# Introduction

What is sequential decision making?

### **Cathy Wu**

6.7920: Reinforcement Learning: Foundations and Methods

#### **Announcements**

- HW0: Out on Piazza. Not due. Purpose is to check your understanding.
- HW1: Released tomorrow
- First recitation: Tomorrow at 10am, 11am, 1pm, 2pm, 3pm, 4pm (see website)
  - Preview for next week
  - Topic: Finite-horizon inventory control
- Registration questions? Ask during break or after class.

## Readings

- 1. 6.231 Sp22 Lecture 1-3 notes [N] N1 §3, N2 §1-3, N3 §1
- 2. Dynamic Programming and Optimal Control vol 1 [DPOC] 1.1-1.3, 2.1
- 3. (Optional) Reinforcement Learning: An introduction [SB] Ch1

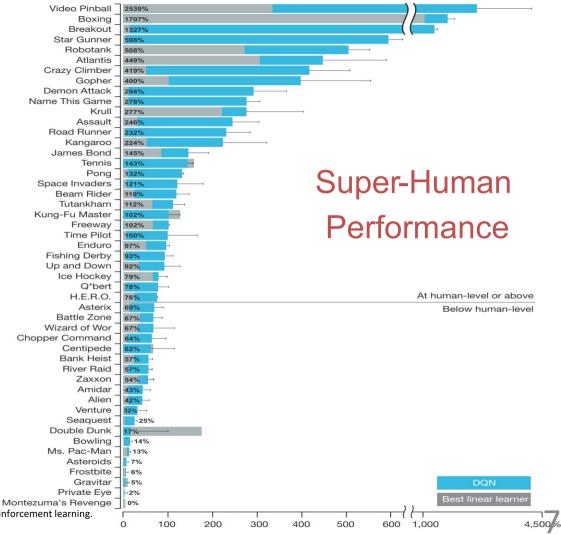
### Outline

- 1. Reinforcement learning to solve sequential decision problems
- 2. Formulation of finite-horizon decision problems
- 3. Course overview



### 2015:

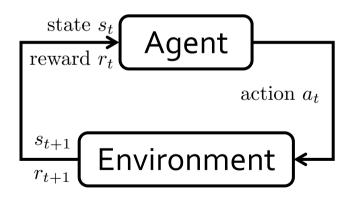




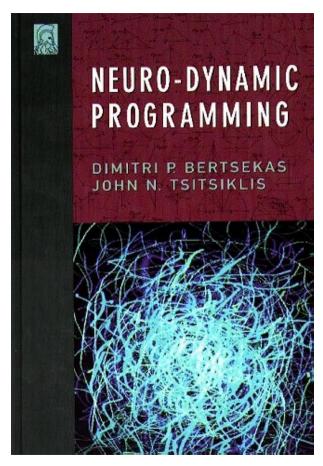
Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015). https://doi.org/10.1038/nature14236

# Deep reinforcement learning (RL)

- Solve sequential decision & control problems through trial and error
- Model-free: no need for an explicit model



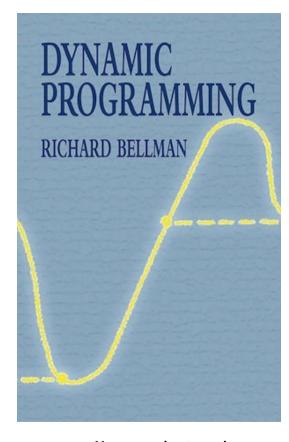




Bertsekas & Tsitsiklis (1996)



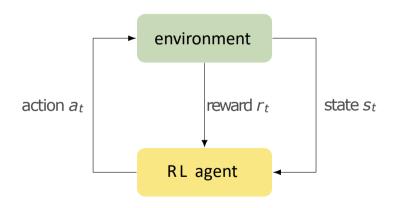
Sutton & Barto (1998)



Bellman (1957)

# What: Reinforcement Learning

Also known as *approximate dynamic programming* (ADP). We will use these terms more-or-less interchangeably.



"Reinforcement learning is learning how to map states to actions so as to maximize a numerical reward signal in an unknown and uncertain environment.

In the most interesting and challenging cases, actions affect not only the immediate reward but also the next situation and all subsequent rewards (delayed reward).

The agent is not told which actions to take but it must discover which actions yield the most reward by trying them (trial-and-error)."

Sutton and Barto (1998)

# "No simple yet reasonable evaluation function will ever be found for Go."

-- 2002, Martin Müller (winner of 2009 Go program competition)

### 2016:

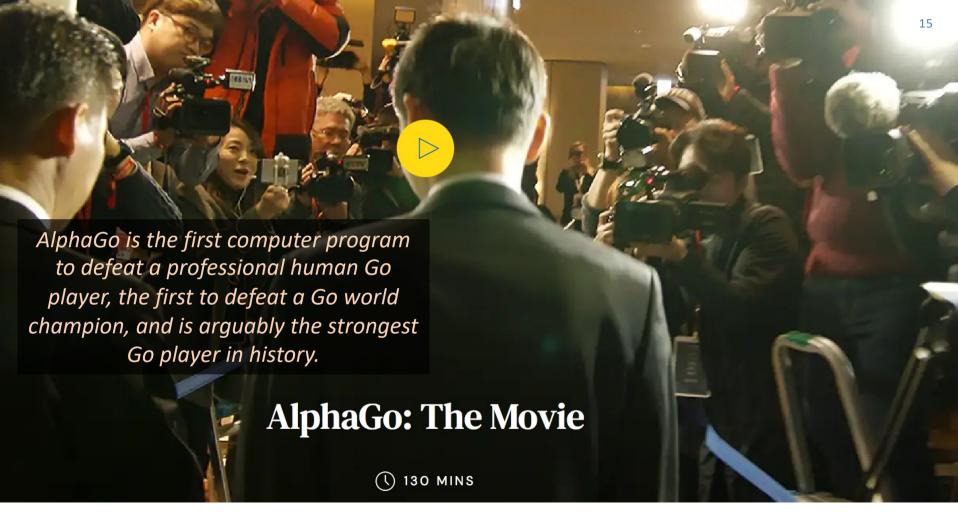
### **ARTICLE**

doi:10.1038/nature16961

### Mastering the game of Go with deep neural networks and tree search

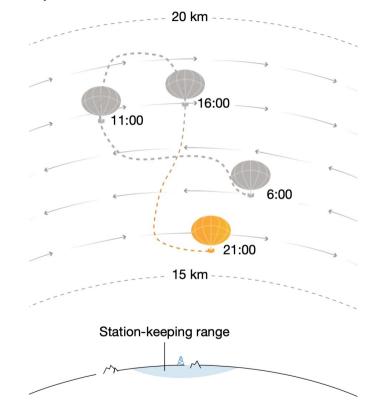
David Silver<sup>1</sup>\*, Aja Huang<sup>1</sup>\*, Chris J. Maddison<sup>1</sup>, Arthur Guez<sup>1</sup>, Laurent Sifre<sup>1</sup>, George van den Driessche<sup>1</sup>, Julian Schrittwieser<sup>1</sup>, Ioannis Antonoglou<sup>1</sup>, Veda Panneershelvam<sup>1</sup>, Marc Lanctot<sup>1</sup>, Sander Dieleman<sup>1</sup>, Dominik Grewe<sup>1</sup>, John Nham<sup>2</sup>, Nal Kalchbrenner<sup>1</sup>, Ilya Sutskever<sup>2</sup>, Timothy Lillicrap<sup>1</sup>, Madeleine Leach<sup>1</sup>, Koray Kavukcuoglu<sup>1</sup>, Thore Graepel<sup>1</sup> & Demis Hassabis<sup>1</sup>





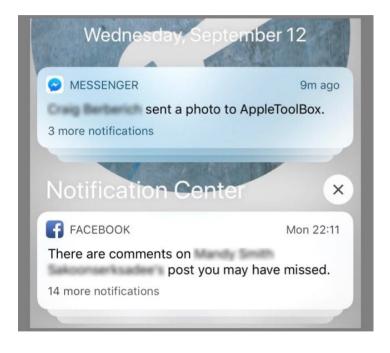
# High-altitude balloons (2020)





Bellemare et al., "Autonomous navigation of stratospheric balloons using reinforcement learning" Nature, 2020.

# Push notifications (2020)

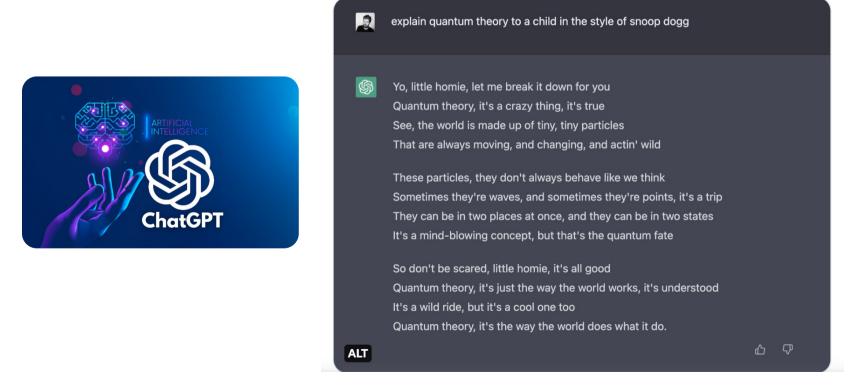


### ChatGPT (2022)



•

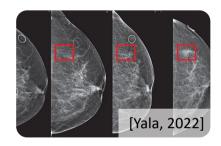
#### having a particularly bizarre morning thanks to chatgpt



### Reinforcement learning for increasingly complex decision making



Google Loon



Breast cancer screening



AV safety validation



AlphaTensor



**ChatGPT** 



Drone racing



Program Submit Attend Sponsors Organizers Year Other



The second Reinforcement Learning Conference (RLC) will take place from August 5th to 9th, 2025, at CCIS, the University of Alberta, Edmonton, AB, Canada.

Started in 2024

https://rl-conference.cc/

*Q:* Why are you interested in RL?

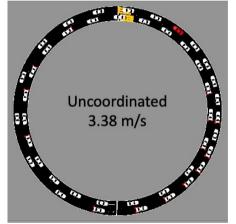
### Reasons for interest in RL

- Artificial intelligence (AI) community
  - Viewed as a key ingredient for achieving (super)human-level systems
- Machine learning community
  - Personalization
- Computer scientists
  - To establish theoretical foundations of learning
- Control engineers / roboticists
  - An ML way to solve control problems
- Neuroscientists & psychologists
  - Use RL to model human/animal learning and decision-making
- Gamers
  - Use RL to practice or learn gameplay
- Optimization community
  - RL as a powerful heuristic search

### Impact of autonomous vehicles on urban traffic

**Mixed autonomy** is the decades-long regime between no autonomy (0% AVs) and full autonomy (100% AVs).





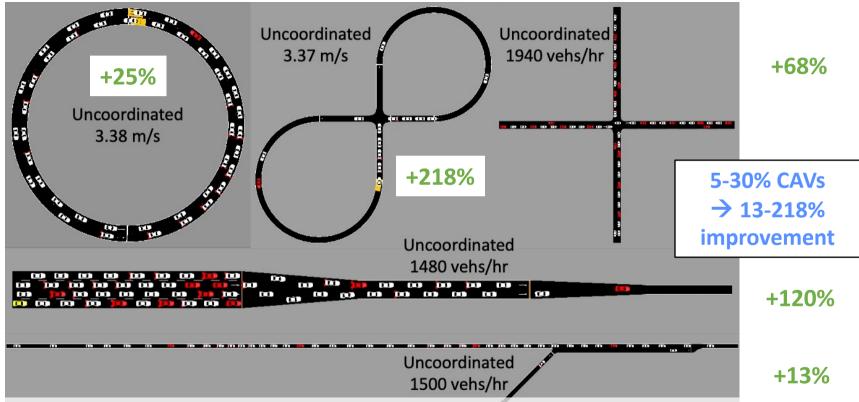


No autonomy

Mixed autonomy

Full autonomy

### Autonomous vehicles can boost traffic flow (2016–2022)



<u>Wu</u>, Kreidieh, Vinitsky, Bayen, **Emergent behaviors in mixed-autonomy traffic**, in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.

<u>Wu</u>, Kreidieh, Parvate, Vinitsky, Bayen, **Flow: A modular learning framework for mixed autonomy traffic**, IEEE Transactions on Robotics (T-RO), 2021.

Vinitsky, et al. <u>Wu</u>, Bayen. **Benchmarks for reinforcement learning in mixed-autonomy traffic**, in 2nd Annual Conference on Robot Learning (CoRL), PMLR, 2018.

Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automatic control of vehicular systems with reinforcement learning, IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.







https://github.com/mit-wu-lab/IntersectionZoo/

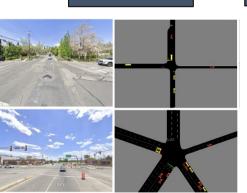
### Even more scenarios

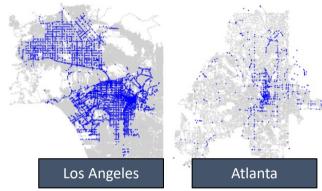
6,011 data-informed intersection environments are modeled in the industry-grade SUMO microscopic simulator

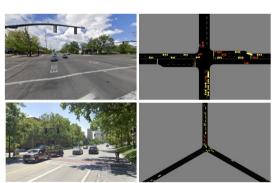
#### 1M+ Traffic Scenarios











#### Real-world intersection vs simulation







# City-scale Eco-driving: Carbon Emissions Impact

# 11-22% reduction in carbon emissions at intersections

Controlled vehicles Human-driven vehicles

20% eco-driving adoption



#### 1.3%-2.7% US emission



# But it's not that easy



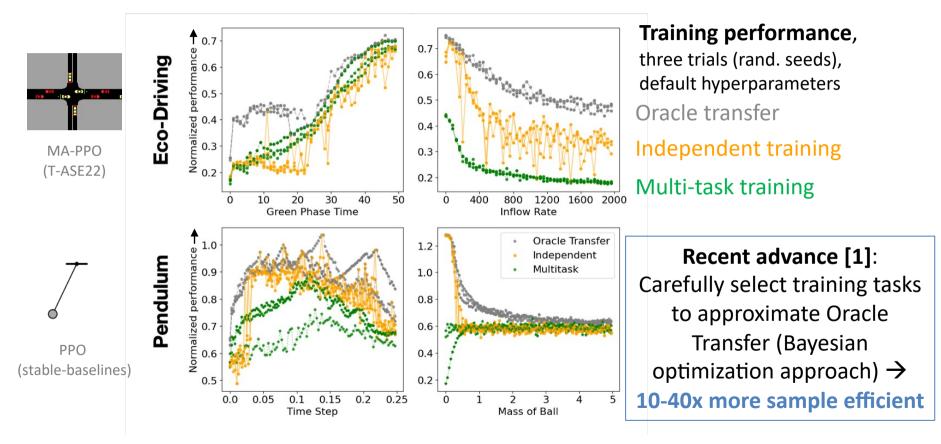
It's hard to specify what you want

RL algorithms are complex

RL implementations are complex

Complex problems are ... complex

# Sensitivity of modern deep RL methods



# Precise recommendations for training RL models

# What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem

Google Research, Brain Team

#### **Abstract**

In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks. While RL algorithms are often conceptually simple, their state-of-the-art implementations take numerous low- and high-level design decisions that strongly affect the performance of the resulting agents. Those choices are usually not extensively discussed in the literature, leading to discrepancy between published descriptions of algorithms and their implementations. This makes it hard to attribute progress in RL and slows down overall progress [27]. As a step towards filling that gap, we implement >50 such "choices" in a unified on-policy RL framework, allowing us to investigate their impact in a large-scale empirical study. We train over 250'000 agents in five continuous control environments of different complexity and provide insights and practical recommendations for on-policy training of RL agents.

# Precise recommendations for training RL models

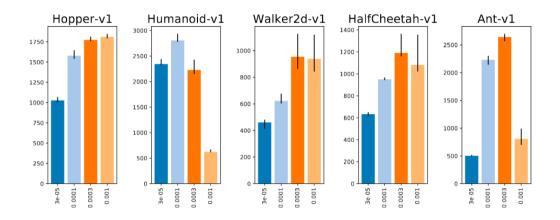
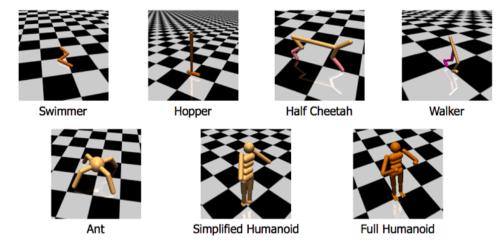


Figure 69: Analysis of choice Adam learning rate

**Recommendation.** Use Adam [8] optimizer with momentum  $\beta_1 = 0.9$  and a tuned learning rate (0.0003 is a safe default). Linearly decaying the learning rate may slightly improve performance but is of secondary importance.

### Recommendations overfit to Mujoco environments



# Mujoco environments

#### **Abstract**

In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks. While RL algorithms are often conceptually simple, their state-of-the-art implementations take numerous low- and high-level design decisions that strongly affect the performance of the resulting agents. Those choices are usually not extensively discussed in the literature, leading to discrepancy between published descriptions of algorithms and their implementations. This makes it hard to attribute progress in RL and slows down overall progress [27]. As a step towards filling that gap, we implement >50 such "choices" in a unified on-policy RL framework, allowing us to investigate their impact in a large-scale empirical study. We train over 250'000 agents in five continuous control environments of different complexity and provide insights and practical recommendations for on-policy training of RL agents.

### The antidote? Seek foundations

This class is for students seeking a foundational understanding of reinforcement learning, in order to:

- Systematically apply reinforcement learning to a problem of your choice and understand when not to
- Develop reliable methods for reinforcement learning
- Derive insights into either the methods or problems

**How?** We will discuss later [Course overview]

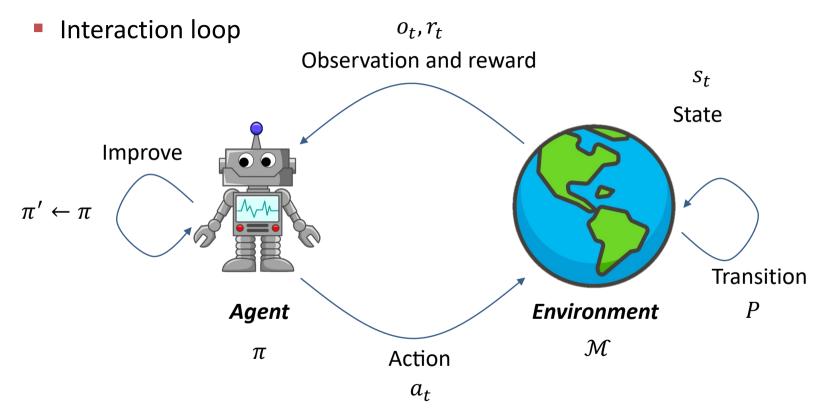
### Outline

1. Reinforcement learning to solve sequential decision problems

### 2. Formulation of finite-horizon decision problems

- a. Optimization objective: Value function
- b. Constraints: Markov Decision Process (MDP)
- c. Variables: Policy
- 3. Course overview

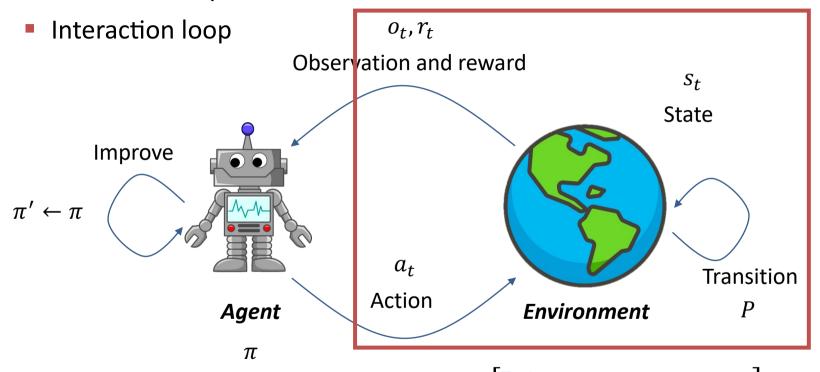
### Introduce the characters\*



Goal: maximize reward over time (returns, cumulative reward)

### The RL setup

#### Markov Decision Process (MDP) $\mathcal{M}$



Goal: maximize reward over time (returns, cumulative reward)

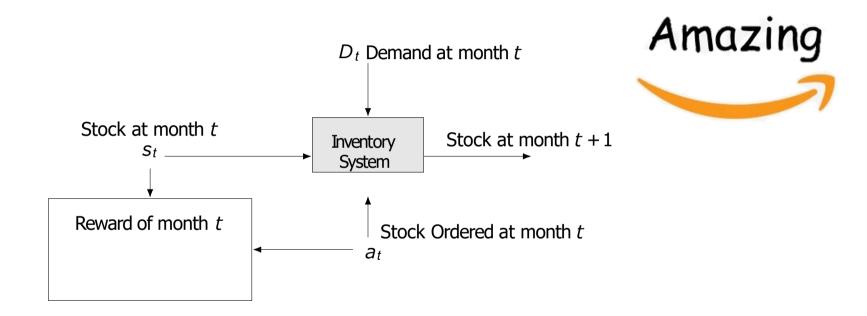
$$\max_{\pi \in \Pi} \mathbb{E} \left| \sum_{\tau=0}^{T-1} r(s_{\tau}, \pi(s_{\tau})) | s_0 = s; \pi \right|$$

Assume for now: finite horizon problems, i.e.  $T < \infty$ 

Used when: there is an intrinsic deadline to meet.

Later: infinite horizon

# Example: The Amazing Goods Company Example



# Example: The Amazing Goods Company Example

• Description. At each month t, a warehouse contains  $s_t$  items of a specific goods and the demand for that goods is D (stochastic). At the end of each month the manager of the warehouse can order  $a_t$  more items from the supplier.



- The cost of maintaining an inventory of s is h(s).
- The cost to order a items is C(a).
- The income for selling q items if f(q).
- If the demand  $d \sim D$  is bigger than the available inventory s, customers that cannot be served leave.
- The value of the remaining inventory at the end of the year is g(s).
- Constraint: the store has a maximum capacity C.

### Markov Decision Process

#### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

S is the state space,

#### Example: The Amazing Goods Company

■ State space:  $s \in S = \{0, 1, ..., C\}$ .

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the state space,
- A is the action space,

### **Example: The Amazing Goods Company**

■ Action space: it is not possible to order more items than the capacity of the store, so the action space should depend on the current state. Formally, at state s,  $a \in A(s) = \{0, 1, ..., C - s\}$ .

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the state space,
- often simplified to finite

- A is the action space,
- P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

transition equation  $s' = f_t(s, a, w_t)$ 

where  $w_t \sim W_t$ 

(some random variables)

Example: The Amazing Goods Company

- **Dynamics:**  $s_{t+1} = [s_t + a_t d_t]^+$ .
- The demand  $d_t$  is stochastic and time-independent. Formally,  $d_t \stackrel{\text{i.i.d.}}{\sim} D$ .

### Recall: Markov Chains

### Definition (Markov chain)

Let the *state space S* be a subset of the Euclidean space, the discrete-time dynamic system  $(s_t)_{t\in\mathbb{N}}\in S$  is a Markov chain if it satisfies the *Markov property* 

$$P(s_{t+1} = s | s_{t}, s_{t-1}, ..., s_{0}) = P(s_{t+1} = s | s_{t}),$$

Given an initial state  $s_0 \in S$ , a Markov chain is defined by the transition probability p

$$p(s'|s) = P(st + 1 = s'|st = s).$$

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the state space,
- A is the action space,

- often simplified to finite
- P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

- r(s, a, s') is the immediate reward at state s upon taking action a,
  - sometimes simply r(s)

H is the horizon.

☞ In general, a non-Markovian decision process's transitions could depend on much more information:

$$\mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a, s_{t-1}, a_{t-1}, ..., s_0, a_0),$$

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the state space,
- A is the action space,

often simplified to finite

• P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

• r(s, a, s') is the immediate reward at state s upon taking action a,



sometimes simply r(s), assumed to be bounded

**Example: The Amazing Goods Company** 

■ Reward:  $r_t = -C(a_t) - h(s_t + a_t) + f([s_t + a_t - s_{t+1}]^+)$ . This corresponds to a purchasing cost, a cost for excess stock (storage, maintenance), and a reward for fulfilling orders.

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the state space,
- **>**

often simplified to finite

- A is the action space,
- P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

• r(s, a, s') is the immediate reward at state s upon taking action  $a_r$ 



sometimes simply r(s)

T is the horizon.

**Example: The Amazing Goods Company** 

The horizon of the problem is 12 (12 months in 1 year).

# Markov Decision Process (infinite horizon preview)

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple  $M = (S, A, P \text{ or } f, r, \gamma)$  where

- S is the *state* space,
- A is the action space,

- often simplified to finite
- P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

• r(s, a, s') is the immediate reward at state s upon taking action a,



•  $\gamma \in [0,1)$  is the discount factor.

Example: The Amazing Goods Company

- Discount:  $\gamma = 0.91667$ . A dollar today is worth more than a dollar tomorrow.
- The effective horizon of the problem is 12 (12 months in 1 year), i.e.  $T \approx \frac{1}{1-\gamma}$ .

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the *state* space,
- A is the action space,

often simplified to finite

• P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

• r(s, a, s') is the immediate reward at state s upon taking action a,



sometimes simply r(s)

T is the horizon.

The process generates trajectories  $\tau_t = (s_0, a_0, ..., s_{t-1}, a_{t-1}, s_t)$ , with  $s_{t+1} \sim P(\cdot | s_t, a_t)$ 

### Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple M = (S, A, P or f, r, T) where

- S is the state space,
  - ۱ *ال* يد
- often simplified to finite

- A is the action space,
- P(s'|s,a) is the transition probability with

$$P(s'|s,a) = \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a)$$

• r(s, a, s') is the immediate reward at state s upon taking action a,



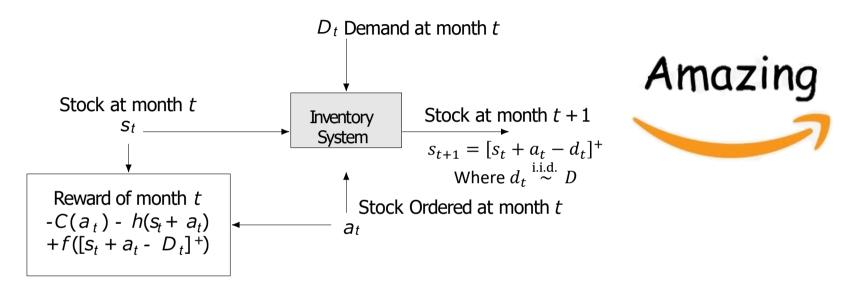
sometimes simply r(s)

T is the horizon.

**Example: The Amazing Goods Company** 

Objective:  $V(s_0; a_0, ...) = \mathbb{E}[\sum_{t=0}^{T-1} r_t + r_T | s_0 = s_0; a_0, ...; M]$ , where  $r_{12} = g(s_{12})$ . This corresponds to the cumulative reward, including the value of the remaining inventory at "the end."

# Example: The Amazing Goods Company Example



- State space:  $s \in S = \{0, 1, ..., C\}$ .
- Action space: it is not possible to order more items than the capacity of the store, so the action space should depend on the current state. Formally, at state s,  $a \in A(s) = \{0, 1, ..., C s\}$ .
- Objective:  $V(s_0; a_0, ...) = \mathbb{E}[\sum_{t=0}^{T-1} r_t + r_T | s_0 = s_0; a_0, ...; M]$ , where T = 12 and  $r_{12} = g(s_{12})$

## Expectations

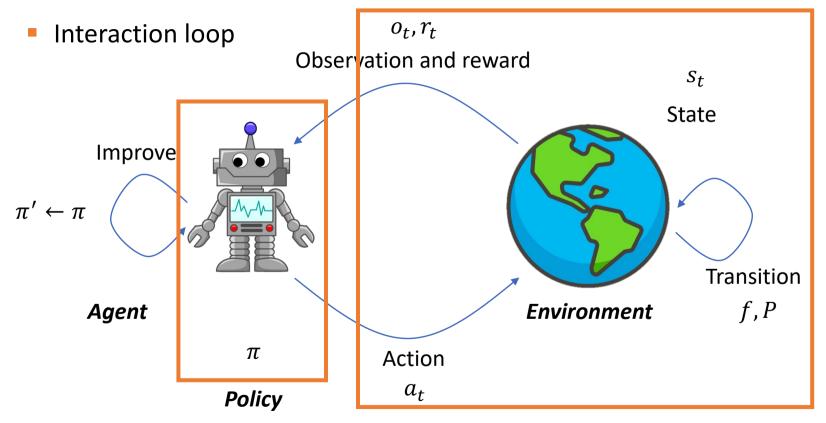
- Technical note: the expectations refer to all possible stochastic trajectories.
- A (possibly non-stationary stochastic) policy  $\pi$  applied from state  $s_0$  returns  $(s_0, r_0, s_1, r_1, s_2, r_2, ...)$
- Where  $r_t = r(s_t, a_t)$  and  $s_{t+1} \sim p(\cdot | s_t, a_t = \pi_t(s_t))$  are random realizations.
- The value function is

$$V^{\pi}(t,s) = \mathbb{E}_{(s_1,s_2,\dots)} \left[ \sum_{\tau=t}^{T-1} r(s_{\tau},\pi(s_{\tau})) + R(s_{T}) | s_t = s; \pi \right]$$

More generally, for stochastic policies:

$$V^{\pi}(t,s) = \mathbb{E}_{(a_0,s_1,a_1,s_2,\dots)} \left[ \sum_{\tau=t}^{T-1} r(s_{\tau},\pi(s_{\tau})) + R(s_{\tau}) | s_t = s; \pi \right]$$

# Recall: the characters\* Markov Decision Process (MDP) M



Goal: maximize reward over time (returns, cumulative reward)

# Policy

### Definition (Policy)

#### A decision rule d can be

- Deterministic:  $d: S \to A$ ,
- Stochastic:  $d: S \to \Delta(A)$ ,
- History-dependent:  $d: H_t \to A$ ,
- Markov:  $d: S \to \Delta(A)$ ,

### A policy (strategy, plan) can be

- Stationary:  $\pi = (d, d, d, ...)$ ,
- (More generally) Non-stationary:  $\pi = (d_0, d_1, d_2, ...)$

For simplicity, we will typically write  $\pi$  instead of d for stationary policies, and  $\pi_t$  instead of  $d_t$  for non-stationary policies.

# The Amazing Goods Company Example

• Description. At each month t, a warehouse contains  $s_t$  items of a specific goods and the demand for that goods is D (stochastic). At the end of each month the manager of the warehouse can order  $a_t$  more items from the supplier.



- The cost of maintaining an inventory of s is h(s).
- The cost to order a items is C(a).
- The income for selling q items if f(q).
- If the demand  $d \sim D$  is bigger than the available inventory s, customers that cannot be served leave.
- The value of the remaining inventory at the end of the year is g(s).
- Constraint: the store has a maximum capacity C.

Stationary policy composed of deterministic Markov decision rules  $\pi(s) = \begin{cases} C - s & \text{if } s < M/4 \\ 0 & \text{otherwise} \end{cases}$ 

# The Amazing Goods Company Example

• Description. At each month t, a warehouse contains  $s_t$  items of a specific goods and the demand for that goods is D (stochastic). At the end of each month the manager of the warehouse can order  $a_t$  more items from the supplier.



- The cost of maintaining an inventory of s is h(s).
- The cost to order a items is C(a).
- The income for selling q items if f(q).
- If the demand  $d \sim D$  is bigger than the available inventory s, customers that cannot be served leave.
- The value of the remaining inventory at the end of the year is g(s).
- Constraint: the store has a maximum capacity C.

Stationary policy composed of stochastic history-dependent decision rules

$$\pi(s_t) = \begin{cases} U(C - s_{t-1}, C - s_{t-1} + 10) & \text{if } s_t < s_{t-1}/2\\ 0 & \text{otherwise} \end{cases}$$

# Summary & takeaways

- Sequential decision problems are those where selected actions affect future states.
  - Sequential decision problems are found everywhere.
  - Deterministic examples include routing, combinatorial optimization, linear quadratic control, inventory management.
  - Stochastic problems are needed to represent uncertainty in the environment and in the policy.
- Markov Decision Processes (MDPs) represent a general class of stochastic sequential decision problems, for which reinforcement learning methods are commonly designed.
  - The Markovian property means that the next state is fully characterized by the current state and action.
  - The generality of MDPs facilitates discussion of model-free learning (later lectures).

## Outline

- 1. Reinforcement learning to solve sequential decision problems
- 2. Formulation of finite-horizon decision problems
- 3. Course overview
  - a. Course structure
  - b. Administrivia

# Philosophy + aims of the course

What is an appropriate foundational course to advance research and practice in sequential decision making?

Context

Design

(2/3 Exploit)
 Teach what we know and understand.

(1/3 Explore)Selected up-and-coming topics.

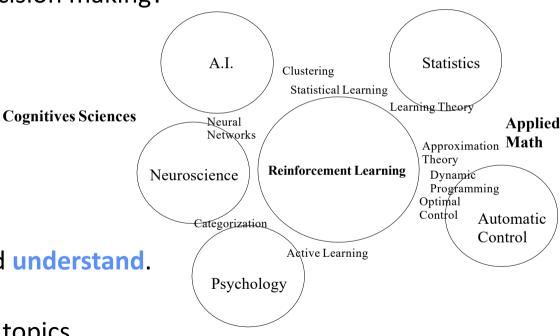


Figure: Note: circles may not be to scale.

Credit: Alessandro Lazaric

Wu

How to *model* DP & RL problems

- What: problem space, deterministic vs Markov decision process, imperfect information
- Tools: probability, processes, Markov chain

How to *model* DP & RL problems

How to solve *exactly* DP & RL problems

- What: Bellman equations, dynamic programming algorithms
- Tools: induction, optimality principle, fixed point theory

How to *model* DP & RL problems

How to solve *exactly* DP & RL problems

How to solve *incrementally* DP & RL problems

- What: Monte Carlo, temporal difference (TD), Q-learning
- Tools: stochastic approximation theory

How to *model* DP & RL problems

How to solve *exactly* DP & RL problems

How to solve *incrementally* DP & RL problems

How to solve *approximately* DP & RL problems

- What: approximate RL (TD-based methods, policy space methods, deep RL)
- Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction

How to *model* DP & RL problems

How to solve *exactly* DP & RL problems

How to solve *incrementally* DP & RL problems

How to solve *approximately* DP & RL problems

With examples from resource optimization, control systems, computer games, and beyond.

## Outline

- 1. Reinforcement learning to solve sequential decision problems
- 2. Formulation of finite-horizon decision problems
- 3. Course overview
  - a. Course structure
  - b. Administrivia

# How: Textbooks and readings

### **Useful references (recommended but not required)**

- (a) Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13: 978-1-886529-43-4 by Dimitri P. Bertsekas. [DPOC]
- (b) The second volume of the text is a useful and comprehensive reference. [DPOC2]
- (c) Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

**Readings:** We will give pointers to these references. Some additional readings / notes may be posted.

**A note on notation**. We will be using contemporary notation (e.g. s, a, V), which differs from notation from these texts (e.g. x, u, J). We will be maximizing instead of minimizing, etc.

# How: Pre-requisites

- (a) Solid knowledge of undergraduate probability (6.041A & 6.041B)
- (b) Mathematical maturity and the ability to write down precise and rigorous arguments
- (c) Python programming

We will issue a HWO (not graded) to help you gauge your level of familiarity with the pre-requisite material and useful concepts (hints for HW).

## When/What/Where

### **Course pointers**

- web.mit.edu/6.7920/www
- Website: lecture materials & general info
- Piazza: announcements, collab, HW, recitation, solutions, readings
- Gradescope: submit HW
- Psetpartners: find pset partners
- Staff list: <6-7920-staff@mit.edu>
  - Please include "[6.7920]" in your email subject line

## Grading

- 8 homework assignments (30%)
  - More at the beginning, sparser later
  - Mix of theoretical and computational problems
  - Best advice: start early
- 1 in-class quiz (25%)
  - Coverage: first 13 lectures
- Class project (35%)
  - Research-level project of your choice.
  - Form groups of 1-2 students, you're welcome to start early!
  - Class presentation/poster + final report
- Class participation (10%)
  - Participation during lecture; answering questions on Piazza; attending office hours and recitation
- Late policy: 4 late days across all homeworks
  - Solutions for homework will be released shortly after the deadline (late submitters must abide by honor code)

## References

- 1. Some slides adapted from Alessandro Lazaric (FAIR/INRIA)
- 2. DPOC vol 1, 1.1-1.3, 2.1