Fall 2025

Introduction

What is sequential decision making?

Cathy Wu

6.7920: Reinforcement Learning: Foundations and Methods



Announcements

HWO: Out on Piazza. Not due. Purpose is to check your understanding.
HW1: Released tomorrow

First recitation: Tomorrow at 10am, 11am, 1pm, 2pm, 3pm, 4pm (see website)

*  Preview for next week
*  Topic: Finite-horizon inventory control

Registration questions? Ask during break or after class.



Readings

1. 6.231Sp22 Lecture 1-3 notes [N] N1 §3, N2 §1-3, N3 §1

2. Dynamic Programming and Optimal Control vol 1 [DPOC] 1.1-
1.3,2.1

3. (Optional) Reinforcement Learning: An introduction [SB] Ch1l



Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems

3. Course overview
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Deep reinforcement learning (RL)

Solve sequential decision & control
problems through trial and error

Model-free: no need for an explicit
model

state s; A
reward rtl gent ]

action a;
St+1 .

T[ Environment ]<—
t+1

V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015.




NEURO-DYNAMIC
PROGRAMMING

DIMITRI P BERTSEKAS
JOHN N. TSITSIKLIS

Copyrigived Material

Reinforcement .!
G

Learning

An Introduct

Richard S. Sutton and Andrew C. Barto

Copyrigivted Material

Sutton & Barto (1998)



Bellman (1957)
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What: Reinforcement Leaming .

“Reinforcement learning is learning how to map
Also known as approximate dynamic ~ Statestoactionssoasto maximize a numerical

programming (ADP). We will use these reward signal in an unknown and uncertain

terms more-or-less interchangeably. environment.

In the most interesting and challenging cases,
actions affect not only the immediate reward but
also the next situation and all subsequent

— environment ——
rewards (delayed reward).

action a¢ reward r¢ state st The agent is not told which actions to take but it
must discover which actions yield

the most reward by trying them (trial-and-
error).”

— RL agent -~

— Sutton and Barto (1998)



-- 2002, Martin Muller
(winner of 2009 Go program competition)

2016: | N
ARTICLE RN A

20101058/ naturel 5961 can beat a champion Go player PAGE 484

LSYSTEMS 90

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre!, George van den Driessche',

"

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman!, Dominik Grewe!, CONSERVATION RESEARCH ETHICS POPULAR SCIENCE O NATUREASIACOM
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AlphaGo is the first computer program

to defeat a professional human Go
player, the first to defeat a Go world
champion, and is arguably the strongest
Go player in history.

= AlphaGo: The Movie

| -
ORELRILE



https://www.youtube.com/watch?v=WXuK6gekU1Y

High-altitude balloons (2020)

--20km----_

16:00
11:00

6:00

21:00
__---15km

Station-keeping range

‘- .

Bellemare et al., “Autonomous navigation of stratospheric balloons using reinforcement learning” Nature, 2020.
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Push notifications (2020)

@© MESSENGER

9m ago
© s Bt sent a photo to AppleToolBox.
. 3 more notifications

€3 rAcesook

Mon 22:11
There are commentson v .

% post you may have missed.
14 more notifications

Gauci, et al., “Horizon: Facebook's Open Source Applied Reinforcement Learning Platform - Facebook Research” (2020)
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ChatGPT (2022) £ 2.

having a particularly bizarre morning thanks to chatgpt

m explain quantum theory to a child in the style of snoop dogg

@ Yo, little homie, let me break it down for you
Quantum theory, it's a crazy thing, it's true
See, the world is made up of tiny, tiny particles

That are always moving, and changing, and actin' wild

These particles, they don't always behave like we think
Sometimes they're waves, and sometimes they're points, it's a trip

They can be in two places at once, and they can be in two states

" ChatGPT

It's a mind-blowing concept, but that's the quantum fate

So don't be scared, little homie, it's all good
Quantum theory, it's just the way the world works, it's understood
It's a wild ride, but it's a cool one too

Quantum theory, it's the way the world does what it do.
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Reinforcement learning for increasingly complex decision making

[Bellemare,
2020]

Google Loon

ChatGPT

AIphaTensor ChatGPT Drone racing



Conference

& Reinforcement
EP Learning Program  Submit Attend Sponsors Organizers Year Other

The second Reinforcement Learning Conference (RLC) will take place from August 5th to 9th, 2025, at CCIS, the University of Alberta,
Edmonton, AB, Canada.

Started in 2024 https://rl-conference.cc/



https://rl-conference.cc/

Q: Why are you interested in RL?



Reasons for interest in RL

Artificial intelligence (Al) community

Viewed as a key ingredient for achieving (super)human-level systems
Machine learning community

Personalization
Computer scientists

To establish theoretical foundations of learning
Control engineers / roboticists

An ML way to solve control problems
Neuroscientists & psychologists

Use RL to model human/animal learning and decision-making
Gamers

Use RL to practice or learn gameplay

Optimization community
RL as a powerful heuristic search
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Impact of autonomous vehicles on urban traffic

Mixed autonomy is the decades-long regime between
no autonomy (0% AVs) and full autonomy (100% AVs).

Sugiyama, et al. 2008 P _ ' Wanis Kabbaj, 2016

No autonomy Mixed autonomy Full autonomy

Wu, Kreidieh, Vinitsky, Bayen, Emergent behaviors in mixed-autonomy traffic, in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.
Wu, Kreidieh, Parvate, Vinitsky, Bayen, Flow: A modular learning framework for mixed autonomy traffic, /EEE Transactions on Robotics (T-RO), 2021.
Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automatic control of vehicular systems with reinforcement learning, /EEE Transactions on Automation Science and Engineering (T-ASE), 2022.



Autonomous vehicles can boost traffic flow (2016—-2022)
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Wau, Kreidieh, Vinitsky, Bayen, Emergent behaviors in mixed-autonomy traffic, in 1st Annual Conference on Rob :l_;earning (CoRL), PMLR, 2017.

Wau, Kreidieh, Parvate, Vinitsky, Bayen, Flow: A modular learning framework for mixed autonomy traffic, /[EEE Transactions on Robotics (T-RO), 2021.

Vinitsky, et al. Wu, Bayen. Benchmarks for reinforcement learning in mixed-autonomy traffic, in 2nd Annual Conference on Robot Learning (CoRL), PMLR, 2018.

Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automatic control of vehicular systems with reinforcement learning, IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.
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Collaborato . ETHzirich LT i) % IntersectionZ

rs

Eve n m O re Sce n a ri OS https://github.com/mit-wu-lab/IntersectionZoo/

_rgtie, SRR

6,011 data-informed intersection

environments are modeled in the

industry-grade SUMO microscopic
simulator

@
¥

1M+ Traffic Scenarios -

—

o

Real-world intersection vs simulation

Jayawardana et al., Wu. IntersectionZoo: Eco-driving for benchmarking multi-agent contextual reinforcement learning. International Conference on Learning Representations (ICLR), 2025.
Qu, Valiveru, Tang, Jayawardana, Freydt, Wu, What is a typical signalized intersection in a city? A pipeline for intersection data imputation from OpenStreetMap, Transportation Research Board, 2023.




Collaborato  ETHziirich 4£TE2OT" NE/HE_7

City-scale Eco-driving: Carbon Emissions Impact

o 1.3%—2.7% US emission
11-22% reduction in

Gold standard:

carbon emissions at 1% global GHG
. . ol Breakthrough
intersections 3 Energy

Ventures

Led by Bill Gates

I Controlled vehicles
[ 1 Human-driven vehicles

20% eco-driving adoption

[1] Jayawardana et al., Wu. Mitigating metropolitan carbon emissions with dynamic eco-driving at scale. Transportation Research Part C, 2025 Wu



But

Dario Amodei, Jack Clark

it’s not that easy

/5 oo Hore Gikes>

, “Faulty reward functions in the wild,” OpenAl Blog, 2016.

It’s hard to specify
what you want

RL algorithms
are complex

RL implementations
are complex

Complex problems are
... complex

30
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Sensitivity of modern deep RL methods
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Training performance,
three trials (rand. seeds),
default hyperparameters

Oracle transfer

, Multi-task training

Recent advance [1]:
Carefully select training tasks
to approximate Oracle
Transfer (Bayesian
optimization approach) 2>
10-40x more sample efficient

[1] J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” NeurlIPS, 2024.



32

Precise recommendations for training RL models

What Matters In On-Policy Reinforcement Learning?
A Large-Scale Empirical Study

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini,
Sertan Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist,
Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
Abstract

Google Research, Brain Team

In recent years, on-policy reinforcement learning (RL) has been successfully
applied to many different continuous control tasks. While RL algorithms are often
conceptually simple, their state-of-the-art implementations take numerous low- and
high-level design decisions that strongly affect the performance of the resulting
agents. Those choices are usually not extensively discussed in the literature,
leading to discrepancy between published descriptions of algorithms and their
implementations. This makes it hard to attribute progress in RL and slows down
overall progress [27]. As a step towards filling that gap, we implement >50 such
“choices” in a unified on-policy RL framework, allowing us to investigate their
impact in a large-scale empirical study. We train over 250’000 agents in five
continuous control environments of different complexity and provide insights and
practical recommendations for on-policy training of RL agents.

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.



Precise recommendations for training RL models
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Figure 69: Analysis of choice Adam learning rate

Recommendation. Use Adam [§] optimizer with momentum 3; = 0.9 and a tuned learning rate
(0.0003 is a safe default). Linearly decaying the learning rate may slightly improve performance but
is of secondary importance.

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.
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Recommendations overfit to Mujoco environments

Mujoco
environments

Swimmer Half Cheetah Walker

Ant Simplified Humanoid Full Humanoid Abstract

In recent years, on-policy reinforcement learning (RL) has been successfully
applied to many different continuous control tasks. While RL algorithms are often
conceptually simple, their state-of-the-art implementations take numerous low- and
high-level design decisions that strongly affect the performance of the resulting
agents. Those choices are usually not extensively discussed in the literature,
leading to discrepancy between published descriptions of algorithms and their
implementations. This makes it hard to attribute progress in RL and slows down
overall progress [27]. As a step towards filling that gap, we implement >50 such
“choices” in a unified on-policy RL framework, allowing us to investigate their
impact in a large-scale empirical study. We train over 250’000 agents in five
continuous control environments of different complexity and provide insights and
practical recommendations for on-policy training of RL agents.

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.



The antidote? Seek foundations

This class is for students seeking a foundational understanding of
reinforcement learning, in order to:

Systematically apply reinforcement learning to a problem of your
choice and understand when not to

Develop reliable methods for reinforcement learning
Derive insights into either the methods or problems

How? We will discuss later [Course overview]



Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

a. Optimization objective: Value function

b. Constraints: Markov Decision Process (MDP)
c. Variables: Policy

3. Course overview
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Introduce the characters™

= |nteraction loop Op, Tt
Observation and reward

State

Improve

-

Transition
Agent Environment P

n Action M

at

Goal: maximize reward over time (returns, cumulative reward)
* pun intended Wu



The RL setu P Markov Decision Process (MDP) M

= |nteraction loop O 1t

Obserlration and reward

RN

Improve

at

Transition
Agent \W Environment P

T

T—1
Goal: maximize rewf';\rd overtime - F z r (50, 7(5,)) |50 = 53 71

(returns, cumulative reward) mell i
Wu



Assume for now: finite horizon problems, i.e. T < oo
Used when: there is an intrinsic deadline to meet.

Later: infinite horizon

46



Example: The Amazing Goods Company Example

Stock at month ¢

D¢ Demand at month t

Amazing
\\—/7

St

i

Reward of month ¢

Inventory Stock at month ¢ +1
*|  System >

T Stock Ordered at month ¢

A

at

49



Example: The Amazing Goods Company Example

Description. At each month t, a warehouse contains s, items
of a specific goods and the demand for that goods is D

(stochastic). At the end of each month the manager of the A ma y4 | ng
warehouse can order a, more items from the supplier.

The cost of maintaining an inventory of s is h(s).

The cost to order a items is C(a).

The income for selling q items if f(q).

If the demand d~D is bigger than the available

inventory s, customers that cannot be served leave.

® The value of the remaining inventory at the end of the
year is g(s).

= Constraint: the store has a maximum capacity C.

50



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,

Example: The Amazing Goods Company
= State space: s e S ={0,1,...,C}.

51



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,
= A isthe action space,

Example: The Amazing Goods Company
= Action space: it is not possible to order more items than the capacity of the
store, so the action space should depend on the current state. Formally, at
states, a € A(s) ={0,1, ...,C — s}.

52



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is definedasatuple M = (S, A, P or f,r,T) where

" § isthe state space, > often simplified to finite

= A isthe action space,
= P(s'|s,a) is the transition probability with transition equation
P(s'|s,a) = P(sp41 = S'|St = 5,0 = @) s’ = fi(s,a,wg)
where W~ Wt
(some random variables)

Example: The Amazing Goods Company
= Dynamics: sgpq = [s¢ + ar — d¢]™.

* The demand d; is stochastic and time-independent. Formally, d; U p.

53



Recall: Markov Chains

Definition (Markov chain)

Let the be a subset of the Euclidean space, the discrete-time dynamic
system (st),_, € S isaMarkov chain if it satisfies the

P(st +1= s|s;, St —1,...,50) = P(st +1 = s|st),

Given an initial state sy € S, a Markov chain is defined by the p

p(s'|s) = P(st +1 = S'|st = s).



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

< In general, a non-Markovian decision process’s transitions could depend on much
more information:
P(s;1q =S'|S; = Ss,a; = a,St—1, A1, -+, S, Ag),»

55



Markov Decision Process

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,
= A isthe action space,
= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(sg1 =5S'|sy = 5,0, = @)

= 1(s,a,s") is the immediate reward
at state s upon taking action q, >{> sometimes simply 7 (s),

assumed to be bounded

> often simplified to finite

Example: The Amazing Goods Company
= Reward: 1 = —=C(ay) — h(s; + a;) + f([s; + ar — s¢+1]T). This corresponds to
a purchasing cost, a cost for excess stock (storage, maintenance), and a
reward for fulfilling orders.
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Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= T is the horizon.

> often simplified to finite

Example: The Amazing Goods Company
= The horizon of the problem is 12 (12 months in 1 year).

57



58

Markov Decision Process (infinite horizon preview)

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,y) where

" § isthe state space, > often simplified to finite

A is the action space,
P(s'|s, a) is the transition probability with
P(s'|s,a) = P(sg1 = SISt = 5,0, = @)

r(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply 7 (s)

y € [0, 1) is the discount factor.

Example: The Amazing Goods Company

= Discount: y = 0.91667. A dollar today is worth more than a dollar tomorrow.

= The effective horizon of the problem is 12 (12 months in 1 year), i.e. T = ﬁ

Wu
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Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= T is the horizon.

> often simplified to finite

@ The process generates trajectories t; = (so, ag, -, St—1, At—1, St), With s;,1~P(: |S¢, ap)
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Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asatuple M = (S, A, P or f,r,T) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= T is the horizon.

> often simplified to finite

Example: The Amazing Goods Company
= Objective: V(sg; ag, -..) = E[XIZ¢ 1, + 17 |Sg = Sg; A, ...; M], Where 1y, = g(s15).
This corresponds to the cumulative reward, including the value of the
remaining inventory at “the end.”
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Example: The Amazing Goods Company Example

D¢ Demand at month ¢t

Amazing

Stock atstmonth t Tnventory Stock at month ¢ +1

* System [ "~
i

Ser1 = [Se + ar — d.]*
Reward of month t

T Where d; o)
Stock Ordered at month ¢
-C(a;) - h(s+ a;) |«——— at

+f([s; +a;- D7)

= State space: seS={0,1,...,C}.

Action space: it is not possible to order more items than the capacity of the store, so the action
space should depend on the current state. Formally, at state s, a € A(s) ={0,1,...,C —s}.

= Obijective: V(sq; ag, ...) = E[XF=g 1: + 17 |So = So; g, -..; M], Where T = 12 and r;, = g(s;,)



Expectations

Technical note: the expectations refer to all possible stochastic trajectories.
A (possibly non-stationary stochastic) policy = applied from state s, returns

Where r, = r(s¢, a;) and s, ,~ p(: |s¢, a; = m.(s;)) are random realizations.

The value function is
T—-1
Vn(tr S) - [E(sl,sz,...) [Z T‘(ST,TC(ST)) + R(ST)lst =S TC]
=t
More generally, for stochastic policies:

T-1
Ve(t,s) = Ecqysy,ar,50.) [z r(st, m(s;)) + R(s7)|s; = s; T[]
=t



Recall: the characters™

= Interaction loop l

Obser
/
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Improve
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Agent AN
T
Policy

* pun intended

Markov Decision Process (MDP) M

O, 1t

Action

at

\—/ Environment

ation and reward

State

Transition

f,P

Goal: maximize reward over time (returns, cumulative reward)



Policy

A decision rule d can be
= Deterministic: d: S - A4,
= Stochastic: d: S —» A(4),
= History-dependent: d: H; — A,
= Markov: d: S - A(4),
A policy (strategy, plan) can be
= Stationary: # = (d,d,d,...),
= (More generally) Non-stationary: m = (dy,d4,d5, ...)

=~ For simplicity, we will typically write = instead of d for stationary policies, and
instead of d, for non-stationary policies.
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The Amazing Goods Company Example

= Description. At each month t, a warehouse contains
s, items of a specific goods and the demand for that
goods is D (stochastic). Atthe end of each month

the manager of the warehouse can order a, more A ma z | ng
items from the supplier.

" The cost of maintaining an inventory of s is h(s).
" The cost to order a items is C(a).

= The income for selling g items if £(q). Stationary policy composed of

= If the demand d~D is bigger than the available ~ C€terministic Markov decision rules
inventory s, customers that cannot be served (s) = C—s ifs <M/4
leave. 0 otherwise

® The value of the remaining inventory at the end
of the year is g(s).

" Constraint: the store has a maximum capacity C.

67



The Amazing Goods Company Example

= Description. At each month t, a warehouse contains
s, items of a specific goods and the demand for that
goods is D (stochastic). Atthe end of each month

the manager of the warehouse can order a, more A ma z | ng
items from the supplier.

" The cost of maintaining an inventory of s is h(s).
" The cost to order a items is C(a).

= The income for selling g items if £(q). Stationary policy composed of stochastic

= If the demand d~D is bigger than the available 'Story-dependent decision rules . ,
inventory s, customers that cannot be served (s,) = {U (€ =5t-1,C =51 +10) ISt <St-a/
leave. 0 otherwise

® The value of the remaining inventory at the end
of the year is g(s).

" Constraint: the store has a maximum capacity C.
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Summary & takeaways

are those where selected actions affect
future states.
Sequential decision problems are found everywhere.

include routing, combinatorial optimization, linear
quadratic control, inventory management.

are needed to represent uncertainty in the environment
and in the policy.
represent a general class of
stochastic sequential decision problems, for which reinforcement
learning methods are commonly designed.

The property means that the next state is fully characterized by
the current state and action.
The generality of MDPs facilitates discussion of (later

lectures).



Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems

3. Course overview

a. Course structure
b. Administrivia
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Philosophy + aims of the course 86

= What is an appropriate foundational course to advance research and
practice in sequential decision making?

= Context
Clustering
Statistical Learning
Cognitives Sciences Applied
Approximation Math
. . Theory
. Neuroscience Reinforcement Learning Dynami
DES|gn Progfamming

= (2/3 Exploit)
Teach what we know and understand.
= (1/3 Explore)
Selected up-and-coming topics.

Optimal
Control  Aytomatic

Control
Attive Learning

Psychology

Figure: Note: circles may not be to scale.

Credit: Alessandro Lazaric W



What: the Highlights of the Course

How to rodel DP & RL problems

What: problem space, deterministic vs Markov decision process, imperfect information
Tools: probability, processes, Markov chain
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What: the Highlights of the Course

How to rodel DP & RL problems

How to solve exactly DP & RL problems

What: Bellman equations, dynamic programming algorithms

Tools: induction, optimality principle, fixed point theory
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What: the Highlights of the Course

How to model DP & RL problems
How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems

What: Monte Carlo, temporal difference (TD), Q-learning

Tools: stochastic approximation theory
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What: the Highlights of the Course N

How to r1odel DP & RL problems

How to solve exactly DP & RL problems
How to solve incrementally DP & RL problems

How to solve approximately DP & RL problems

What: approximate RL (TD-based methods, policy space methods, deepRL)

Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction




What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems

How to solve npproximately DP & RL problems

With examples from resource optimization, control systems, computer games, and beyond.
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Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems

3. Course overview

a. Course structure
b. Administrivia
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How: Textbooks and readings

Useful references (recommended but not required)

Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13: 978-1-886529-
43-4 by Dimitri P. Bertsekas. [DPOC]

The second volume of the text is a useful and comprehensive reference. [DPOC2]

Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

Readings: We will give pointers to these references. Some additional readings /
notes may be posted.

A note on notation. We will be using contemporary notation (e.g. s, a, V), which differs
from notation from these texts (e.g. x, u, J). We will be maximizing instead of minimizing,

etc.
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How: Pre-requisites

Solid knowledge of undergraduate probability (6.041A & 6.041B)

Mathematical maturity and the ability to write down precise and rigorous arguments
Python programming

We will issue a HWO (not graded) to help you gauge your level of familiarity with the
pre-requisite material and useful concepts (hints for HW).



When/What/Where

Course pointers

web.mit.edu/6.7920/www
Website: lecture materials & general info

Piazza: announcements, collab, HW, recitation, solutions, readings
Gradescope: submit HW
Psetpartners: find pset partners

Staff list: <6-7920-staff@mit.edu>
Please include “[6.7920]" in your email subject line



Grading

8 homework assignments (30%)
More at the beginning, sparser later
Mix of theoretical and computational problems
Best advice: start early
1 in-class quiz (25%)
Coverage: first 13 lectures
Class project (35%)
Research-level project of your choice.
Form groups of 1-2 students, you’re welcome to start early!
Class presentation/poster + final report
Class participation (10%)
Participation during lecture; answering questions on Piazza; attending office hours
and recitation
Late policy: 4 late days across all homeworks

Solutions for homework will be released shortly after the deadline (late
submitters must abide by honor code)



References

1. Some slides adapted from Alessandro Lazaric (FAIR/INRIA)

2. DPOCvol1,1.1-1.3,2.1
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