Physics of Solids II —6.732

Quiz #1 October 16, 1998

1. 60 points

Suppose that you have just discovered a new cubic compound semiconductor called novelite which crystallizes in the zincblende structure, a common crystal structure for III-V compound semiconductors such as GaAs. Suppose that the valence band maxima are at the Γ point (k=0) are associated with constant energy surfaces that are approximately spherical and consist of a heavy hole band $(m_{hh}^* = m_0)$, a degenerate light hole band $(m_{lh}^* = m_0/3)$, and a split-off band $(m_{soh}^* = m_0/5)$ which is 0.1 eV below the valence band maximum. Suppose that the conduction band minima are at all Σ points crystallographically equivalent to $(0.85,0.85,0)\pi/a$. These equivalent points are all located along all the equivalent $\{110\}$ directions (ΓK) .

Assume the following dispersion relations for the electrons

$$E_c(\vec{k}) = \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_1^*} + \frac{k_2^2}{m_2^*} + \frac{k_3^2}{m_3^*} \right)$$

where the \vec{k}_1 and \vec{k}_2 vectors are, respectively, along the (110) and (1 $\bar{1}$ 0) directions, and \vec{k}_3 is along the (001) direction. Assume that along the longitudinal (110) direction $m_1^* = m_0$, and along the directions transverse to this direction take $m_2^* = m_0/3$ and $m_3^* = m_0/9$.

- (a) If each electron carrier pocket has n electrons, find an expression for the minimum k_F for a single electron ellipsoid in terms of n and the effective mass components.
- (b) What is the length of k_F along the (111) direction relative to the minimum k_F ?
- (c) How many equivalent electron ellipsoids are there?
- (d) Find an expression for the density of states for the electrons.
- (e) Find an expression for the density of states for the holes.
- (f) Find an expression for the Fermi energy at temperature T if no dopants are added and all the carriers are generated thermally.
- (g) Assuming equal relaxation times for all the holes and electrons, find the relative contributions of each electron and hole carrier type to the electrical conductivity (assume $\vec{E} \parallel (110)$).
- (h) Which carrier pocket makes the largest contribution to the transverse magnetoresistance?

2. 40 points

Suppose that you have an fcc semimetal with 2 atoms per unit cell. Suppose that the electrons are at the L points, $\pi/a(1,1,1)$, $(m_l^*=0.3m_0 \text{ and } m_t^*=0.1m_0)$ in the Brillouin zone and the holes are in a single carrier pocket at the Γ point (k=0) with $m_h^*=0.3m_0$, and assume that the energy overlap for this semimetal is 10 meV.

- (a) Find the position of the Fermi level for the 3 dimensional semimetal at T=0.
- (b) What is the smallest phonon wavevector required for inter-pocket scattering between the electron pockets for this 3D semimetal?
- (c) What is the smallest vector for inter-pocket scattering if umklapp processes were to occur?
- (d) Suppose that the semimetal is now prepared as a thin layer (quantum well) between alkali halide insulating barriers with the (001) crystalline direction normal to the thin layer of the semimetal (layer thickness = 50 Å). Find an expression for the energy of the lowest subband of the L point electrons as a function of the semimetal layer thickness.
- (e) At what layer thickness does the thin film experience a semimetal-semiconductor transition?
- (f) Suppose that the semimetal thin film is grown along a (111) direction. Is the layer thickness for the semimetal-semiconductor transition larger, smaller or the same as in (d)? Why?
- (g) Design an experiment that will tell you that the semimetal-semiconductor transition has occurred.