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Announcements

2

• HW0: Out on Piazza. Not due. Purpose is to check your understanding.
• HW1: Released tomorrow

• First recitation: Tomorrow at 10am (Room 32-155)
• Preview for next week
• Topic: Finite-horizon inventory control

• Registration questions? Ask during break or after class.
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1. 6.231 Sp22 Lecture 1-3 notes [N] N1 §3, N2 §1-3, N3 §1

2. Dynamic Programming and Optimal Control vol 1 [DPOC] 1.1-
1.3, 2.1

3. (Optional) Reinforcement Learning: An introduction [SB] Ch1

Readings
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Course overview
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Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. 
Nature 518, 529–533 (2015). https://doi.org/10.1038/nature14236

Super-Human  
Performance

2015:

7
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Deep reinforcement learning (RL)
8

§ Solve complex decision & control 
problems through trial and error

§ Model-free: no need for an 
explicit model

V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015.

Agent

Environment

action at

state st

reward rt

rt+1

st+1
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What: Reinforcement Learning 9

Also known as approximate dynamic  
programming (ADP). We will use these  
terms more-or-less interchangeably.

R L  agent

environment

action at state streward rt

“Reinforcement learning is learning  how to map 
states to actions so as to  maximize a numerical 
reward signal in an unknown and uncertain 
environment.

In the most interesting and challenging  cases, 
actions affect not only the immediate reward but 
also the next situation and  all subsequent 
rewards (delayed reward).

The agent is not told which actions to take  but it 
must discover which actions yield
the most reward by trying them (trial-and-  
error).”

— Sutton and Barto (1998)

11
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“No simple yet reasonable evaluation 
function will ever be found for Go.” 

-- 2002, Martin Müller 
    (winner of 2009 Go program competition)

2016:



https://www.youtube.com/watch?v=WXuK6gekU1Y

13

AlphaGo is the first computer program 
to defeat a professional human Go 

player, the first to defeat a Go world 
champion, and is arguably the strongest 

Go player in history.

https://www.youtube.com/watch?v=WXuK6gekU1Y


High-altitude balloons (2020)
14

Bellemare et al., “Autonomous navigation of stratospheric balloons using reinforcement learning” Nature, 2020.



Push notifications (2020)
15

Gauci, et al., “Horizon: Facebook's Open Source Applied Reinforcement Learning Platform - Facebook Research” (2020)



ChatGPT (2022)
16
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Reinforcement learning for increasingly complex decision making
17

Breast cancer screening
[Yala, 2022]

AlphaTensor

[Fawzi, 2022]

Google Loon

[Bellemare, 
2020]

ChatGPT

[OpenAI, 2022]

AV safety validation

[Feng, 2023]

Drone racing

[Kaufmann, 2023]
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RL as a scientific tool to study automated decision making
19
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Impact of autonomous vehicles on urban traffic
21

No autonomy Full autonomy

Mixed autonomy is the decades-long regime between 
no autonomy (0% AVs) and full autonomy (100% AVs).

Sugiyama, et al. 2008 Wanis Kabbaj, 2016

Wu, Kreidieh, Vinitsky, Bayen, Emergent behaviors in mixed-autonomy traffic, in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.
Wu, Kreidieh, Parvate, Vinitsky, Bayen, Flow: A modular learning framework for mixed autonomy traffic, IEEE Transac<ons on Robo<cs (T-RO), 2021.
Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automa-c control of vehicular systems with reinforcement learning, IEEE Transac*ons on Automa*on Science and Engineering (T-ASE), 2022.

Mixed autonomy
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Autonomous vehicles can boost traffic flow (2016–2022)
22

5-30% CAVs 
à 13-218% 

improvement 

+13%

+120%

+68%

+218%

+25%

Wu, Kreidieh, Vinitsky, Bayen, Emergent behaviors in mixed-autonomy traffic, in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.
Wu, Kreidieh, Parvate, Vinitsky, Bayen, Flow: A modular learning framework for mixed autonomy traffic, IEEE Transactions on Robotics (T-RO), 2021.
Vinitsky, et al. Wu, Bayen. Benchmarks for reinforcement learning in mixed-autonomy traffic, in 2nd Annual Conference on Robot Learning (CoRL), PMLR, 2018.
Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automatic control of vehicular systems with reinforcement learning, IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.
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Q: What applications are you excited about?

23



But it’s not that easy
24

Dario Amodei, Jack Clark, “Faulty reward funcKons in the wild,” OpenAI Blog, 2016.

It’s hard to specify 
what you want

RL algorithms 
are complex

Complex problems are 
… complex

RL implementations 
are complex



Precise recommendations for training RL models
25

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.



Precise recommendaFons for training RL models
26

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.



Recommendations overfit to Mujoco environments
27

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.

Mujoco 
environments



The antidote? Seek foundations
28

This class is for students seeking a foundational understanding of 
reinforcement learning, in order to:
§ Systematically apply reinforcement learning to a problem of your 

choice and understand when not to
§ Develop reliable methods for reinforcement learning
§ Derive insights into either the methods or problems

How? We will discuss later [Course overview]
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems
a. Optimization objective: Value function
b. Constraints: Markov Decision Process (MDP)
c. Variables: Policy

3. Course overview

36



Wu

Introduce the characters*
37

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over Qme (returns, cumulaQve reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

𝑀
Markov Decision Process (MDP) 
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Assume for now: finite horizon problems, i.e. 𝑇 < ∞

38

Used when: there is an intrinsic deadline to meet.

Later: infinite horizon
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The optimization problem of reinforcement learning

Definition (Optimal policy and optimal value function)

The solution to a Markov Decision Process 𝑀 is an optimal policy 𝜋∗ satisfying

𝜋∗ ∈ argmax
"∈$

𝑉%"

where Π is some policy set of interest.

The corresponding value function is the optimal value function

𝑉∗ = 𝑉%"
∗

§ Call 𝑉! the value func?on, which indicates the expected cumula?ve reward 
using policy 𝜋.

𝑉! 𝑡, 𝑠 = 𝔼 ∑"#$%&' 𝑟 𝑠", 𝜋(𝑠") + 𝑅 𝑠% |𝑠$ = 𝑠; 𝜋,𝑀  
where 𝑅 is a value funcNon for the final state, and 𝑀 is a Markov Decision Process.

§ Shorthand: 𝑉$! 𝑠  or simply 𝑉$! (think: vector of size |𝑆|)
§ Our goal: achieve the best value, i.e., max value-to-go (min cost-to-go)

39
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41

Example: The Amazing Goods Company Example

Inventory  
Systemst

Stock at month t

Reward of month t

D t  Demand at month t

Stock at month t +1 

Stock Ordered at month t  
at
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Example: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 𝑠! items 

of a  specific goods and the demand for that goods is 𝐷	
(stochastic). At the end of each month the manager of the 
warehouse can order  𝑎! more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served leave.
§ The value of the remaining inventory at the end of the 

year is 𝑔 𝑠 .
§ Constraint: the store has a maximum capacity 𝐶.

42



Wu

Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,

Example: The Amazing Goods Company
§ State space: 𝑠 ∈ 𝑆 = {0, 1,… , 𝐶}.

43



Wu

Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) 
where
§ 𝑆  is the state space,
§ A	 is the action space,

Example: The Amazing Goods Company
§ Action space: it is not possible to order more items than the capacity of the 

store, so the action space should depend on the current state.  Formally, at 
state 𝑠, 𝑎 ∈ 𝐴 𝑠 = {0, 1,… , 𝐶 − 𝑠}.

44
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)

Example: The Amazing Goods Company
§ Dynamics: 𝑠!#$ = 𝑠! + 𝑎! − 𝑑! #.
§ The demand 𝑑! is stochastic and time-independent.  Formally, 𝑑!	 ~

%.%.'.	 𝐷.

often simplified to finite

45

𝑠" = 𝑓! 𝑠, 𝑎, 𝑤!
where 𝑤!~	𝑊!

(some random variables)

transition equation
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Recall: Markov Chains

Definition (Markov chain)
Let the state space S be a subset of the Euclidean space, the discrete-time dynamic  
system 𝑠𝑡 "∈ℕ

∈ 𝑆 is a Markov chain if it satisfies the Markov property
𝑃(𝑠𝑡 + 1 = 	𝑠	|	𝑠𝑡, 𝑠𝑡 − 1, . . . , 𝑠0) = 	𝑃(𝑠𝑡 + 1 = 	𝑠	|	𝑠𝑡),

Given an initial state 𝑠( ∈ 𝑆, a Markov chain is defined by the transition probability p  

𝑝(𝑠′|𝑠) = 	𝑃(𝑠𝑡 + 1 = 𝑠′|𝑠𝑡	 = 	𝑠).

6
46
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

F In general, a non-Markovian decision process’s transitions could depend on much 
more information:

ℙ 𝑠!#$ = 𝑠" 𝑠! = 𝑠,𝑎! = 𝑎,𝑠!)$,𝑎!)$,…,𝑠*,𝑎* ,

often simplified to finite

sometimes simply 𝑟(𝑠)

47
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,

Example: The Amazing Goods Company
§ Reward: 𝑟! = −𝐶 𝑎! − ℎ 𝑠! + 𝑎! + 𝑓( 𝑠! + 𝑎! − 𝑠!#$ #).  This corresponds to 

a purchasing cost, a cost for excess stock (storage, maintenance), and a 
reward for fulfilling orders.

often simplified to finite

sometimes simply 𝑟 𝑠 , 
assumed to be bounded 

48
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝑇 is the horizon.

Example: The Amazing Goods Company
§ The horizon of the problem is 12 (12 months in 1 year).

often simplified to finite

sometimes simply 𝑟(𝑠)

49
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Markov Decision Process (infinite horizon preview)
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝜸) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝛾 ∈ [0,1) is the discount factor.

Example: The Amazing Goods Company
§ Discount: 𝛾 = 0.91667.  A dollar today is worth more than a dollar tomorrow.
§ The effective horizon of the problem is 12 (12 months in 1 year), i.e. T ≈ $

$)+.

often simplified to finite

sometimes simply 𝑟(𝑠)

50
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝑇 is the horizon.

F The process generates trajectories 𝜏! = (𝑠*, 𝑎*,… , 𝑠!)$, 𝑎!)$, 𝑠!), with 𝑠!#$~𝑃(⋅ |𝑠!, 𝑎!)

often simplified to finite

sometimes simply 𝑟(𝑠)

52
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = 	ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝑇 is the horizon.

Example: The Amazing Goods Company
§ Objective: 𝑉 𝑠*; 𝑎*, … = 𝔼[∑!,*-)$ 𝑟! + 𝑟- |𝑠* = 𝑠*; 𝑎*, … ;𝑀], where r$. = g s$. .  

This corresponds to the cumulative reward, including the value of the 
remaining inventory at “the end.”

often simplified to finite

sometimes simply 𝑟(𝑠)

53
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Example: The Amazing Goods Company Example

§ State space: s ∈ S = {0, 1, … , C}.
§ Action space: it is not possible to order more items than the capacity of the store, so the action 

space should depend on the current state.  Formally, at state s, a ∈ A s = {0, 1, … , C − s}.
§ Objective: V s!; a!, … = 𝔼[∑"#!$%& 𝑟" + 𝑟$ |𝑠! = 𝑠!; 𝑎!, … ;𝑀], where T = 12 and r&' = g s&'

Inventory  
Systemst

Stock at month t

Reward of month t
t  t  t-C (a  ) -  h(s + a )
t  t  t+ f ([s + a -  D ] +)

D t  Demand at month t

Stock at month t +1 

Stock Ordered at month t  
at

𝑠"(& = 𝑠" + 𝑎" − 𝑑" (

Where 𝑑" 	 ~
).).+.	 𝐷
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Expectations
§ Technical note: the expectations refer to all possible stochastic trajectories.
§ A (possibly non-stationary stochastic) policy 𝜋 applied from state 𝑠* returns

𝑠*, 𝑟*, 𝑠$, 𝑟$, 𝑠., 𝑟., …
§ Where 𝑟! = 𝑟 𝑠! , 𝑎!  and 𝑠!#$~	𝑝 ⋅ 𝑠! , 𝑎! = 𝜋!(𝑠!)  are random realizations.

§ The value function is

𝑉/ 𝑡, 𝑠 = 𝔼(1-,1.,… ) 8
5,!

-)$

𝑟 𝑠5 , 𝜋(𝑠5) + 𝑅 𝑠- |𝑠! = 𝑠; 𝜋

§ More generally, for stochastic policies:

𝑉/ 𝑡, 𝑠 = 𝔼(6/,1-,6-,1.,… ) 8
5,!

-)$

𝑟 𝑠5 , 𝜋(𝑠5) + 𝑅 𝑠- |𝑠! = 𝑠; 𝜋

55
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Recall: the characters*
56

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over time (returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

𝑀Markov Decision Process (MDP) 

Policy
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Policy
57

Definition (Policy)

A decision rule 𝑑 can be
§ Deterministic: 𝑑: 𝑆 → 𝐴,
§ Stochastic: 𝑑: 𝑆 → Δ(𝐴),
§ History-dependent: 𝑑:𝐻" → 𝐴,
§ Markov: 𝑑: 𝑆 → Δ(𝐴),

A policy (strategy, plan) can be
§ Stationary: 𝜋 = 𝑑, 𝑑, 𝑑, … ,
§ (More generally) Non-stationary: 𝜋 = (𝑑!, 𝑑&, 𝑑', … )

FFor simplicity, we will typically write 𝜋 instead of 𝑑 for stationary policies, and 𝜋" 
instead of 𝑑" for non-stationary policies.
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The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 
𝑠" items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎" more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.

Stationary policy composed of 
deterministic Markov decision rules

𝜋 𝑠 =	W𝐶 − 𝑠0	
if	𝑠 < 𝑀/4
otherwise
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The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 
𝑠" items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎" more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.

Stationary policy composed of stochastic 
history-dependent decision rules
𝜋 𝑠! =	'𝑈(𝐶	 − 𝑠!"#, 𝐶 − 𝑠!"# +10)0	

if	𝑠! < 𝑠!"#/2
otherwise
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Summary & takeaways
§ Sequential decision problems are those where selected actions affect 

future states.
• Sequential decision problems are found everywhere.
• Deterministic examples include routing, combinatorial optimization, linear 

quadratic control, inventory management.
• Stochastic problems are needed to represent uncertainty in the environment 

and in the policy.
§ Markov Decision Processes (MDPs) represent a general class of 

stochastic sequential decision problems, for which reinforcement 
learning methods are commonly designed.
• The Markovian property means that the next state is fully characterized by 

the current state and action.
• The generality of MDPs facilitates discussion of model-free learning (later 

lectures).

76
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Outline

1. Reinforcement learning to solve sequenXal decision problems

2. FormulaXon of finite-horizon decision problems

3. Course overview
a. Course structure
b. Administrivia

77
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Philosophy + aims of the course
§ What is an appropriate foundational course to advance research and 

practice in sequential decision making?
§ Context

Design
§ (2/3 Exploit)

Teach what we know and understand. 
§ (1/3 Explore)

Selected up-and-coming topics.

78

Reinforcement Learning

ClusteringA.I.
Statistical Learning

Approximation 
Theory

Learning Theory

Dynamic 
Programming

Optimal 
Control

Neuroscience

Active Learning

Psychology

Categorization

Neural 
Networks

Cognitives Sciences Applied 
Math

Automatic 
Control

Statistics

Figure: Note: circles may not be to scale. 
Credit: Alessandro Lazaric



What: the Highlights of the Course

How to model DP & RL problems

What: problem space, determinis1c vs Markov decision process, imperfect informa1on
Tools: probability, processes, Markov chain

79



What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

What: Bellman equations, dynamic programming algorithms
Tools: induction, optimality principle, fixed point theory
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems

What: Monte Carlo, temporal difference (TD),  Q-learning
Tools: stochastic approximation theory
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems  

How to solve approximately DP & RL problems

What: approximate RL  (TD-based methods, policy space methods, deep RL)
Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems  

How to solve approximately DP & RL problems

With examples from resource optimization, control systems, computer games, and beyond.
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Special topics (tentative)
§ Empirical rigor in RL – How to not fool yourself when doing RL
§ Learning for discrete opXmizaXon – Solving NP-hard problems
§ RecommendaXon systems – Bandits in pracXce
§ Monte Carlo Tree Search – Superhuman Go
§ Learning-based control
§ ApplicaXons
• Case studies
• Healthcare
• RoboQcs

§ Recent theoreXcal results
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Course structure
b. Administrivia
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How: Textbooks and readings
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Useful references (recommended but not required)
(a) Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13:  978-1-886529-

43-4 by Dimitri P. Bertsekas. [DPOC]

(b) The second volume of the text is a useful and comprehensive reference. [DPOC2]

(c) Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

Readings: We will give pointers to these references. Some additional readings / 
notes may be posted.

A note on notation. We will be using contemporary notation (e.g. s, a, V), which differs  
from notation from these texts (e.g. x, u, J). We will be maximizing instead of minimizing, 
etc.
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How: Pre-requisites
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(a) Solid knowledge of undergraduate probability (6.041A & 6.041B)

(b) Mathematical maturity and the ability to write down precise and rigorous arguments

(c) Python programming

We will issue a HW0 (not graded) to help you gauge your level of familiarity with the 
pre-requisite material and useful concepts (hints for HW).
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When/What/Where
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§ Lecture: TR 2:30-4pm (4-237)
• Lecture recordings will be made available for review 
• We cannot guarantee the quality of the recordings (extra incentive to come to class)

§ Instructor
• Cathy Wu <cathywu@mit.edu>
• Office Hours: TR 4-4:30pm (4-237)

§ Teaching assistants
• Chanwoo Park <cpark97@mit.edu>
• Gilhyun Ryou <ghryou@mit.edu>
• Office hours: Check website

§ Recitations: TBD (check website)
• First recitation: 10am tomorrow

§ Staff list: <6-7920-staff@mit.edu>
• Please include “[6.7920]" in your email subject line

Course pointers
§ web.mit.edu/6.7920/www
§ Website: lecture materials & 

general info
§ Piazza: announcements, collab, 

HW, recitation, solutions, readings
§ Gradescope: submit HW
§ Psetpartners: find pset partners

mailto:cathywu@mit.edu
mailto:cpark97@mit.edu
mailto:ghryou@mit.edu
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Grading
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§ 5 homework assignments (30%)
• More at the beginning, sparser later
• Mix of theoretical and computational problems
• Best advice: start early

§ 1 in-class quiz (25%)
• Coverage: first 13 lectures

§ Class project (35%)
• Research-level project of your choice.
• Form groups of 1-2 students, you’re welcome to start early!
• Class presentation + final report

§ Class participation (10%)
• Participation during lecture; answering questions on Piazza; attending office hours 

and recitation
§ Late policy: 4 late days across all homeworks

• Solutions for homework will be released shortly after the deadline (late 
submitters must abide by honor code)
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1. Some slides adapted from Alessandro Lazaric (FAIR/INRIA)

2. DPOC vol 1, 1.1-1.3, 2.1
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