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Announcements

2

• HW0: Out on Piazza. Not due. Purpose is to check your understanding.
• HW1: Released tomorrow

• First recitaAon: Tomorrow at 10am, 11am, 1pm, 2pm, 3pm, 4pm (see website)
• Preview for next week
• Topic: Finite-horizon inventory control

• RegistraAon quesAons? Ask during break or aMer class.
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1. 6.231 Sp22 Lecture 1-3 notes [N] N1 §3, N2 §1-3, N3 §1

2. Dynamic Programming and Optimal Control vol 1 [DPOC] 1.1-
1.3, 2.1

3. (Optional) Reinforcement Learning: An introduction [SB] Ch1

Readings
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Course overview

4
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Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. 
Nature 518, 529–533 (2015). https://doi.org/10.1038/nature14236

Super-Human  
Performance

2015:

7
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Deep reinforcement learning (RL)
8

§ Solve sequential decision & control 
problems through trial and error

§ Model-free: no need for an explicit 
model

V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015.

Agent

Environment

action at

state st

reward rt

rt+1

st+1
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Bertsekas & Tsitsiklis (1996) Sutton & Barto (1998)
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Bellman (1957)
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What: Reinforcement Learning 9

Also known as approximate dynamic
programming (ADP). We will use these
terms more-or-less interchangeably.

R L agent

environment

action at state streward rt

“Reinforcement learning is learning  how to map 
states to actions so as to  maximize a numerical 
reward signal in an unknown and uncertain
environment.

In the most interesting and challenging  cases, 
actions affect not only the immediate reward but 
also the next situation and  all subsequent 
rewards (delayed reward).

The agent is not told which actions to take  but it 
must discover which actions yield
the most reward by trying them (trial-and-
error).”

— Sutton and Barto (1998)

13
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“No simple yet reasonable evaluation 
function will ever be found for Go.” 

-- 2002, Martin Müller 
    (winner of 2009 Go program competition)

2016:



h=ps://www.youtube.com/watch?v=WXuK6gekU1Y

15

AlphaGo is the first computer program 
to defeat a professional human Go 

player, the first to defeat a Go world 
champion, and is arguably the strongest 

Go player in history.

https://www.youtube.com/watch?v=WXuK6gekU1Y


High-altitude balloons (2020)
16

Bellemare et al., “Autonomous navigation of stratospheric balloons using reinforcement learning” Nature, 2020.



Push notifications (2020)
17

Gauci, et al., “Horizon: Facebook's Open Source Applied Reinforcement Learning PlaZorm - Facebook Research” (2020)



ChatGPT (2022)
18



Wu

Reinforcement learning for increasingly complex decision making
19

Breast cancer screening
[Yala, 2022]

AlphaTensor

[Fawzi, 2022]

Google Loon

[Bellemare, 
2020]

ChatGPT

[OpenAI, 2022]

AV safety validation

[Feng, 2023]

Drone racing

[Kaufmann, 2023]
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https://rl-conference.cc/Started in 2024

https://rl-conference.cc/
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Q: Why are you interested in RL?

22
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Reasons for interest in RL
23

§ Artificial intelligence (AI) community
• Viewed as a key ingredient for achieving (super)human-level systems

§ Machine learning community
• Personalization

§ Computer scientists
• To establish theoretical foundations of learning

§ Control engineers / roboticists
• An ML way to solve control problems

§ Neuroscientists & psychologists
• Use RL to model human/animal learning and decision-making

§ Gamers
• Use RL to practice or learn gameplay

§ Optimization community
• RL as a powerful heuristic search
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Impact of autonomous vehicles on urban traffic
26

No autonomy Full autonomy

Mixed autonomy is the decades-long regime between 
no autonomy (0% AVs) and full autonomy (100% AVs).

Sugiyama, et al. 2008 Wanis Kabbaj, 2016

Wu, Kreidieh, Vinitsky, Bayen, Emergent behaviors in mixed-autonomy traffic, in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.
Wu, Kreidieh, Parvate, Vinitsky, Bayen, Flow: A modular learning framework for mixed autonomy traffic, IEEE Transactions on Robotics (T-RO), 2021.
Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automatic control of vehicular systems with reinforcement learning, IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.

Mixed autonomy
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Autonomous vehicles can boost traffic flow (2016–2022)
27

5-30% CAVs 
à 13-218% 

improvement 

+13%

+120%

+68%

+218%

+25%

Wu, Kreidieh, Vinitsky, Bayen, Emergent behaviors in mixed-autonomy traffic, in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.
Wu, Kreidieh, Parvate, Vinitsky, Bayen, Flow: A modular learning framework for mixed autonomy traffic, IEEE Transactions on Robotics (T-RO), 2021.
Vinitsky, et al. Wu, Bayen. Benchmarks for reinforcement learning in mixed-autonomy traffic, in 2nd Annual Conference on Robot Learning (CoRL), PMLR, 2018.
Yan, Kreidieh, Vinitsky, Bayen, Wu, Unified automatic control of vehicular systems with reinforcement learning, IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.
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Even more scenarios
28

Jayawardana et al., Wu. IntersectionZoo: Eco-driving for benchmarking multi-agent contextual reinforcement learning. International Conference on Learning Representations (ICLR), 2025.
Qu, Valiveru, Tang, Jayawardana, Freydt, Wu, What is a typical signalized intersection in a city? A pipeline for intersection data imputation from OpenStreetMap, Transportation Research Board, 2023.

6,011 data-informed intersection 
environments are modeled in the 
industry-grade SUMO microscopic 

simulator

San Francisco Los Angeles Atlanta

Real-world intersection vs simulation 

1M+ Traffic Scenarios

28

https://github.com/mit-wu-lab/IntersectionZoo/

28Collaborato
rs
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City-scale Eco-driving: Carbon Emissions Impact
29

[1] Jayawardana et al., Wu. Mi?ga?ng metropolitan carbon emissions with dynamic eco-driving at scale. Transporta?on Research Part C, 2025

11-22% reduction in 
carbon emissions at 

intersections

1.3%–2.7% US emission

20% eco-driving adoption

Controlled vehicles
Human-driven vehicles

Collaborato
rs



But it’s not that easy
30

Dario Amodei, Jack Clark, “Faulty reward functions in the wild,” OpenAI Blog, 2016.

It’s hard to specify 
what you want

RL algorithms 
are complex

Complex problems are 
… complex

RL implementations 
are complex
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Sensitivity of modern deep RL methods

[1] J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” NeurIPS, 2024.

Independent training
Oracle transfer

Multi-task training

Training performance, 
three trials (rand. seeds), 
default hyperparameters

PPO 
(stable-baselines)

MA-PPO
(T-ASE22)

31

Recent advance [1]: 
Carefully select training tasks 

to approximate Oracle 
Transfer (Bayesian 

opOmizaOon approach) à 
10-40x more sample efficient



Precise recommendations for training RL models
32

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.



Precise recommendations for training RL models
33

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.



Recommendations overfit to Mujoco environments
34

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.

Mujoco 
environments



The antidote? Seek foundations
35

This class is for students seeking a foundational understanding of 
reinforcement learning, in order to:
§ Systematically apply reinforcement learning to a problem of your 

choice and understand when not to
§ Develop reliable methods for reinforcement learning
§ Derive insights into either the methods or problems

How? We will discuss later [Course overview]
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Outline

1. Reinforcement learning to solve sequenVal decision problems

2. Formula4on of finite-horizon decision problems
a. OpOmizaOon objecOve: Value funcOon
b. Constraints: Markov Decision Process (MDP)
c. Variables: Policy

3. Course overview

43
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Introduce the characters*
44

EnvironmentAgent

* pun intended

AcOon

Observation and reward

State

Transition

Improve

§ Interaction loop

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

ℳ
𝑃

𝑠!

Goal: maximize reward over time (returns, cumulative reward)
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The RL setup
45

EnvironmentAgent Action

Observation and reward

State

Transition

Improve

§ InteracVon loop

Goal: maximize reward over time 
(returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑃

𝑠!

ℳMarkov Decision Process (MDP) 

max
!∈#

	𝔼 +
#$%

&'(

𝑟 𝑠#, 𝜋(𝑠#) |𝑠% = 𝑠; 𝜋
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Assume for now: finite horizon problems, i.e. 𝑇 < ∞

46

Used when: there is an intrinsic deadline to meet.

Later: infinite horizon
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Example: The Amazing Goods Company Example

Inventory  
Systemst

Stock at month t

Reward of month t

D t  Demand at month t

Stock at month t +1

Stock Ordered at month t  
at
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Example: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 𝑠$ items 

of a  specific goods and the demand for that goods is 𝐷	
(stochastic). At the end of each month the manager of the 
warehouse can order  𝑎$ more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served leave.
§ The value of the remaining inventory at the end of the 

year is 𝑔 𝑠 .
§ Constraint: the store has a maximum capacity 𝐶.

50
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,

Example: The Amazing Goods Company
§ State space: 𝑠 ∈ 𝑆 = {0, 1,… , 𝐶}.

51
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,

Example: The Amazing Goods Company
§ Action space: it is not possible to order more items than the capacity of the 

store, so the action space should depend on the current state.  Formally, at 
state 𝑠, 𝑎 ∈ 𝐴 𝑠 = {0, 1,… , 𝐶 − 𝑠}.

52
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)

Example: The Amazing Goods Company
§ Dynamics: 𝑠$&' = 𝑠$ + 𝑎$ − 𝑑$ &.
§ The demand 𝑑$ is stochastic and time-independent.  Formally, 𝑑$	 ~

(.(.*.	 𝐷.

often simplified to finite

53

𝑠% = 𝑓$ 𝑠, 𝑎, 𝑤$
where 𝑤$~	𝑊$

(some random variables)

transiAon equaAon
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Recall: Markov Chains

Definition (Markov chain)
Let the state space S be a subset of the Euclidean space, the discrete-time dynamic  
system 𝑠𝑡 !∈ℕ

∈ 𝑆 is a Markov chain if it satisfies the Markov property
𝑃(𝑠𝑡 + 1 = 	𝑠	|	𝑠𝑡, 𝑠𝑡 − 1, . . . , 𝑠0) = 	𝑃(𝑠𝑡 + 1 = 	𝑠	|	𝑠𝑡),

Given an initial state 𝑠! ∈ 𝑆, a Markov chain is defined by the transition probability p  

𝑝(𝑠′|𝑠) = 	𝑃(𝑠𝑡 + 1 = 𝑠′|𝑠𝑡	 = 	𝑠).

6
54



Wu

Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠%) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

F In general, a non-Markovian decision process’s transitions could depend on much 
more information:

ℙ 𝑠$&' = 𝑠% 𝑠$ = 𝑠,𝑎$ = 𝑎,𝑠$,',𝑎$,',…,𝑠-,𝑎- ,

often simplified to finite

sometimes simply 𝑟(𝑠)

55
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠%) is the immediate reward

at state 𝑠 upon taking action 𝑎,

Example: The Amazing Goods Company
§ Reward: 𝑟$ = −𝐶 𝑎$ − ℎ 𝑠$ + 𝑎$ + 𝑓( 𝑠$ + 𝑎$ − 𝑠$&' &).  This corresponds to 

a purchasing cost, a cost for excess stock (storage, maintenance), and a 
reward for fulfilling orders.

often simplified to finite

sometimes simply 𝑟 𝑠 , 
assumed to be bounded 

56
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠%) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝑇 is the horizon.

Example: The Amazing Goods Company
§ The horizon of the problem is 12 (12 months in 1 year).

often simplified to finite

sometimes simply 𝑟(𝑠)

57
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Markov Decision Process (infinite horizon preview)
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝜸) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠%) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝛾 ∈ [0,1) is the discount factor.

Example: The Amazing Goods Company
§ Discount: 𝛾 = 0.91667.  A dollar today is worth more than a dollar tomorrow.
§ The effective horizon of the problem is 12 (12 months in 1 year), i.e. T ≈ '

',..

often simplified to finite

sometimes simply 𝑟(𝑠)

58
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠%) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝑇 is the horizon.

F The process generates trajectories 𝜏$ = (𝑠-, 𝑎-,… , 𝑠$,', 𝑎$,', 𝑠$), with 𝑠$&'~𝑃(⋅ |𝑠$, 𝑎$)

often simplified to finite

sometimes simply 𝑟(𝑠)

60
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝑇) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠%|𝑠,𝑎) is the transition probability with 

𝑃 𝑠% 𝑠,𝑎 = 	ℙ(𝑠$&' = 𝑠%|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠%) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝑇 is the horizon.

Example: The Amazing Goods Company
§ Objective: 𝑉 𝑠-; 𝑎-, … = 𝔼[∑$/-0,' 𝑟$ + 𝑟0 |𝑠- = 𝑠-; 𝑎-, … ;𝑀], where r'1 = g s'1 .  

This corresponds to the cumulative reward, including the value of the 
remaining inventory at “the end.”

often simplified to finite

sometimes simply 𝑟(𝑠)

61
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62

Example: The Amazing Goods Company Example

§ State space: s ∈ S = {0, 1, … , C}.
§ Action space: it is not possible to order more items than the capacity of the store, so the action 

space should depend on the current state.  Formally, at state s, a ∈ A s = {0, 1, … , C − s}.
§ Objective: V s!; a!, … = 𝔼[∑"#!$%& 𝑟" + 𝑟$ |𝑠! = 𝑠!; 𝑎!, … ;𝑀], where T = 12 and r&' = g s&'

Inventory  
Systemst

Stock at month t

Reward of month t
t t t-C (a  ) - h(s + a )
t t t+ f ([s + a - D ]+)

D t  Demand at month t

Stock at month t +1

Stock Ordered at month t  
at

𝑠"(& = 𝑠" + 𝑎" − 𝑑" (

Where 𝑑" 	 ~
).).+.	 𝐷
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ExpectaQons
§ Technical note: the expectations refer to all possible stochastic trajectories.
§ A (possibly non-stationary stochastic) policy 𝜋 applied from state 𝑠- returns

𝑠-, 𝑟-, 𝑠', 𝑟', 𝑠1, 𝑟1, …
§ Where 𝑟$ = 𝑟 𝑠$ , 𝑎$  and 𝑠$&'~	𝑝 ⋅ 𝑠$ , 𝑎$ = 𝜋$(𝑠$)  are random realizations.

§ The value function is

𝑉! 𝑡, 𝑠 = 𝔼(3-,3.,… ) 8
7/$

0,'

𝑟 𝑠7 , 𝜋(𝑠7) + 𝑅 𝑠0 |𝑠$ = 𝑠; 𝜋

§ More generally, for stochastic policies:

𝑉! 𝑡, 𝑠 = 𝔼(8/,3-,8-,3.,… ) 8
7/$

0,'

𝑟 𝑠7 , 𝜋(𝑠7) + 𝑅 𝑠0 |𝑠$ = 𝑠; 𝜋

63
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Recall: the characters*
64

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over time (returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

𝑀Markov Decision Process (MDP) 

Policy
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Policy
65

Definition (Policy)

A decision rule 𝑑 can be
§ Deterministic: 𝑑: 𝑆 → 𝐴,
§ Stochastic: 𝑑: 𝑆 → Δ(𝐴),
§ History-dependent: 𝑑:𝐻" → 𝐴,
§ Markov: 𝑑: 𝑆 → Δ(𝐴),

A policy (strategy, plan) can be
§ Stationary: 𝜋 = 𝑑, 𝑑, 𝑑, … ,
§ (More generally) Non-stationary: 𝜋 = (𝑑!, 𝑑&, 𝑑', … )

FFor simplicity, we will typically write 𝜋 instead of 𝑑 for stationary policies, and 𝜋" 
instead of 𝑑" for non-stationary policies.
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The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 
𝑠" items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎" more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.

Stationary policy composed of 
deterministic Markov decision rules

𝜋 𝑠 =	Y𝐶 − 𝑠0	
if	𝑠 < 𝑀/4
otherwise
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The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 
𝑠" items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎" more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.

Stationary policy composed of stochastic 
history-dependent decision rules
𝜋 𝑠! =	-𝑈(𝐶	 − 𝑠!$%, 𝐶 − 𝑠!$% +10)0	

if	𝑠! < 𝑠!$%/2
otherwise
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Summary & takeaways
§ Sequential decision problems are those where selected actions affect 

future states.
• Sequential decision problems are found everywhere.
• Deterministic examples include routing, combinatorial optimization, linear 

quadratic control, inventory management.
• Stochastic problems are needed to represent uncertainty in the environment 

and in the policy.
§ Markov Decision Processes (MDPs) represent a general class of 

stochastic sequential decision problems, for which reinforcement 
learning methods are commonly designed.
• The Markovian property means that the next state is fully characterized by 

the current state and action.
• The generality of MDPs facilitates discussion of model-free learning (later 

lectures).

84



Wu

Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Course overview
a. Course structure
b. Administrivia
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Philosophy + aims of the course
§ What is an appropriate foundational course to advance research and 

practice in sequential decision making?
§ Context

Design
§ (2/3 Exploit)

Teach what we know and understand. 
§ (1/3 Explore)

Selected up-and-coming topics.
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Figure: Note: circles may not be to scale. 
Credit: Alessandro Lazaric



What: the Highlights of the Course

How to model DP & RL problems

What: problem space, deterministic vs Markov decision process, imperfect information
Tools: probability, processes, Markov chain
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

What: Bellman equations, dynamic programming algorithms
Tools: induction, optimality principle, fixed point theory
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems

What: Monte Carlo, temporal difference (TD), Q-learning
Tools: stochastic approximation theory
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems  

How to solve approximately DP & RL problems

What: approximate RL  (TD-based methods, policy space methods, deepRL)
Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems  

How to solve approximately DP & RL problems

With examples from resource optimization, control systems, computer games, and beyond.
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Course overview
a. Course structure
b. Administrivia
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How: Textbooks and readings
94

Useful references (recommended but not required)
(a) Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13:  978-1-886529-

43-4 by Dimitri P. Bertsekas. [DPOC]

(b) The second volume of the text is a useful and comprehensive reference. [DPOC2]

(c) Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

Readings: We will give pointers to these references. Some additional readings / 
notes may be posted.

A note on notation. We will be using contemporary notation (e.g. s, a, V), which differs  
from notation from these texts (e.g. x, u, J). We will be maximizing instead of minimizing,
etc.
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How: Pre-requisites
95

(a) Solid knowledge of undergraduate probability (6.041A & 6.041B)

(b) Mathematical maturity and the ability to write down precise and rigorous arguments

(c) Python programming

We will issue a HW0 (not graded) to help you gauge your level of familiarity with the 
pre-requisite material and useful concepts (hints for HW).
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When/What/Where
96

Course pointers
§ web.mit.edu/6.7920/www
§ Website: lecture materials & general info
§ Piazza: announcements, collab, HW, recitation, solutions, readings
§ Gradescope: submit HW
§ Psetpartners: find pset partners
§ Staff list: <6-7920-staff@mit.edu>
• Please include “[6.7920]" in your email subject line
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Grading
98

§ 8 homework assignments (30%)
• More at the beginning, sparser later
• Mix of theoreIcal and computaIonal problems
• Best advice: start early

§ 1 in-class quiz (25%)
• Coverage: first 13 lectures

§ Class project (35%)
• Research-level project of your choice.
• Form groups of 1-2 students, you’re welcome to start early!
• Class presentaIon/poster + final report

§ Class parXcipaXon (10%)
• ParIcipaIon during lecture; answering quesIons on Piazza; aWending office hours 

and recitaIon
§ Late policy: 4 late days across all homeworks

• SoluIons for homework will be released shortly a[er the deadline (late 
submiWers must abide by honor code)
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1. Some slides adapted from Alessandro Lazaric (FAIR/INRIA)

2. DPOC vol 1, 1.1-1.3, 2.1

References


