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Capacity and Coding for the 
G ilbert-Ellio tt Channe ls 
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Ahstrrrrt -The Gilbert-Elliott channel is a varying binary symmetr ic 
channel with crossover probabilities determined by a binary-state Markov 
process. In general, such a channel has a memory that depends on the 
transition probabilities between the states. First, a method of calculating 
the capacity of this channel is introduced and applied to several examples: 
then the question of coding is addressed. In the conventional usage of 
varying channels, a code suitable for memoryless channels is used in 
conjunction with an interleaver, with the decoder considering the deinter- 
leaved symbol stream as the output of a derived memoryless channel. The 
transmission rate in such uses is limited by the capacity of this memoryless 
channel, which is, however, often considerably less than the capacity of the 
original channel. In this work a decision-feedback decoding algorithm, that 
completely recovers this capacity loss, is introduced. It is shown that the 
performance of a system incorporating such an algorithm is determined by 
an equivalent genie-aided channel, the capacity of which equals that of the 
original channel. Also, the calculated random coding exponent of the 
genie-aided channel indicates a considerable increase in the cutoff rate 
over the conventionally derived memoryless channel. 

I. INTRODUCTION AND REVIEW OF MAIN RESULTS 

T  HE GILBERT-ELLIOTT channel [l] is a  varying 
binary symmetric channel, the crossover probabilities 

of which are determined by the current state of a  discrete- 
time stationary binary Markov process (see Fig. 1). The 
states are appropriately designated G for good and B for 
bad. Due to the underlying Markov nature of the channel, 
it has memory that depends on the transition probabilities 
between the states. Section II of this paper is devoted to 
the calculation of the capacity C, of the channel where p is 
a measure of memory. It is shown that, when the one- 
dimensional statistics of the channel are fixed, C, increases 
monotonically with p and converges asymptotically to a 
value Cs’ which is the capacity of the same channel when 
side information about its instantaneous state is available 
to the receiver. Section III is devoted to the efficient use of 
codes, originally designed for memoryless channels, over 
this channel with memory. 
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Fig. 1. Gilbert-Elliott channel model. pG and pB are channel error 
probabilities in “good” and “bad” states, respectively, and g and h are 
transition probabilities between states. 

It is known that reliable communication over a finite- 
state channel is theoretically possible at any rate below 
capacity’ [2, pp. 176-1821. In practical uses, however, two 
major difficulties arise. First, much less is known about 
good codes for such channels than for memoryless ones; 
second, the length (and therefore the decoding complexity) 
of such codes would per force depend on the length of the 
channel memory. This is apparent from the fact that the 
error exponent for channels with memory [2, p. 1781 de- 
pends on the block length N whereas for memoryless 
channels it is independent of N. 

The conventional solution to these two problems is to 
fragment and disperse the channel memory by interleaving 
the encoded stream of symbols prior to transmission and 
to deinterleave the corresponding stream of received sym- 
bols [3, pp. 364-3661. If the interleaving span is long then 
the interleaved channel (the cascade of interleaver, channel, 
and deinterleaver) may be considered memoryless, and 
therefore efficient coding techniques for memoryless chan- 
nels may be used. We  denote the capacity of the inter- 
leaved channel, under the assumption of no memory, by 
CNM. The disadvantage of such a solution is that the 
capacity C NM of the memoryless interleaved channel is 
lower than the capacity CP of the original channel. This 
fact is demonstrated in Section II and illustrated in Fig. 2, 
where a typical curve of C, is drawn as a function of 1-1 
between its limits CNM and C”. The other curves in this 
figure will be explained further, In reality, however, the 
interleaving process, being invertible, does not remove the 
channel memory but only transfers it into a latent frag- 

‘Strictly speaking, at any rate below _C [2, pp. 180z181]. The 
Gilbert-Elliott channel is indecomposable and therefore _C = C = C [2, p. 
1091. 
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is composed of a novel metric calculator and a soft-deci- 
sion decoder, such as is used with memoryless channels. 
The metric calculator operates on the received channel 
symbols y and and on feedback decoded data 2 to esti- 
mate the probability q that the next channel symbol is in 
error, conditioned on the previous channel errors. The 
estimate 4 of this probability is used to produce a log-like- 
lihood metric m which is supplied to the soft-decision 
decoder. The additional complexity of the proposed deci- 
sion-feedback decoder, over a conventional decoder, is due 
solely to the metric calculator, which is shown in Section 
III to be a simple recursive operation. 

Fig. 2. Information rates for Gilbert-Elliott channels as function of 
channel memory II, for fixed pc, pe, and p. Cst and Rz’ are capacity 
and the cutoff rate of channel, respectively, when side-information is 
available. CNM and RyM are the respective values of interleaved 
channel, when considered memoryless. 

mented form which does not interfere with the operation 
of standard error correcting coders and decoders. The data 
processing theorem [2, p. 801 implies that an invertible 
operation does not reduce the channel capacity, and there- 
fore the interleaved channel has the same capacity Cu- as 
the original one. Thus it is not the interleaving operation 
that causes the capacity reduction in conventional systems 
but rather the decoding algorithm that ignores the latent 
memory in the interleaved channel. 

In Section III a decision-feedback decoder that does 
utilize the latent memory is introduced (see Fig. 3). As 
shown later, its use with interleaved codes enables trans- 
mission at rates comparable to those over memoryless 
channels with capacity C,. The decision-feedback decoder 

The performance of a system that includes the decision- 
feedback decoder is evaluated by first establishing its 
equivalence to a system that includes a genie-aided chan- 
nel which is composed of the interleaved channel, as 
defined before, and of a genie-aided metric calculator. The 
input of the genie-aided channel is the encoded symbol 
stream, while its output consists of the deinterleaved sym- 
bol stream and the perfectly estimated probabilities q. The 
genie-aided channel is shown to be binary-input, output- 
symmetric, discrete and essentially memoryless, provided 
the interleaving is sufficiently deep. Its capacity is shown 
to be equal to that of the original Gilbert-Elliott channel. 
Both the capacity and the random coding exponent are 
given in terms of the probability distribution of the ran- 
dom variables q. The advantage of the decision-feedback 
decoding algorithm, over a conventional one, in terms of 
capacity and cutoff rate, is shown via numerical examples 
in Fig. 2. In this figure C,” and RylL denote, respectively, 
the capacity and the cutoff rate of the genie-aided channel 
derived from the Gilbert-Elliott channel of memory p, 
while CNM and RfM denote the respective quantities of 
the interleaved channel when considered memoryless. 

Previous work on this subject includes the following: 
Capacity calculation for the Gilbert channel model [4], 
which specifies that, in one of the states, the channel is 

INTERLEAVED CHANNEL DECISION-FEEDBACK-DECODER 

(4 

?(l-L,n) 
* 

(b) 

Fig. 3. Communication system with decision-feedback decoder. (a) General description. (b) Metric calculator 
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error-free and historically precedes the Gilbert-Elliott 
model; capacity calculation for the Gilbert-Elliott channel 
under the assumption that imperfect side-information 
about the channel states is available [5]; presentation of a  
version of a  decision-feedback decoder for an interleaved 
Gilbert-Elliott channel, using an ad hoc binary estimate of 
the channel state [6]; and presentation and analysis of a  
decoding algorithm for an interleaved Gilbert channel [7]. 

II. THE CAPACITY OF THE GILBERT-ELLIOTT 
CHANNEL 

Overview of the Section 

The Gilbert-Elliott channel is formally introduced in 
Definition 1. Proposition 4 gives the expression for the 
capacity of this channel in terms of the expectation of 
functions of the random variables q,, interpreted as the 
probability of a  channel error at the Ith use of the channel, 
conditioned on the channel errors at its previous uses, and 
qp which in addition is conditioned also on the initial 
state of the channel. Definition 2 and Propositions l-3 
establish properties of q, and q,*. Propositions 5 and 6 
establish that within the class of channels with the same 
one-dimensional statistics, the channel capacity increases 
monotonically with an appropriately defined channel 
memory and converges asymptotically to a quantity equal 
to the capacity of the channel when side information about 
its instantaneous state is provided. 

Throughout this paper the subscripts and superscripts to 
vectors are to be interpreted as follows: wm e (w,, 
W  m+l,‘. ., w,,) for m  I n  and w, 2 w,‘. Logarithms are to 
base 2. The symbol @  denotes addition modulo 2. 

A. Basic Properties of the Conditional Probabilities of 
Channel Errors 

Definition 1: Let X,E {O,l}, y,~ {O,l} and z,Ax,@y, 
denote, respectively, the input, the output, and the error of 
the channel at the Ith use, I= 1,2, . * . . The error process 
{ zI}& is independent of the channel input, that is, 

Pr[ Gd = Pr M. (2-l) 
The error process has memory in the sense that it depends 
on an underlying state process { s,}~=~, s, E {G, B}, where 
G stands for good and B for bad. When conditioned on 
the state process, the error process is memoryless, that is 

The conditional probabilities Pr[z,Js,] do not depend on 
the time index 1. The state process is a stationary first-order 
Markov process; that is, 

Prb,ls,-,I = Prhlhl (2.3) 
and the right side of (2.3) does not depend on the index 1. 
The parameters of the channel are the crossover probabili- 
ties in the G and B states 

pGAPr[z,=llsl=G], peAPr[z,=lls,= B] (2.4) 

and the transition probabilities 

gLPr[s,=Gls,_,=B], bLPr[s,=Bls,-,=G]. 

The initial distribution 
be 

Pr[s,=G] =g/(g+ 

(2.5) 
of the state process is assumed to 

b), Pr[s,=B]=b/(g+b), 

(2.6) 

which ensures its stationarity. We  define the good-to-bud 
ratio p of the channel by 

pgPr[s,=G]/Pr[s,=B]=g/b. (2.7) 
In the singular cases p = 0 and p = cc the channel has 
actually one state only. These cases, being of no interest in 
the context of this paper, are not considered. It can be 
shown, by induction on 1, following a procedure similar to 
that in Appendix II, that for < E {G, B}, 

Pr[s,=<ls,=<]-Pr[s,=Qsof<]=(l-g-b)’. (2.8) 

This leads to the definition of the channel memory p 

+-g-b. (2.9a) 

When p = 0 the channel is memoryless, that is, the current 
state is independent of all previous states (see (2.3) and 
(2.5)). If p  > 0, the channel has a persistent memory; that 
is, the probability of remaining in a given state is higher 
than the steady-state probability of being in that state. If 
p  < 0, the channel has oscillatory memory; that is, the 
probability of remaining in a state is lower than the 
steady-state probability of being in that state. The extreme 
cases are p = f 1, in either of which the state process is 
completely determined by the initial state. If p  =l, the 
channel remains forever in the initial state; this case is not 
of interest in our context. If p  = - 1  the states alternate 
regularly. We  therefore limit p  to the interval [ - 1,l). Note 
that when memory is persistent, any p-values from zero to 
one can be associated with any good-to-bad ratio p. This 
is, however, not the case for oscillatory memory cases 
because it follows from (2.7) and (2.9a) that the restriction 

p2max{ -p,-p-l} (2.9b) 

holds; it is only for p  = 1 that p  can reach the value - 1. 
Definition 2: For sample paths such that Pr[z,_i, so] #  0, 

let q,*(z,-,, so) denote the probability for a  channel error 
at the lth use, conditioned on the initial state, and the 
previous channel errors, that is, 

4P(z,-l,s,) PPr[x,=llz,-,,s,l, (2.10a) 

and let q,(z,-J denote the same probability conditioned 
only on the previous channel errors, that is, 

q&L1) 4  ~h%-w%Nz,~,l =w-z,=WJ  
(2.10b) 

where E [ -1 denotes expected value. The stationarity of the 
channel allows shifting the time reference and thus the 
following notation is valid 

q,*(zk+l k+m-1, Sk) =Pr[zk+m=lIzkk=~~l,sk] (2.lla) 
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and probabilities (2.20) and with the initial distribution 

qm(z~~~,-l) = Pr[z,+,=l]zkk?A-i]. (2.11b) Pr[q,= (PP~+P~)(P+W~] =I. (2.21) 
The special cases m = 0,l mean that previous errors are 
not available, and therefore qz(zL?:, sk) and ql(zi?:) are 

Proof: We prove here part a), the proof of part b) 

denoted, for simplicity, by 
being similar. Equation (2.13) implies that for a given 

qo*(s,) 4 Pr[z, =l]s,] 
specific realization of q,*, the random variable q,:l has 

(2.12a) exactly two possible outcomes, ~(0, q,*) and ~(1, q,*). Take 

and by any realization of (z,-,, so) such that q,*(~,~~, so) is the 

41APr[z,+l=ll, (2.12b) 
above specific realization of q,*. Then 

which, due to stationarity, do not depend on k. The PrkL= ~(1,q,*)lz,~~,~,] =Pr[z,=ll~,~~,s,]=q,*. 

following proposition, proved in Appendix I, gives recur- (2.22) 

sions for these functions. Thus, when conditioned on q:, qA1 is independent of 
Proposition I: The following recursions hold: (2,-i, so) and therefore of q,T1, which proves the Markov 

4/*+1h~ &I> = +I, GYZI-13 so)) (2.13) 
property of the process. The transition probabilities (2.20) 
follow directly from (2.22) and the initial distribution 

and (2.19) follows from (2.4) (2.6) and (2.7). 

ql+l(zJ = V(Zl, dz,-1)) (2.14) Proposition 2: Let f( .) be continuous over [ pG, p,]. 
Then the following limits exist and are equal: 

where the function v( . , .) is defined by 

@ld 
,l’tn, m(q:)l = /li% Jwldl. (2.23) 

p~+~(PB-pG)+dvPG)K1-pe)/(~-9)1~ This proposition is proved in Appendix II. 

I 

I 

Pl3#1 
In particular, let 0,: ( .) and On( .) be the characteristic 

(l-b)p,+b, PB=l,qfl 
functions of q,* and q,, respectively. Then there exists 
@a( .) such that of all w, 

(2.15) lim @T(w)= lim @,(w)=@(w). 
I-m I-00 

(2.24) 

and by 

I pG+~(PB-pG)+t(q-PG)(PB/d~ 
Corollary: Let F,*( .) and F,( .) be the probability dis- 

tribution functions of q,* and q,, respectively. Then there 

v(Lq) A PGfO exists a probability distribution function F( .) to which 

(l- dP& PG=o,q#o 
both sequences converge weakly, i.e., 

(2.16) lim F,*(q) = /iir F,(q) = F(q), 
I-m 

(2.25) 

for pG I q 2 pB. The initial values for these recursions at each q where the limiting distribution F(q) is continu- 
so = G ous. The proof follows from (2.24) and [8, p. 2031. Paren- 

so = B thetically, it can be shown that a Markov process with 
transition probabilities (2.20) and any initial probability 

and that vanishes outside [ pG, pB] will have the same limiting 

%(PPG+ Pe)(P+W (2.18) distribution F( .). 
The probability distributions of qy and q, can be calcu- 

follow directly from Definitions 1 and 2. lated recursively using (2.19)-(2.21). To avoid the expo- 
Considering { q: }ycO and { q,}TZl as random sequences, nential increase in the number of the computations, the q 

the following holds. axis can be quantized in view of the continuity of v(z,q) 
Corollary: a) The sequence {q4:}2,, is a Markov process and of Pr[q,+,(q, = q] in q. Fig. 4(a) is an example of the 

with initial distribution results of such a calculation with 50 quantization levels. 
For 12 10 the difference between successive probability 

Pr[q,* =a] = P/(P-tl)> ("=PG functions is below the resolution of the graph, indicating 
l/(P +a "=PB 

(2.19) 
that within these quantization levels q, has practically 

and transition probabilities 
reached its limiting distribution. 

Proposition 3: Let f ( 0) be convex C over [ pG, pa]. Then 
the sequence { E [ f (q,)]} y= i is monotonically increasing, 
the sequence { E [ f ( qy )] } 2 0 is mono tonically decreasing, 

where V( ., .) is as in (2.15) and (2.16). b) The sequence m(dl ~~[fbl,+dl ~~IfwL)l afw)L 
{ q,};“=l is also a Markov process with the same transition (2.26) 
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,I<; = 0.01 

P” =0.5 

p=g/b=3 
p= I-g-b =0.96 

,I(; = 0 0 I 

,I,, = 0.5 
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Fig. 4. Distribution of random variables 4,. (a) For various values of 
temporal channel index 1. (b) For various values of channel memory p. 

and both converge to the same limit 

,li\ E L fk: >I = ,[m m  E Lf(d l . (2.27) 

Inequalities (2.26) are proved in Appendix III. The convex- 
ity of f( -) implies its continuity over [ pG, pe], and there- 
fore (2.27) follows from Proposition 2. 

B. Evaluation of Capacity 

Having established the basic properties of q, and 47, we 
turn to the problem of evaluating the capacity. The issues 
involved in the definition of the capacity of a  finite-state 
time-varying channel are discussed in [2, pp. 97-1111. By 
(2.8) the Gilbert-Elliott channel is indecomposable for 
- 1  < p < 1. Thus its capacity C can be formulated in 
terms of input and output sequences as follows: 

C = ,lic 5  ;;; Z( x,; y,) (2.28) 
I 

where Z( ‘; .) denotes mutual information and where the 
maximum is taken over all possible probability functions 
P(x,) of the input sequence x,. The capacity in the singu- 
lar case p = - 1  is still covered by (2.28), even though the 
channel is not indecomposable in the sense of [2, p. 1051, 
because the equality _C = C [2] holds in this case as well, as 
can easily be recognized. 

Proposition 4: The capacity of the Gilbert-Elliott chan- 
nel, in bits per channel use, is given by 

C=l- ,lit E[h(q,)] =l- ,liir E[h(q,)] (2.29) 

where h ( ‘) is the binary entropy function 

h(q) 4 -qlogq-(I-q)log(l-q). (2.30) 

For the proof see Appendix IV. Successive approximations 
to the limit C can be calculated using the recursions for ql 
and q,* given in (2.19) to (2.21). A bound on the trunca- 
tion error, evident from (2.26) and the convexity of h( .), is 
readily calculable from the value of E[h(q,)]- E[h(q,*)]. 

We  proceed to investigate the dependence of the capac- 
ity on the memory p when pG, pB, and p are fixed and use 
the explicit notation C,. Notice that the three fixed param- 
eters are one-dimensional statistics of the channel and, due 
to stationarity, invariant under interleaving. Propositions 3 
and 4 imply that 

C”“bl-h(q,)<C,+E[h(q,*)] AC” (2.31) 

where the superscripts NM and SI to the capacity stand 
for “no memory” and “side information,” respectively. It 
follows from definition (2.12) that the lower and upper 
bounds C NM and C ‘I are also one-dimensional statistics 
of the channel and therefore independent of p  and invari- 
ant under interleaving. Observe that C NM is the capacity 
of the “memoryless” interleaved .channel in the sense 
discussed in the third paragraph of the Introduction. It is 
therefore also the capacity C, of the memoryless channel 
with the same pG, pe, p and with p = 0. Also, it follows 
from the definition of qg*(sk) in (2.12a) that C ‘I is the 
capacity of a  channel with the same pG, pB, p and with 
arbitrary p, when side information about the current state 
sk is available; this justifies the superscript SI. An example 
illustrating Cp and its bounds is presented in Fig. 2. The 
monotonic convergence of C,, as p --) 1, to its upper bound 
C s1 is not specific to the example in Fig. 2  but rather is a 
general property which follows from the next two proposi- 
tions, proven in Appendices V and VI, and their corollar- 
ies. 

Proposition 5: Let pG, pB, and p be fixed, denote by 
q/p), l=l,2;. .) the random variable q, associated with 
the Gilbert-Elliott channel with memory p, and let f (.) be 
convex-U over [ pG, pB]. Then (~~1 I (~~1 and pop1 2 0 im- 
ply that 

E[f(q:‘“O’)] -[f(q,(“‘)] (2.32) 

for 1=1,2;.. 
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Proposition 6: Let pG, pB, p, and q,@’ be as in Proposi- 
tion 5 and let f( .) be continuous over [ pc, pe]. Then 

;iFl ,lit -@fbP)] = Hfb++k))l (2.33) 

for k=1,2;... The existence of the inner limit in the left 
side of (2.33) was established in Proposition 2. 

Corollary I: Let Fr( .) and F,*( .) denote, respectively, 
the probability distribution functions of q,@) and q$. 
Then 

;y /‘it 4%d = F,*(q) (2.34) 

where the convergences are in the weak sense. The exis- 
tence of the inner limit was established in the corollary to 
Proposition 2. The convergence of the outer limit to F,* ( .) 
follows from a similar argument in which Proposition 6 is 
used instead of Proposition 2. See Fig. 4(b) for an exam- 
ple. 

Corollary 2: a) If IpLol 2 (piI and popi 2 0, then 

Go s CL. (2.35) 

b) 
lim Cp = C ‘I. 
P-1 

(2.36) 

Proof: By Proposition 4 

cP=/l~m/[l-h(q~“))]. (2.37) 

Since 1 - h( .) is convex and continuous over [ pG, pR], 
Proposition 5 implies that (2.35) holds and Proposition 6 
implies that 

lim C,=E[l-h(q,*)]. (2.38) 
cl-‘1 

Recall that, by its definition (2.31) C ‘I is equal to the right 
side of (2.38), and thus (2.36) also holds. 

The monotonic convergence of C, to C ‘r when the 
memory is persistent is intuitively satisfactory because for 
larger p the expected dwell time in each state is larger and 
the next state can be better predicted. The quality of this 
prediction is asymptotically equal to that of a perfect 
predictor, which is equivalent to side information. As 
discussed before, when memory is oscillatory, p can reach 
the extreme value - 1 only for p = 1. In that case, (2.33), 
(2.34), and (2.36) hold also for p --f - 1. 

III. THE DECISION-FEEDBACK DECODER 

A general description of a communication system em- 
ploying the decision-feedback decoding algorithm, as in- 
troduced in Section I, is presented in Fig. 3(a). The system 
is composed of a conventional encoder, block interleaver, 
Gilbert-Elliott channel, deinterleaver, and a decision- 
feedback decoder. The latter includes the metric calculator 
and a conventional soft-decision decoder. The interleaver 
operates as follows. A stream of JN encoded symbols is 
stored in the rows of a J by N matrix and then transmit- 
ted over the channel column by column; the deinterleaver 
performs the inverse operation. The temporal index I used 

in Section II is broken up into the indices j and n such 
that l=(n-1)-J+ jwherels jlJandllnlN.Thus 
j and n denote the row and column indices, respectively, 
of the symbol transmitted at the Ith channel use. For 
convenience we define the doubly indexed variables by the 
correspondence 

w, tf w(j, n) (3.1) 

where w stands for X, y, z or s. We also denote w(j) g 
(w(j,l>; . ., w( j, N)). For a Gilbert-Elliott channel with 
memory 1~1 < 1 the interleaved channel can be considered 
memoryless in the following sense, where the influence of 
p and J is apparent. Since the state variables s( j, n) and 
s( j, n + 1) are J channel uses apart, it follows from (2.8) 
and (2.9a) that 

Pr [s(j, n + 1) = &(j, n) = [I 

-Pr[s(j,n+l)=[]s(j,n)#5] =I*’ (3.2a) 

for .$ E {G, B}. When conditioned on s( j, n + l), z( j, n + 
1) is independent of s( j, n), z( j, n); . ., z( j, l), and when 
conditioned on s( j, n), s( j, n + 1) is independent of 
z(j, n),. . -, z( j, 1). Therefore, 

lPr[z(j,n+l)lz(j,n);.. ,z(j,1>]-Pr[z(j,n+1)]I 

I C Pr[z(j,n+l)ls(j,n+l)] 
s(/,u+l) 

*I C  Pr[s(j,n+l)b(j,n)l 

.s( ,. II) 

. Pr [s(j, n)lz(j, n>;. * ,z(j,l)l -Pr[s(j,n+l)]I 

I C Pr[z(j,n+l)]s(j,n+l)] 
s(l.“+l) 

. ~~,lPr[~(j,n+l)ls(i,n)l-Pr[s(j,n+1)1I 

2 IPIJ (3.2b) 

and for 1~1 <l the last quantity converges to zero with J. 
Thus, for large enough J, the errors z(j) in the jth row of 
the interleaver matrix are effectively independent of each 
other. On the other hand, because the symbols x(1, n), 
~(2, n>,*. ., x( J, n) in the columns of the interleaver ma- 
trix are transmitted at consecutive channel uses, the corre- 
sponding errors ~(1, n), ~(2, n); . ., z( J, n) are highly de- 
pendent. This dependence is referred to as latent memory, 
and the purpose of the metric calculator is to enable its 
utilization by a conventional soft-decision decoder. In the 
singular case p = - 1 the memory can be utilized with or 
without interleaving in a rather straightforward manner, 
not discussed here. 

A detailed description of the metric-calculator is pre- 
sented in Fig. 3(b). The comparison of the channel output 
y( j - 1, n) with the decoder decision a( j - 1, n) yields an 
estimate z^( j - 1, n) of the channel error z(j - 1, n). We 
rewrite (2.11b) in the deinterleaved indexing (3.1). Let 
q( j,n) denote the probability of a channel error in the 
received symbol y( j, n), conditioned on the previous 
channel errors z(l, n); . ., z( j - I, n) in the same column 
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of the deinterleaver. Thus 

q(j,n)~q,(z(l,n);..,z(j-l,n)). (3.3) 

The metric calculator yields the estimate $( j, n) of q( j, n) 
by substituting the estimates z^(l, n); . ., z^( j - 1, n), in- 
stead of the actual ~(1, n); . ., z( j - 1, n), in (3.3). The 
metric calculator has a simple, recursive implementation, 
as shown by Proposition 1. We  also define q(j) L  
(dj, 1); . ., dj, NJ) and Q(j) 4  ($(j,l); . ., B(j, W I. 

Conventional soft-decision decoders operate on metrics 
rather than probabilities, and therefore y( j, n) and $( j, n) 
are combined into a log-likelihood metric m(j, n) = 
m(y( j, n), g(j, n)) which is supplied to the soft-decision 
decoder. The function m( . , .) is defined, for 0  I q  2 1, by 

I 
9 

log - 

4Yd 4 
l-q’ 

for y = 0 

1-q (3.4) 
log - 

9  ’ 
fory=l 

where the quantities log0 and log(l/O) are understood as 
- cc and + cc, respectively. 

To evaluate the performance of the communication sys- 
tem that employs the decision-feedback decoding algo- 
rithm, let P,(j) be the probability that the jth row is 
erroneously decoded, that is, i(j) #  x(j). We  found it 
impractical to obtain a direct evaluation of P,(j) because 
of its dependence on the random vector B(j) which, in 
turn, depends on the previous decoding results. The fol- 
lowing proposition, however, provides an upper bound on 
P,(j) in terms of the corresponding error probability 
P,p”( j) over the following genie-aided channel. 

Definition 3: For a given j, the genie-aided channel is 
defined by the input x(j,n) and the output pair (y( j, n), 
q( j, n)). It will be apparent that, for given j, the channel 
is the same for n =1,2; .., N, and therefore there are J 
different genie-aided channels, each one of them used 
exactly N times. Denote by P,g”( j) the probability of a  
decoding error at the jth genie-aided channel, using the 
same encoder and the same soft-decision decoder. 

Proposition 7: The following inequality holds 
n 

(3.5) 

where 

This proposition is proved in Appendix VII. We  establish 
further below that the genie-aided channel is discrete, 
asymptotically memoryless for deep interleaving and out- 
put-symmetric. For such channels, codes are available for 
which P,g” (j) decreas$s exponentially with code length. 
Therefore, for small JP,, the deviation of the denominator 
in (3.5) from unity is negligible and an exponential behav- 
ior, similar to that of P,““(j), applies to P,(j) as well, for 
any fixed J. 

We  proceed to prove the above-claimed attributes of the 
genie-aided channel. Discreteness follows from the fact 
that x( j, n) and y(j, n) are binary variables while q( j, n) 
p  q,(z(l, fl>;. ., z( j - 1, n)) can obtain at most 2Jp1 dif- 
ferent values. The asymptotic lack of memory of the jth 
channel over its N uses is justifiable by the following 
argument. The crossover probabilities Pr [ y(j), q( j) 1x( j)] 
are equal to Pr[q( j), z(j)] which, in turn, can be decom- 
posed as follows: 

Pr[q(j),z(j)l = ,~~{Pr[u(i,n),q(i;n-l),..., 
q(j,l), z(j, n  - 1); . ., z(j,l>I 

.Pr[z(j,n)lq(j,n), dj,n-l);..,q(j,1), 
z(j,n-l);.., z(j~l>l). (3.7) 

The following proposition, proved in Appendix VIII, as- 
serts that the n th factor of the right side of (3.7) converges 
to Pr[q(j, n)]Pr[z(j, n)lq(j, n)], as J-+ cc, establishing 
asymptotic memorylessness. 

Proposition 8: For 1 I j < J and 15 n I N, let 

F,,,,,,(qlq(j,n-l),...,q(j,l),z(j,n-l),...,z(j,l)) 

APr[4(j,n) ~qlq(j,n-l),...,q(j,l), 

z(j, n  -1); 9  ., z( j,l>] 
(3.8) 

and let 

F,(q) APr[4(jjn) IsI. (3.9) 

Then for any q 

lirn maxlF,,J,,,(qlq(j,n-l)," ',q(j,l), 

J+CC 

z(j,n-l);.., z( j,l)) - q.(q)] = 0 (3.10) 

and 

lim  maxIPr[z(j,n)lg(j,n), q(j,n-l),...,q(j,l), 
J+fX 

z(j, n  -1);. . ,  z(j,l)l 

-Pr[z(j,n)lq(j,n)ll=O 
(3.11) 

where the maxima are taken over 1~ j 4  J, over 1~ n 5 N 
and over the domains of q( j, n  - l), . . . , q( j, l), z( j, n  - l), 
. . . 4  j,l>. 

Finally, a  discrete memoryless channel is called output- 
symmetric if its set of outputs can be partitioned into 
subsets in such a way that every submatrix of the transi- 
tion probabilities matrix is symmetric [2, p. 941, [9, p. 861. 
The genie-aided channel is output-symmetric because 

Pr[Aj,n)3 djA4j~f4 
= Pr[y(j, n)lx(j, n>, 4(j, n>I Pr[q(j, fl)I (3.12) 

while 

Prbh44b4 4(j,n)l 
y(j,n) =x(j,n) 
y(j,n) +x(j,n)’ 

(3.13) 
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Having established the atributes of the genie-aided 
channel, we now turn to the evaluation of its information 
rates. The capacity and the random coding exponent of a 
discrete memoryless channel are defined in [2, pp. 74, 
138-1391. For a binary-input output-symmetric channel 
these values are obtained for the uniform input distribu- 
tion [9, p. 1411. Substituting (3.12) (3.13), and Pr[x( j, n) 
= 0] = Pr [ x( j, n) = 11 = l/2 in the above mentioned defi- 
nitions in [2] gives, for the capacity and the random coding 
exponent of the genie-aided channel, appropriately super- 
scripted, the following equations: 

C@(“=l-E[h(q(j,n))] (3.14) 

where h( .) is the entropy function (2.30) and 

E,?(‘)(R) = pal { EOpa(J)(X)- AR} (3.15) 

where 

Ep(‘)(X)AA-log{E[f,(q(j,n);X)]} (3.16) 

and 

f,(q;X) = {(l-q)i’(i+~)+ql/(l+~)}l+h. (3.17) 

We proceed to derive properties of these descriptors of 
the genie-aided channel. Notice that due to the stationarity 
of the Gilbert-Elliott channel the distribution of the ran- 
dom variables q( j, n) is independent of n and equal to the 
distribution of the random variable q,, considered in Sec- 
tion II, for I= j. Thus the results of Section II are applica- 
ble here. 

Definition 4: Let C*(l) and EO*(‘) denote the following 
quantities 

C*(‘=-E[h(q,*)] (3.18) 

E;(‘)(A)AA-log{E[f,(qp;A)]} (3.19) 

where q,* is as defined in (2.10a). 

Proposition 9: a) The sequence { Cga(J)}e~zl increases 
with j, the sequence {C *(i)}TzO decreases with j, 

CM/) 5 c&j+l) 2 c*(j+l) 5 c*(j) (3.20) 

and both converge to the same limit 
lim cw(i) = lim c*(j) 45 CP (3.21) 

.i + ‘7-J ; * Co 

b) The same applies to { EJ+(j)}y& and { E:(j) },“=,. 
The proof follows from (3.14)-(3.19), Proposition 3, and 

the convexity of h ( .) and of f,( . ; A). The curve for C@(j) 
in Fig. 5 is an example of this monotonic convergence. 

Corollary: The capacity of the genie-aided channel 
equals that of the original Gilbert-Elliott channel, i.e., 

CP”=C (3.22) 

The proof follows from (3.21), (3.14), and (2.29). 
The interpretation of this result is that by interleaving 

and decision-feedback decoding the problem of reliable 
communication over the time-varying binary-input 

PO = 0.5 
p=g16=3 
II = l-g -6 = 0.96 

Fig. 5. Increase in capacity Pa(‘) and cutoff rate RF(I) of genie-aided 
channel, with deinterleaver row index j, to respective limits C@ and lift”. 

binary-output Gilbert-Elliott channel is transformed into 
the problem of reliable communication over a binary-input 
multiple-output essentially memoryless channel that pos- 
sesses the same capacity. However, the following qualifica- 
tions need to be added to this statement. 

1) Since the capacity and the random coding exponent 
are only upper bounds on the achievable performance, it is 
not obvious that a specific code will have the same perfor- 
mance over the multioutput channel as over a binary 
symmetric channel (BSC) of similar capacity. It is for the 
latter channel that code performance data are generally 
available. 

2) The advantage of the decision-feedback decoder over 
a conventional decoder depends on the proper utilization 
of the calculated metrics by the incorporated soft-decision 
decoder. Standard soft-decision decoders have a small 
number of predetermined weights which might not match 
the calculated metrics of the multioutput channel, thus 
resulting in inferior performance. 

3) A decoding error causes the true value of q( j, n) to 
change into the estimate G( j, n) and this mismatch in- 
creases the probability of further decoding errors above 
that of the first decoding error. However, the associated 
loss in performance is also negligible when the system is 
designed to operate at low probability of decoding errors, 
as shown by Proposition 7. 

An important simple descriptor of the quality of a 
memoryless channel is the cutoff rate parameter R, c 
E,( h = 1). In [9, p. 8X] a bound for the decoding error 
probability of a maximum likelihood decoder is given for 
any binary-input output-symmetric channel and any spe- 
cific linear code in terms of the Bhattacharyya distance 
which is shown in [9, p. 1531 to be a monotonic function of 
the cutoff rate. For the genie-aided channel, the cutoff rate 
is derived from (3.15) as 

R~‘i’=l-log{l+E[f,(q(j,n))] (3.23) 



MUSHKIN AND BAR-DAVID: CAPACITY AND CODING FOR THE GILBERT-ELLIOT CHANNELS 1285  

where 

f,(s) A b’m3. (3.24) 

As shown in Proposition 9 the genie-aided channel im- 
proves monotonically with j, thus theoretically allowing 
for a  sequence of codes of increasing rate. In practical 
applications, however, a  simpler strategy can be used. A 
K-row header, with content known to the receiver, is 
transmitted at the beginning of each interleaver frame. 
This header carries, of course, no information, and its sole 
use is to initialize the metric calculator. Encoded informa- 
tion is transmitted over the remaining J - K rows, using a 
code suitable for the (K + 1)th row and therefore suitable 
for all other rows. Fig. 5  indicates that for a  typical case 
RgO(J) converges very quickly to its limit Rf and there- 
fore, even for moderate J, a  small K can be used with 
RrcK+l) = RF such that close to optimum performance is 
practical, with small overhead (J - K)/J. 

We  conclude this section by investigating the depen- 
dence of the quality of the genie-aided channel on memory 
p when the one-dimensional parameters pG, pe, and p are 
fixed. It was established in (3.22) that CtLga = C,. Therefore, 
(2.31) implies that the genie-aided channel is uniformly 
superior, in terms of capacity, to the interleaved channel 
when the latter is considered memoryless and (2.35) im- 
plies that this advantage of the decision-feedback decoder 
over a conventional one increases monotonically with 1~1. 
When p + 1, (2.36) implies that the genie-aided channel is 
asymptotically as good, in terms of capacity, as the chan- 
nel with side information. Turning now to the random 
coding exponent and the cutoff rates, we recall from (3.15) 
(3.16), (3.17) (3.23) and (3.24) that they are given in terms 
of the expected values of the functions f,( 4; h) and f,(q), 
which are continuous and concave in q E [pc, pB] (for 
h  2 0). Thus (2.26) implies that 

E,N"( R) I Ey,( R) 5 E;'(R) 

for every 0 I R < C and that 

(3.25) 

RfM I R&I RF (3.26) 

where Ey”( R) and RtM denote, respectively, the random 
coding exponent and the cutoff rate of the interleaved 
channel, when considered memoryless, while E,?(R) and 
Rzl denote the respective parameters for the interleaved 
channel with side information. It deserves mention that, 
while the capacity C ‘t is invariant under interleaving, the 
quantities Es’< R) and Rz’ as defined here apply only to 
interleaved Gilbert-Elliott channels. It is expected that the 
corresponding quantities for the original (uninterleaved) 
Gilbert-Elliott channel would turn out to be considerably 
smaller upon numerical evaluation. As with capacity, (2.32) 
and (2.33) imply that Eyp( R) and Rff, increase uniformly 
with 1~1 and converge asymptotically, as p -1,. to their 
upper bounds E,?(R) and Rz’. Fig. 2  presents a numerical 
example for the capacity and the cutoff rate of the genie- 
aided channel as a function of p  together with their lower 
and upper limits. In the example considered the advantage 

of the decision-feedback decoder over a conventional one, 
in terms of the cutoff rates, reaches a factor of about 2. 

IV. DISCUSSION 

The key for the calculation of the capacity of the 
Gilbert-Elliott channel is the recursive property of the 
conditional probability q,, Proposition 1. The low com- 
plexity of the proposed decision-feedback decoder that 
operates on the deinterleaved channel output is also due to 
this property. The point of view emphasized in Section III 
was that of transforming a time-varying binary-input bi- 
nary-output channel into an essentially memoryless bi- 
nary-input multiple-output channel that has the same ca- 
pacity. As an alternative point of view, consider the cas- 
cade of the encoder and the interleaver as a “supercoder” 
and the cascade of the deinterleaver and the decision- 
feedback decoder as an appropriate “superdecoder.” Intu- 
itively, the length of an efficient code over time-varying 
channels should be large in comparison with the mean 
duration of the channel memory. The well-known advan- 
tage of interleaving is that codes of any desirable length 
can be obtained from relatively simpler short component 
codes by increasing the interleaving depth alone. From this 
point of view the contribution of Section III is to show 
that restricting the choice of codes to those obtainable by 
interleaving component codes does not limit the achievable 
information rate over the Gilbert-Elliott channel, when 
the decision-feedback decoder is used. Furthermore, the 
advantage of the decision-feedback decoding algorithm is 
obtained without essential increase in the decoder com- 
plexity over that of a  standard soft-decision decoder for 
the component code. The component codes operate over a 
practically memoryless channel, and therefore their lengths 
are, in principle, independent of the temporal variations of 
the Gilbert-Elliott channel, provided only that the inter- 
leaver depth J is of appropriate length. Note that the 
effective code length for calculating the performance of a  
system employing the decision-feedback decoder is the 
component code length N and not the super-code length 
NJ. This is a satisfying result since the essential decoding 
complexity is a function of N only and NJ is merely a 
measure on the decoding delay. 

A system employing a similar decision-feedback decoder 
has been implemented at Elisra, Electronic System, Ltd. 
and tested over a channel similar to the Gilbert-Elliott 
one. Its performance was found to be in agreement with 
that predicted on the basis of the cutoff rate of the 
genie-aided channel when applied to the specific convolu- 
tional code used. 
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APPENDIX I 
PROOF OF PROPOSITION 1 

Lemmu A.1: For a Gilbert-Elliott channel, with 0 <p < co 
and [CL/ < 1, there exist 0 I c ~1 such that 

We prove the recursion for q/*, when pG f 0 ad pB f 1; the 
proof for q, is similar. The verification of (2.15) and (2.16) when 
pR = 1 and pr, = 0, respectively, is simple. 

By Definitions 1 and 2, 

qAl(zltso) =Pr[z~+l=llz~~d 
=Pc,Ws,+, =Glz,,~,l+PRPr[~,+l=~l~.l~~~l 
=P~;+(PR-PG)Pr[~I+l=BlzI,s,l (A.la) 

and 

%L,(Z,) = PG +( PB - PG)Pr[sl+l= hl. (Alb) 

When conditioned on s,, s,+ i is independent of (z,, SO) and 
therefore 

Pr[s,+l = W I, %I 
=Pr[s,+,=Bls,=G]Pr[s,=Glz,,s,l 

+Pr[s,+,=BJs,=B]Pr[s,=BJz,,so] 

=bPr[s,=Glz,,s,]+(l-g)Pr[q=BlZ,,s,] 

=h+(l-g-h)Pr[s,=BJz,,s,] =b+~Pr[s,=BIz,,s01. 

(A.21 

lPr[~,,=51z,,,s,,=~]-Pr[~,=~lz,~,so~~]I~~L (A.10) 

where [E{G,B}, L=1,2;.. and zt E {O,l}‘~, provided that 
sample path z,, is consistent with either initial state, that is 
Pr[z,,,s, = G] f 0 and Pr[z,,, so = B] # 0. 

Proof: Notice that 

Pr[ ~~=~lz,.,~,,=~]-Pr[s,=51z,,so~~] 

=Pr[s,f51z~,,so#~]-Pr[s,fSJz,,so=~] (A.11) 

and therefore 

Thus by induction 

Substituting (A.2) into (Al) gives 

Bv Baves’ rule 

Pr[s,lz,,s,l = 
Pr~~,~~,lz,-,~~ol ~~~~~l~~l~~~~~l~,-~~~ol A,(z,.) ~Pr[s,=Elz,.,s,~,=E]-Pr[s,=5lz,,s,~,#t] (A.14) 

zz 
Pr[z,lzi-l~Sol PrIzAz,-l,d for 1=1,2; ., L. The fact that A,(z,) does not depend on the 

Rearranging (A.l) into 

(A.9 value of 5 is evident from (A.ll). We proceed to show that there 
exists 0 5 c ~1 such that IA,( <: E uniformly in L, I and zL. 
When conditioned on s,~, and s,,,, s, is independent of z:-, 

4;” -PG 
PrIs,=~lz,-I,sol =p 

R 

.,_ _ 

(A4 
and z;+ ’ and therefore 

A,(z,,) = C Pr[~,=~I~,~,=I;,~~+l,z,lPr[~i+,I~~-l=~,z~~l 
and substituting (A.5) into (A.4) gives 

Pr[s,= Blz,-,,s,] = 
Pr[z,ls, = Bl(q? -PC> 
Pr[z,lz,-l,d(PB -PG) ’ (~.6) - 

~ I 
Substituting (A.6) into (A.3) gives 

Pr[ z,js, = B] 
The expected value of a random variable is always bounded by 

q/Tl(z,?sO) =PG+b(PB-PG)+/dG+ -Pc> 
its extreme values. Therefore, A,(z,), which is given in (A.15) as 

Pr.z,,z,~l,s 
0 

] the difference between two expected values, is bounded, for any 5 

=+,,q,*(z,-,>so)) 
where v( ., .) is as defined in (2.15) and (2.16). 

(A.7) 
and any zI., by 

IA,(z,.)(~~aixIU(~,~,,~z,z,)I (~.l6) 
1’ 2 

where 
APPENDIX II 

PROOF OF PROPOSITION 2 

We prove here that 

,b”, { E[f(q,+,)j-E[S(dl) =O (A4 

uniformly over k = 1,2, ’ ’ . and that 

,‘$; {E[f(q,*)l-E[f(dl) =O (A.9 

for f( .) continuous over [ pG, pB]. The proof is given first for 
Ip(< 1 and the singular case p = - 1 is discussed later. 

~(~,&,&~Z,> sV(5,~1,z,)-w(~,E2,Z,) (A.17) 

V(E,t,,z,) gPr[~,=~I~,~l=E,~,+l=~l,~,] (A.181 

and 

W(5,Cr,z,) ~Pr[s,=~I~,~~f~,s,+~=~~,z,]. (A.19) 

Notice that, due to the stationarity of the channel, CJ, V, and W  
do not depend on the index 1. We proceed to show that 
lU(5,~,,12, z,)l<l for any E,5,,t2, and any q by showing that 
the alternative contradicts the assumptions 0 < p < cc and 1~1 < 1, 
stated in the lemma. Let L/(6, [i, tz, z,) =l. Then V(& &, z,) =l 
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and  I&‘([, CT, z,) =  0. By definition (A.18) APPENDIX III 
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PROOF OF PROPOSITION 3  

From Definition 2  it follows that 

and  therefore v([, .$,, z,) =1  implies Pr[s, +  []s,-i =  [, s,+i =  [,I 
=  0. The  assumption that 0  <  p  < co implies that g, h  St 0  and  by  
(2.2) 

Pd~II~I~I~~I+II = Pr[s,ls,~,IPr[s,+Ils,l 
Pr[++~l+J 

(A.21) 

Thus Pr[s, f [Is, , =  c, s,., , =  &] =  0  implies that .$t +  [ and  that 
Ws,+ 1  #  (Is, #  [] =  0. The  assumption that V([, El, z,) =  1  also 
implies that Pr [z,]s, =  &‘I +  0  and  therefore W([, t2, z,) =  0  im- 
plies that Pr[s, =  [Is,- , #  &, s,+i =  c2] =  0, resulting in c2  = 6  and  
Ws,, , =  (Is, =  [] =  0. Thus U([, &, EZ, z,) =  1  implies that g  =  b  
=l, contradicting the assumption that (~1~1. In a  similar way 
C/( 5, 6, , tz, z,) =  - 1  also leads to the same contradiction. There- 
fore, E A maxE, c,, El. ,,]U([, [i, tr, z,] <  1  and  the lemma tl$ 
from (A.13) and  (A.16). 

W e  proceed to prove (A.9). From the lemma 

lim IPr[s,Jz,,s,]-Pr[s,lz,]I=O 
/+m 

(A.22) 

uniformly over the domains of all variables involved, provided 
that Pr[z,- ,, s,,] #  0. Therefore, (A.l) implies that 

lim {41*(z,~,,s,)-q,(z,-,)} =O (A.23) 
I+m 

uniformly over the domains of {z, };a_, and  sa, provided that 
Pr[z,_ , , so] f 0. By assumption f( .) is uniformly cont inuous over 
the compact  domain [ p(;, pR]. Since pG I q;” I pR ad pG 5 q/ I 
pR, (A.23) implies that 

lim { f(q,*(z,~,,s,))-f(q,(z,-,))} =O (A.24 I-m 
uniformly as  above  and  (A.9) follows. 

For the proof of (A.8) notice that 

qA+,(z,t+,-l) =WzA+,=llzk+t-ll 
= E[Pr[z,+, =WL~~skl  Iz~+~-~] 
=E[q,“( z~L-1~~k)Izk+/-11 (A.25) 

Combining (A.23) with (A.25) gives 

,lit { qh  +i(zA+I-l) - q,(zEL~I)} =  0  (~.26) 

uniformly over the domains of k and  of {z, }Et and  (A.8) 
follows. 

In the singular case p  = - 1  the current state s, is determined 
by  the initial state so. Furthermore, p  =  - 1  implies, via (2.9a) 
and  (2.6) that Pr[s,, =  G] =  Pr[s, =  B], and  therefore the distri- 
but ion of q,* does  not depend  on  the index I; this fixes the first 
term in (A.9) to a  constant. Considering the second term, it can  
be  shown, following the same reasoning as  in Appendix VI that 
when  p= -1, 

(A.27) 

satisfying (A.9). The  first term in (A.8) converges to the same 
limit as  the second one  by  the same argument.  

=  E[Pr[z,,, =l]z,]]z,?] 

=Pr[z,+,=l(z:] 

=  q,(d). (~.28) 

The  left inequality in (2.26) is then proved as  follows: 

E[f(dz, ,>>I =E[f(&:))] 

= E[f( E[q,+dz,)lzf])] 

5  E[E[ftq,+dz,))lz:]] 
= Jw%+,bJ)l (A.29) 

The  first equality follows from definition (2.11b) and  the station- 
arity of the channel  while the second equality follows from 
(A.28). The  inequality is an  application of Jensen’s inequality to 
the assumed convexity of f( .) over [ pG, pR]. The proofs of the 
middle and  the right inequalities in (2.26) are similar to the proof 
in (A.29), using 

and  

q,+,(v) =EbL(z,~oh,] (A.30) 

q,*i,(z,,SO)=E[qlY(zf,S1)lz/,S”], (A.31) 

respectively, instead of (A.28). Equality (A.30) follows directly 
from definition (2.10b). The  proof of (A.31) is similar to the one  
in (A.28). 

APPENDIX IV 
PROOF OF PROPOSITION 4  

For the proof of the left equality in (2.29) notice that 

~(x,;y,)=~(y,)-~(y,ix,)=~(~,)-~(z,) 64.32) 
where H( .) denoted the entropy. H( y,) achieves its maximum 
when X, is uniformly distributed and  H(z,) does  not depend  on  
the distribution of x,. Therefore, 

C=,lun~m~I(x,;y,)=l-,lim_:H(z,). (A.33) 
P I 

Furthermore, 

H(z,) = i H(z,lz,-,) = i E[h(q,)] (A.34) 
,=l r=l 

where h( .) is as  def ined in (2.30). Since h( .) is convex over 
[ pG, pR], Proposit ion 3  implies that { E[h(q,)]}~$ is monotoni-  
cally decreasing and  therefore 

C=l- ,lic f $  E[h(q,)] =l- lim E[h(q,)]. (A.35) 
r-1 I-00 

The right equality in (2.29) follows from the left equality and  
(2.27). 

APPENDIX V 
PROOF OF PROPOSITION 5  

Let {C”’ };“= , be  a  set of statistically independent  Gilbert- 
Elliott channels with identical parameters pG, pR, p, and  p  = pi, 
and  let { s/“}~~~ and  (~1’) }4, denote their state and  error 



1288 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 6, NOVEMBER 1989 

processes, respectively. We first show that from these processes 
one can construct a pair of processes { F,}T=a and {z”, }EI, which 
can be interpreted as the state and the error processes, respec- 
tively, of a Gilbert-Elliott channel with parameters pG, pB, p 
and p = p,,. The proposition is then proved by showing that for 
i=1,2;.. and 1=1,2;.. 

E[f(Pr[Z,=l(&,])] ~E[f(Pr[z~“=Ilz,Y),])]. (A.36) 

For the construction of {F,};C& and {i;}TZI, let {w,}~?~, w, E 
{1,2, . . . }, denote the Markov process with the initial distribu- 
tion Pr [ o. = l] = 1 and with the index-independent transition 
probabilities 

Pr[@ ,+,b,l = (;:. 
for w,+, = w, 
forw,+,=w,+l 

(A.37) 

where 

a=P”/cLl. (~.38) 

By assumption, 1~~~1 I 1~~ 1 and pLopI 2 0 and therefore 0 I (Y I 1 is 
a valid probability. The process { w,};“=~ is statistically indepen- 
dent of {s/“}E=(~ and of {z/“}? I 1, i=1,2.... We now define 
;,&s/(‘+) for I=O,l,... and ?,bzjw,) for 1=1,2;... Sincethe 
processes { sj’ ) }? I 03 i=1,2;.., are statistically independent, 
identically distributed and statistically independent of {w, };“=,-,, it 
follows from the construction that 

+ F Pr[ s!,“)=G]Pr[w,=j+l,w,_,=j] 
/=1 

=g,a+p(p+1))‘(1-cu) 

=(1-P0)P(P+1)-%0 (A.39) 

(which is the definition of g,) where 

g,PPr[s:“=G(sli’,=B] =(l-/.~i)p(p+l)-‘. (A.40) 

In a similar way it follows that 

Pr[~,=B~?,~,=G,.?-,]=(l-~O)(~+l))l~bO (A.41) 

which is the definition of h,,. Thus { s,};*=~ satisfies (2.3). Further- 
more, g,,/b,, = p and 1 - g, - b, = pa. It is also obvious from the 
construction that { Y,};“=i and {F,};“=, satisfy (2.2) with parame- 
ters pL‘ and pA. Thus { F,}EO and {Z,};“,, can be interpreted as 
the state and the error processes, respectively, of a Gilbert- 
Elliott channel with the required parameters, as introduced at the 
beginning of the proof. To prove inequality (A.36) we use the 
following sequence which holds for any I, i = 1,2, . . . , 

=ECf(Pr[zl~i)=llzl”l:,~,])] 

=E[f(Pr[zj’)=I~zjL),])]. (A.42) 

The first equality follows from the fact that by definition z”, = zjw,) 
and the fact that f, ~, is determined by {z{i\}p”=, and o,-i. The 

inequality is an application of Jensen’s inequality to the assumed 
convexity of f( .) over [ p(;, pR]. The second equality follows from 
the fact that, when conditioned on z/?‘~, z/‘+) is independent of 
WJ~=L,+,, The last equality follows from the fact that all 
the processes { zj’) }z ,, i = 1,2, . . have identical statistics. 

APPENDIX VI 
PROOF OF PROPOSITION 6 

We assume here that pcT < pR; if pG = pR then the proposition 
holds trivially. For simplicity, the explicit dependence of the 
random variables on the value of /.L will be omitted.Define 

and 

a,(~,~,) c Pr[s, = Blz,-,] 

s, = B 
s, = G 

for I =1,2,. . . . Also define 

i 

I-1 

iq”‘(Z,&,) 2 ly 
c z, 2 TN 

j=l-N 

b, otherwise 

for N=1,2;.. andforI=N+l,N+2;.., where 

T$NN(P~T+P,)P 
Lemmu A.2: If p(, < pR then for LYE {O,l} 

lim lim Pr[rijN)=alu/* =a] =l 
N-+m p+l 

and 

lim lim Pr[a,+ =alrijN’=a] =I. 
N+m w-1 

(A.43) 

(A.44) 

(A.45) 

(~.46) 

(A.47) 

(~.48) 

Notice from (A.45) that 6jN’ is defined only for I > N and that 
the statistics of c?/““) and of a;” are independent of 1, due to the 
stationarity of the channel. 

Proof: It follows from (A.45) and from the assumption pG < 
pA that 

lim Pr[iijN)=u;C(5)ls,=s,_,= . ..s.-,=[] =l (A.49) 
N+CC 

for [E{G,B}. Recall that pbl-g-b, and therefore p-+1 
implies g, h 4 0. It thus follows from the definition of { s,};*=~ 
(Definition 1) that for N=1,2;.. and [E {G,B} 

lim Pr[s,-,= ... =S,-N=&s,=[]=l (A.50) 
P-+1 

and thus (A.47) follows from (A.49). For the proof of (A.48) note 
that since 0 < p < cc, Pr [ a? = CX] > 0 for 4 E (O,l} and therefore 
(A.47) implies that 

lim lim 
Pr[8,‘N)=ollu:=CY] 

N+m ~-+l Pr[uT=a(ciiN’=CY] 

= lim lim 
Pr[CijN)=a] 

Pr[ a: = a] 
=l. (A.51) 

N-cc p+l 

Since the limit of the numerator on the left side of (A.51) is unity, 
the limit of the corresponding denominator is also unity. 

Lemma A.3: 
tl,m, ,lim, E[ la, - u,*I] = 0. (A.52) 
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Proof: 

E[ a,la,* = a]=E[a,lri:N’=a,a:=cr]Pr[CilN’=(yla/*=(y] 

+E[u,pjN’fa,u,* =a] Pr[Ci{N’#(Y(al* =a] 

=  E[ U,IB/N’ = a, u/f+ =  cl] 

+  ( E[ u,lcijN’ #  a, a,* =  a] 

-E[u,16jN’=a,u;” =a]) 

.Pr[ Ci!N’ f ala: =  a] (A.53) 

for any  aE {O,l} any  iV=1,2;.. and  any  I> N and  therefore 
(A.47) implies that 

lim lim max~E[u,~a;=~]-~[a,~B~N)=a,~l*=a]~=O. 
N+m p+l /> N  

(A.54) 

In a  similar way, 

E[u,JrijN)=a] =E[u,JiqN’=a,al*=a] 

+(E[u,(uJL#a,u~N~=a] 

-E[u,lu: =a,a~N)=,]) 

.Pr[ a,* #  alujN) =  4 (A.55) 

and  therefore (A.48) implies that 

,‘II”, F:l ~~l~[u,lcij~‘=a] -E[a,lrijN’=a,up =a])=O. 

(~.56) 

Combining (A.54) and  (A.56) gives 

lim lim maxlE[ alla: = a] - E[ a,[~/“’ = a] I= 0. (A.57) 
N-w p+l I> N  

By definitions (A.43) and  (A.44) 

E[ U,pqN’ = a] =E[Pr[u;“=ll~,~,]lci~~‘=cu] 

=E[u/yCijN’=.]. (~.58) 

Equation (A.48) implies that 

Nl@m lilii ~~IE[u~I$~‘=(Y] -al=0 (A.59) 

for a  E {O,l} and  therefore (A.58) implies that 

lilim Jiil n~nlE[u,lir(~)=cu] -al=0 (A.~o) 

for (Y E {O,l}. Combining (A.57) and  (A.60) gives 

lim lim lim {E[u,lu,*=a]-a} =0 
N-m w-1 I-m 

(~.61) 

for 01  E {O,l} and  (A.52) follows from the fact that the random 
variables in (A.61) do  not depend  on  N. Q.E.D. 

W e  now proceed to prove (2.33). For 0  I a  I 1  let 

w(u) +,(l-u)+p,u (~.62) 

and  let 

lb> sf(W(a)). (~.63) 

Since f( .) is, by  assumption, cont inuous over [pc, pa], f” .) is 
cont inuous over [O,l]. Let 6  >  0. By (A.52) 

lim lim Pr[]u,-a,*(>6]=0 (~.64) 
p-1 I-m 

and  since f( .) is uniformly cont inuous and  bounded  over [O,l], 

lim lim E[fl(u,)-fl(u:)] =O. 
p+l /-cc 

(~.65) 

By Definitions 1, 2, (A.43), (A.44) and  (A.62) q, = ~(a,) and  
qt (s,) =  w( u,+ ) and  thus (A.63) and  (A.65) imply (2.33). 

APPENDIX VII 
PROOF OF PROPOSITION 7 

Let PCD ( j) and  NPCD ( j) denote the event  that all previous 
rows up  to and  not including j have  been  correctly decoded,  and  
the complementary event, respectively. For a  hypothetical sys- 
tem, which includes the genie-aided channel,  let P,‘““(j) and  
PNPcn( j) denote th e  probability of the j th row being erro- 
niously decoded,  condit ioned on  PCD ( j) and  NPCD ( j), respec- 
tively. Notice that under  the PCD( j) condit ion i(j) =q( j) and  
therefore P,““(j) is equal  to the equivalent probability in the 
actual system. By the union bound  

e,(j) 5  C PzcD(i). 
i=l 

(~.66) 

W e  proceed to upper -bound PtTCD(i). Since 

P?(i) = PcrCD(i)Pr[PCD(i)]+ Pd‘JpCD(i)Pr[NPCD(i)] 

i-l 

2  <,i’cD(i)Pr[PCD(i)] 2  P,“‘“(i) l- c  P?(k) , 
k=l 1 

(~.67) 

it follows that 

PPCD( i) I 
P,p”( i) k 

<’ i-l 3-J& 
(~.68) 

l- c  Pep”(k) 
k=l 

where 9, is def ined in (3.6). Substituting (A.68) into (A.66) 
implies (3.5). 

APPENDIX VIII 
PROOF OF PROPOSITION 8 

The proof of (3.10) is based  on  the following. 
Lemmu A.3: Let f( .) be  cont inuous over [pGr pB], and  let 

lj.~l<l. Then  

=lern lF,yl~lE[ f( 4i(zk~+‘))h] - E[ f( e(zkE”>)l I =O 

(~.69) 

for sg  E {G, B}. 

Proof: It follows from (2.8) (2.9a), and  the assumption 1~1  < 1  
that 

lim IPr[s,IsO]-Pr[s,](=O 
/+m 

(A.70) 

for s,, sg  E { G, B } and  therefore 

lim max IPr[s,,~,Is,]-Pr[s,.~,]I=O (A.71) 
I. * m  1s / s L/2 

for s!,-/, sg  E {G, B}. When  condit ioned on  s,.~,, zL1: is inde- 
pendent  of s,), and  therefore 

E[f(&-:+‘))h] =E[4~,,G)Id (A.724 
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and uniformly over ihe domains of q( j, 1); . ., q(j, n - l), 

E[ f( q,(z;:::+‘))] = Ebb.,(E)] (A,72b) ‘(j,‘),’ ’ . , z( j, n - 1). Using the same arguments as in the proof 
of the corollary of Proposition 2, (3.10) follows from (A.80). 

where To prove (3.11), notice that by Definition 2 

A,..,(t) ~E[f(q,(z~~-:+‘))Is,~-,=5] (A.73) Pr[z,,=llzl.::,s,] =E[~,*(z~-~,s~)(z~--:,s~] (AN) 

for 1111 L and <E{G, B}. Since q,E[pG,pe] and f is con- and 
tinuous over this compact domain, f (q,) is bounded and there- 
fore A,,,,([) is also bounded uniformly in L and 1. Thus (A.71) 

Pr[z,,=llz~::] =E[qL(zL-l)Iz~I{] (A.82) 

and (A.72) imply that and therefore 

lim max 
L-m IrIsI. /  

IE[ f( q,(z;:I:+‘))lso] IPr [ z,, = l(z:::, sg] - Pr [ zl, = l(zt1:] 

-E[f(&,t:+‘))]l=O (A.74) 5 m=lq,?(zL-ljSo) - qr.(zr,pl)l. (A.831 
i/-l 

for sg E {G, B }. We proceed to extend this result for I up to L. 
For I = L/2 (A.74) implies that 

lim IE[ f( q,.,2(z:_:““))Iso] 
L-CC 

- E[ f(qL,z(z;I;‘2+‘))] =0 (A.75) 

for sg E {G, B}. It follows from the uniform convergence in (A.8) 
and (A.26), respectively, that 

lim max 
L + cc  I . /2 < I  5 I .  

IE[ f( q,(z;;I:+‘>)l 

-E[f(q,.,~(z;I:.‘2+1))]I=0 (A.76) 

Thus (A.23) implies that 

Ll$m 2 :,$L IPr [ z,,Izki+’ 2 so ] - Pr [ zLIzi::+‘] I= 0 (A.84) 

uniformly over the domain of all variables involved. It is simple 
to extend this result over 1 I 1 I L since for I= 1 the term ~~1~~’ 
vanishes. Replacing L by J and I by j, shifting the time index by 
k = (n - 2) J + j and rewriting (A.84) in the deinterleaved index- 
ing (3.1) results in 

Jlimm l~,~JIPr[z(j,n)lz(l,n),...,z(j-l,n), s(j,n-111 

-Pr[zTj,n)(z(l,n);.., z( j-l,n)]l=O. (A.85) 
and Since q( j, n) is a function of ~(1, n); . ., z( j -1, n), (A.85) 

lim mm implies that 
L --t M  L./2 5 I  5 1. 

lE[ f( a(d::?l))lso] 

- E[~(~,,,(z~_:‘~+‘))Is~] =O (A.77) 
.,$mf l~,~Jlpr[z(i,n)14(j,n),s(j,n-l)l 

for sg E {G, B}. Combining (A.75)-(A.77) gives the equivalent of -Pr[z(j,n)Jq(j,n)]I=O (~.86) 

(A.74) for L/2 I IL L and then (A.69) follows. Q.E.D. uniformly over the domains of all variables involved. When 

We proceed to prove (3.10). Replacing L by J and I by j, 
conditioned on s( j, n -l), q( j, n) is independent of q( j, n - 

shifting the time index by (n -2) J + j and rewriting (A.69) in 
1); . ., q( j, l), z(j, n - 1); . ., z( j,l), and (3.11) follows. 

the deinterleaved indexing (3.1) and (313) results in 

,lem l~,~JIE[f(y(j,n))ls(j,n-l)l-E[f(q(j,n))ll=O 
(A.78) 11] 

for s( j, n -1) E {G, B}. Note that q( j, n) is a function of 121 
~(1, n), . . . , z( j - 1, n) only and the latter, when conditioned on 
s( j, n - l), are independent of q( j, 1); . . , q(j, n - 1) and [31 

z(j,l); . ., z( j, n - 1). Therefore [41 

IE[f(q(j,n))lq(j,n-l),...,q(j,l), 151 
z(.i,n-l>;..,z(j,l)] 

=E[E[f(q,(j,n))l~(j,n-l)]lq(j,n-1),.~.,q(j,l), ~1 
z(j,n-l);..,z(j,l)] (A.79) 

and (A.78) implies 
[71 

,lirnm l~,~llE[f(q(j,n))lq(~,n-l),...,q(j,l), PI 
[91 

z(j,n-l);.., z(j~l>]-E[f(q(j,n))]l=O, (A.80) 
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