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where p(e) de is the number of translational states lying in the energy range
between e and ¢ + de. The factor of 2in (9-17- 1) accounts for the two possible
spin states which exist for each translational state. Here the Fermi energy u
is to be determined by the condition (9 16-3), i.e,,

w 1
2 [ Fo( de =2 [ grmppy p@ de =N (9-17-2)
Evaluation of integrals All these integrals are of the form

[ F@e( de (@17:3)

where F(e) is the Fermi function (9-16-4) and ¢(¢) is some smoothly varying
function of e. The function F(e) has the form shown in Fig. 9-16-1, i.e., it
decreases quite abruptly from 1 to 0 within a narrow range of order kT’ about
‘e = u, but is nearly constant everywhere else. This immediately suggests
evaluating the integral (9-17-3) by an approximation procedure which exploits
the fact that F'(¢) = dF /de = 0 everywhere except in a range of order kT near
¢ = u where it becomes large and negative. Thus one is led to write the inte-
gral (9-17-3) in terms of F’ by integrating by parts.

Let We) = [0 * o(€) de’ L (91T-4)
Then [ F@0(0) de = FOUAL = [} PO d

But the integrated term vanishes, since F(w) = 0, while ¥(0) = 0by (9-17-4).
Hence '

[T F@e@ de = — [ F@we de (9-17-5)

Here one has the advantage that, by virtue of the behavior of F'(e), only the
relatively narrow range of order kT about ¢ = u contributes appreciably to the
integral. But in this small region the relatively slowly varying function ¢ can

Fig.9:17-1 The derivative F'(¢) of the Fermi function as a function of e
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be expanded in a power series

W = ¥ + [%‘9]<_ ) +%[%2~‘£]“(5_#)24; o

€2

where the derivatives are evaluated for ¢ = u. Hence (9-17-5) becomes

/;)a Fode = % [%—:%]“ /0” F'(e)(e — p)™de (9-17-6)

663( e—p)

il

_ "ZO
But [0” F'()(e — w)mde = — ﬁ)“’ (e — w)™ de

o [° & m
=8 /—ﬁu CES e da
where Lz = Ble — p) (9-17-7)

Since the integrand has a sharp maximum for e = , (i.e., for z = 0) and since
Bu >> 1, the lower limit can be replaced by — « with negligible error. Thus
one can write

ﬁ)” F'()(e — w)m de = — (6T)™Ln (9-17-8)
where In = /—“’w -(—e;—jj‘ﬁ‘z z™ dx (9 -17- 9)
Note that
e 1

e+ 12 @+ D= +1)

is an even function of z. If m is odd, the integrand in (9-17-9) is then an odd
function of z so that the integral vanishes; thus

I.=0 if m is odd (9-17-10)
“ ez i 1 ® F—3 . .
vAlSO I, = [_‘ mdﬂ) = = [m]_” =1 (9 17 11)

By using (9-17-8), the relation (9-17-6) can then be »Written in the form

- R, kD" [d™] (kT)? [d2y o
fo Fode = mZO In >~ [71‘5],. =y + L5~ [dé, ],. +
(9-17-12)

‘ )
The integral I, can readily be evaluated (see Problems 9.26 and 9.27).
One finds

. 12
I2—§'
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Hence (9-17-12) becomes

> L7 Fe(e) de = [ o0 de +%2(IcT)2[z—‘:]“ +oo (9:17-13)

Here the first term on the right is just the result one would obtain for 7' — 0
corresponding to Fig. 9-16-2. The second term represents a correction due to
the finite width (= kT) of the region where F decreases from 1 to 0.

Calculation of the specific heat We now apply the general result (9-17-13)
to the evaluation of the mean energy (9-17-1). Thus one obtains

B =2 [l el de+ T GT)? [d% (ep)]“ (9-17-14)

Since for the present case, where kT/u < 1, the Fermi energy p differs only
slightly from its value uo at 7 = 0, the derivative in the second small correction
term in (9-17-14) can be evaluated at p = uo with negligible error. Further-
more one can write '

2 [ o9 de=2 [ eo(0) de +2 [ eole) de = Bo + 2uap(uo) (u — o)

since the first integral on the right is by (9-17-1) just the mean energy E; at
T = 0. Since

d
ZZ—G(EP) =p + ¢, p/EEE
Eq. (9:17-14) becomes

E = Ey + 2u0p(uo) (& — o) +% (kT) [p(uo) + mop’(mo)] (9-17-15)

Here we still need to know the change (4 — wo) of the Fermi energy with tem-
perature. Now u is determined by the condition (9-17-2) which becomes, by
(9-17-13), ' »

2 [ o(e) de + ’g (kT)%'(w) = N (9-17-16)

Here the derivative in the correction term can again be evaluated at u, with
negligible error, while

2 "0 de=2 [ p() de+2 [ p(0) de = N + 20(0)(u — )

since the first integral on the right side is just the condition (9-17-2) which
determined py at T = 0. Thus (9-17-16) becomes

20(uo) (n — wo) + % (kT)ZP (wo) =0

or (4 = no) = & (kT)? ’;(([j")’ 9-17-17)
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Hence Eq. (9:17-15) becomes

E=E -3 (kT)%p (ko) + % (kT)zlp(uo) + wop’(uo)]
or E=0+% (kT) 20(10) (9-17-18)
since terms in p’ cancel. The heat capacity (at constant volume) becomes then
> Cy = 3? 2 keo(uo) T (9-17-19)

This agrees with the simple order of magnitude calculation of Eq. (9-16-15).
The density of states p can be written explicitly for the free-electron gas by
(9-9-19):

o Ak V (2m)*
p(e) de = @) (41r —de) =75 et de (9-17-20)
2 H
But Ko = 2h (31r g) by (9-16-10)
N\i
Hence p(p,o) =V — 271,2 <37r V) (9'17~21)

Equivalently this can be written in terms of N and u, by eliminating the volume
V between the last two equations. Thus one obtains

p(uo)=[ s (31r2N)*] [l"—(wzv)!] %iio (9-17-22)

Hence (9-17- 19) gives

,.Cv=7—;—k2;T=—2—kNﬂ— (9-17-23)
0 0
or, per mole, .
3 _ (v kT

=2Rr(T %2 9.17-24

> CVV 3 (3 #0) ( )
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