible for
 ensuring that users obtain the correct census data. Upon receiving a user request, the distribution
 model authenticates their credentials to determine whether they are authorized to request data; if not,
 it rejects the request and notifies the governments and system engineers that an unauthorized user
 attempted to request data.

 Upon receiving an authorized user request, the server checks what subsets of data the user is allowed
 to access, which is determined by the census specification and listed in the config file. If the request is
 within the bounds of what the user is allowed to access, then the server queries the appropriate VMMs
 in the storage module for the corresponding data.

 To locate the VMMs relevant to the request, a two-level DNS-style tree structure will resolve which
 municipalities to contact. Each state in Fictlandia will have a designated “nameserver” machine
 (whose addresses are stored in the central server) that contains the DBMS address of each of that
 stateʼs municipalities. The VMM designated to each state is specified within the central config file, but
 can be arbitrarily assigned, as the additional workload is low and only involves relaying TCP
 communication between the central server and the stateʼs municipalities.

 11

 Since database reads take a non-negligible amount of time, and potentially many or all municipalities
 may be contacted to fulfill a request, the server completes the distribution in two stages to reduce the
 risk of data loss or network failure, promoting correct and complete data transmission. In the first
 stage, the server notifies the VMMs in all relevant municipalities of the requests, and an initial
 preparation “ack” must be received from each municipality to confirm that the request was
 successfully received and data is ready to be sent. In the second stage, the server receives the data
 from the VMMs and forwards them to the user. At all points in communication (between VMMs, server,
 and user), we continue to employ the whole-data ack protocol to ensure correct and complete data
 transmission.

 3.6 User So�ware
 CSOUPʼs users request data via the user so�ware interface. Although installing so�ware on the userʼs
 machine introduces potential setup complications, we believe this decision is justified because the
 installed so�ware allows for data decryption to happen at the application level while still keeping the
 BP key hidden from the user (section 3.3). Local decryption removes any threat of network-based
 attacks intercepting unencrypted data, and hiding the key ensures that CSOUP and the BP are two
 independent layers of security to protect sensitive census data.

 Accessing data requires a user to perform two requests: (1) send a key request to the BP, who must
 approve the ticket by sending back a key, and (2) send a request to CSOUPʼs distribution module for
 data. Data will be sent to the user so�ware as soon as the request is received, but the user cannot
 decrypt the data unless the so�ware module also receives the key from the bureau. To initiate the BP
 request, the user must enter their own key distributed to them by the key management module.
 A�erward, once the BP fulfills the request and returns the second key, the so�ware module will
 combine the two keys with a one-way algorithm to produce the final key that the user can use to
 decrypt the records. This hides the bureauʼs key from the user, enforcing separation of keys.
 Additionally, transmitting two split keys across the network enforces security by ensuring that if a
 malicious agent breaches the network connection and gets one key, they still cannot use it to decrypt
 the data.

 This extra layer of protection enforces security in data distribution, at the cost of potentially additional
 processing time. Although requiring an additional body to review requests is more time consuming
 than if users could access the data directly, it ensures that users are authorized to receive and decrypt
 exactly the amount of data they are predetermined to be distributed.

 Throughout the distribution period, CSOUP will periodically send reminders to users to request census
 data proportional to the percent of users that have yet to do so (adjustable in the central config file).
 An internal request deadline of three days prior to the census distribution deadline will also be
 enforced with the reminders to promote timely completion of ticket approval and data distribution.

 12

 4. Evaluation
 In this section, we define and analyze three evaluation metrics for our system, based on the timeline
 and storage requirements specified by the national government: (1) the rate at which our system can
 handle online form submissions, (2) the time to distribute data to users, and (3) the storage lifetime.
 Additional evaluations of paper submission scanning and PMM-VMM data uploading are included in
 the appendix.

 4.1. Rate of receiving form submissions
 Since each PMM can only handle up to 125 users submitting the online form concurrently, one concern
 is whether all residents can successfully submit their forms online. This is particularly true if many
 residents attempt to submit simultaneously at the end of the data collection period, which could result
 in some residents not being able to submit in time. We evaluate this as follows:

 Since municipalities have at least one PMM-VMM pair for every 100,000 people, then assuming that
 load is evenly balanced across PMMs, each PMM is responsible for up to 100,000 submissions during
 the data collection period. Since one person submits per household, each household has 2.6 residents
 on average, and 80% of households submit online, the expected number of online submissions per
 PMM (if everyone participates) is:

 100,000 residents / (2.6 residents/submission) * 0.8 = 30,800 submissions

 Although residents will take 31 minutes on average to complete a form, in periods of high traffic, they
 can complete the form offline and connect only to download or submit (section 3.1.1). Let us assume,
 conservatively, that a user who completes the form offline needs to connect to the server for 2 minutes
 to download and submit the form. Then, the number of submissions a PMM can handle per hour is:

 125 submissions * (1 submission/2 min) * (60 min/1 hr) = 3,750 submissions

 This number is greater than 10% of total submissions, meaning our system can handle more than 10%
 of all participants submitting within the same hour. Since the data collection period is spread out over
 two months, we consider this case an incredibly unlikely worst-case scenario, which our system is able
 to handle. Moreover, our system also protects against this worst case by monitoring and flagging low
 participation levels (section 3.1.3), which allows governments to promote participation to reduce the
 probability of last-minute surges.

 Our system can still handle all online submissions even if a municipality experiences a sudden large
 population increase from one year to the next, without enough notice to add more PMMs. Suppose
 that a municipal population doubles from one year to the next due to migration, which we consider

 13

 extraordinarily unusual for any municipality with more than 100,000 people. Then, each PMM might
 have to handle up to 200,000 submissions. From the analysis above, each PMM could still handle more
 than 5% of all participants submitting online within the same hour, and could in theory process all
 submissions if everyone submitted within the same 20 hours. Thus, our system can easily handle all
 online submissions over the course of two months.

 4.2. Time to distribute data to users
 The DBMS for each VDD allows each VMM to serve requests from multiple users in parallel, provided
 they are not accessing the same records. Additionally, the many VMMs in the storage module can
 parallelize the work of extracting and returning data in response to data queries.

 Consider a query that requires extracting every record collected in a given year, e.g. a query collected
 by the national government, or from an external researcher looking for aggregate statistics for the
 entire national population. Since we have one VMM per 100,000 residents, each VMM can read and
 return 100,000 records to fulfill the query. Since reading an encrypted record takes 210 ms, this
 process takes:

 0.210 s * (1 hr/3,600 s) * 100,000 reads = 5.8 hrs

 A�er our system extracts the corresponding data, it needs to send it over the network to the user. If a
 query requires the complete set of records nationwide for a given year, then the total size of the data
 is:

 (2,400 bytes/record) * (300 * 10 6 records) * (1 GB/10 9 bytes) = 720 GB

 With a 10-GBps bandwidth out of each cloud machine, it would thus take 720/10 = 72 seconds to send
 the data from the cloud to a user. This is negligible compared to the 5.8 hours required to extract all
 the records from the database. That said, if the userʼs bandwidth is less than 10 GBps, our system will
 send data at a slower rate to match. If the userʼs bandwidth is at least 50 MBps, which is a reasonable
 requirement for the national government or a data-intensive research institute, then it will take 4
 hours to send the data over, which is very reasonably short given the one-month timeframe.

 We additionally note that most users (except possibly researchers, whose needs are less
 time-sensitive) will request significantly less than 720 GB of data: national governments only require a
 subset of record fields, and state/municipal governments and local boards only require data from a
 particular location. Thus, we can serve all governmentsʼ and boardsʼ queries on the order of a few
 hours, if not less, which easily meets the April 1st deadline as long as users query at least a week in
 advance (to avoid potential network failures). This is true even if a municipalityʼs population size were
 to be twice as large as expected in a given year. We strongly encourage all users to request the data as

 14

 early in March as possible to avoid delays caused by network failures or competing queries for the
 same data; our system cannot guarantee delivery by April 1st for requests made within the last few
 days of March.

 To access the records, users also need to request and receive a key from the BP (section 3.3.1), which is
 bottlenecked by human response time. Given the one-month timeline, we estimate that a 1-2 week
 response time from the BP would be reasonable, providing users with 2-3 weeks of buffer time in case
 of system failures, network failures, requesting the key a week late, etc.

 4.3. Storage lifetime
 The government requires that all data is stored in perpetuity. Although our system cannot store
 everything forever due to data accumulating each year, we estimate our systemʼs storage lifetime
 below.

 The size of an encrypted record is 200 words * (4 bytes/word) * 3 (encryption) = 2,400 bytes. With one
 PMM-VMM pair per 100,000 residents, the total size of all records per PMM-VMM pair each year is:

 (100,000 records/yr) * (2,400 bytes/record) * (1 MB/10 6 bytes) = 240 MB

 The government also requires that we store PDFs. Assuming that 20% of submissions are paper forms,
 the average PDF size is 2 MB per household, and there are 2.6 people per household on average, the
 estimated size of all (unencrypted) PDFs per PMM-VMM pair each year is:

 (100,000 residents/PMM) * 0.2 * (1 household/2.6 residents) = 7,700 households
 7,692 households * (2 MB/household) = 15,400 MB

 Then, the estimated time it would take for the records and PDFs to fill up each both 1 TB disks of each
 PMM-VMM pair is:

 2 TB * (10 6 MB/TB) * 1 year/(240 + 15,400 MB) = 128 years

 Ideally, our system would be able to store data for hundreds, if not thousands, of years; however, even
 while utilizing all storage resources and keeping PDFs unencrypted, we only achieve a lifetime of 128
 years. If the national government would like for our system to store all data, including PDFs, for
 hundreds of years, it will need to provide us with more storage.

 This evaluation highlights a tradeoff between security and storage: Our systemʼs storage lifetime is
 bottlenecked by PDFs, which occupy nearly 200 times more storage per year than records (when both
 are unencrypted). Thus, although encrypting records minimally impacts our systemʼs lifetime,

 15

 encrypting PDFs would reduce the lifetime by a factor of 3, to 43 years, which does not even meet the
 70-year mark. Thus, although security is one of our design priorities, we consider this an unavoidable
 sacrifice to meet the storage requirements. We recommend that the national government consider
 providing us with more storage so that our system can provide longer-term storage and security for all
 data, including PDFs.

 5 Use Cases
 Governments, school boards, and election boards require census data at regular intervals to provide
 their services. External researchers also require census data for studies. We detail below how our
 system handles each use case.

 5.1 National Redistricting
 The national government requires census data to determine national legislature districts, so
 correctness is critical to fairly allocating national representatives. The national government queries
 the CSOUP user interface every decade, during March. A�er authenticating the national government
 official, our distribution module queries the storage module for the national record fields across all
 municipalities. We use the whole-data ack protocol to ensure data is distributed completely and
 correctly. Section 4.1.3 shows our system easily meets the April 1st deadline, even with network
 failures, as long as the national government queries at least a week in advance. We encourage the
 national government to request data early, given the large size of their dataset.

 5.2 Municipal Election Boards
 Municipal election boards use census data to determine voter rolls and mail out ballots, so correctness
 is key to respecting the right to vote. Municipal elections are the most time-sensitive use case,
 especially for special elections held shortly a�er the data collection period. We accommodate
 municipalities by allowing them one high-priority request per month, which our system will serve
 before other pending queries. Since each municipal dataset is disjoint, our system can serve requests
 from many municipalities in parallel, enabling distribution within the one-month timeframe.

 5.3 School Boards and Student Assignments
 School boards are among the systemʼs most data-sensitive users, so correctness is critical: the loss of a
 single childʼs record could deprive them of adequate and accessible education. School boards may
 also want to compare census data across years, i.e. compare this yearʼs and last yearʼs data to identify
 school-age children who recently moved in. We thus allow users to request data from past years, which
 can be served in parallel with requests for the current yearʼs data.

 16

 5.4 External Researchers
 External research positively informs and evaluates policy. To accommodate external researchers,
 CSOUP accepts queries year-round and can serve disjoint dataset requests from multiple researchers
 in parallel, returning statistics in aggregate. In March, however, we de-prioritize researcher data
 requests to avoid blocking more urgent government accesses. We further restrict research queries to
 10TB per month (17-minute send time) to prevent groups from hogging system bandwidth. Since
 researchers are more likely to study subsets of data rather than full records from every resident
 nationwide, we find this limit reasonable.

 6. Conclusion
 CSOUP receives, stores, and distributes Fictlandiaʼs census data with correctness and security as design
 priorities. CSOUP upholds correctness, i.e. all data is preserved and transmitted without loss or
 corruption, with a conservative ack-chain input protocol, write-ahead logging, triplication, and
 frequent checksumming to protect against machine and network failures and data corruption. CSOUP
 upholds security, i.e. unauthorized parties are prevented from accessing unreleased census data, via
 encryption of records, key splitting, and the Bureau of Privacy, which prevent users or malicious
 agents from having unilateral access to data. CSOUPʼs limitations and unresolved questions include:

 (1) the resulting tradeoffs to latency and user timelines, particularly with the introduction of the
 Bureau of Privacy

 (2) the complexity of implementing governmental infrastructure to support the encryption and
 key management mechanisms

 (3) the implementation of balancing online submission load across PMMs, which our report does
 not address, and

 (4) the inability of the system to store PDFs long-term (which also comes at the cost of PDF
 encryption).

 We recommend that the national government, census data users, and other systems engineers
 consider these issues further before implementing our system.

 7. Author Contributions
 The authors collaborated on conceptualizing and designing all components of the system. In
 conducting further research and writing text in the final report, Selena focused on the input,
 encryption, and key management modules, Vincent focused on the storage, distribution, and user
 so�ware modules, and Chris focused on the evaluation and use cases. Vincent and Chris created the
 system diagram; Selena did the final editing pass.

 17

 8. Acknowledgments
 We would like to thank Larry Rudolph for giving us incredibly detailed and invaluable technical
 feedback and ideas for our design (one might even call it accurate and complete, maintaining
 correctness), Thomas Pickering for giving us thoughtful feedback and inspiring encouragement on
 communicating our design, Shuli Jones for aiding us with technical understanding of systems
 concepts, and Katrina LaCurts and the rest of the 6.1800 staff for teaching this course.

 9. Appendix
 Included below are supplementary evaluations not included in section 4, namely the time to scan
 mailed paper forms and to upload records from the PMM to the VMM.

 9.1. Evaluation: Scanning paper forms
 Each municipality has a single scanner that scans 70 pages per minute. Assuming 20% of households
 submit via paper and each form is 2 pages on average, the expected number of pages per 100,000
 residents is:

 100,000 residents / (2.6 residents/submission) * 0.2 = 7,700 submissions
 7,700 submissions * 2 pages/submission = 15,400 pages

 Thus, for a municipality with 100,000 residents, it takes (15,400 pages) / (70 pages/min) = 220 min = 3.7
 hours to scan all pages, which is easily doable by a single administrative assistant. For the largest
 municipalities with 1,500,000 residents, it would take 15 times as long, or 3.7 * 15 = 55 hours to scan all
 pages. Although this is a long duration, we recommend that administrative assistants continually scan
 paper forms as they arrive, such that all forms are scanned within 1-2 days of the end of the period.
 (Even for smaller municipalities, scanning forms as they arrive stores the data securely in the system in
 case the forms are lost or damaged.)

 9.2. Evaluation: Time to upload records to cloud
 During the data collection period, the PMMs continuously upload encrypted records to the VMMs
 (section 3.4.1). Below, we evaluate the rate of this process.

 18

 Since the bandwidths are high (1 Gbps out of PMM, 10 Gbps into cloud), this step is bottlenecked by
 insertion time into the VDD (300 ms for encrypted records). Thus, a PMM can transfer data to the VMM
 at a rate of:

 1 record / 0.3 s = (3.3 records/sec) * (3,600 hr/sec) = 12,000 records/hr

 Since each PMM will process about 100,000 residentsʼ data, received throughout the two-month
 period, each PMM can easily upload records to the VMM at a rate faster than they are received. If a PMM
 fails at some point, or a PMM has to receive additional records when another PMM fails, the PMM will
 not face issues uploading the additional records: Even in an unrealistic worst case where a PMM
 received all 100,000 records on the last day of data collection, it would only take about 8 hours to
 upload them to the VMM; the data would all be in the VDD by the next day.

