Fall 2024

Approximate value-based RL

How to approximately solve an RL problem

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

Wu

Readings

1. DPOCvol2 §2.5.3
2. Neuro-Dynamic Programming (NDP). §3.1-3.2.

3. SB16.5

http://incompleteideas.net/book/the-book-2nd.html

Learning milestone!

By the end of this lecture, you should understand the foundations of
Deep Q Networks (DQN), the launching point of modern RL. Phew!

Wu

Value-based RL methods

Example:

max
wp.1—€ Action-valuye , update

= Q-learning function
* SARSA [/ Q(S

ndom
= Approximate value iteration Action wp-€ Bootstrap target
. . . g max Q(s’,a")
= Fitted Q-iteration \ Ieg YIS
- DQN state,
d
= Double DQN A

|

Environment

Outline

1. Approximation architectures

2. Approximate value-based algorithms

Methods for sequential

I—ay Of th e | a n C decision making

6.7920: Reinforcement learning: sampling-based Dynamic
programming

foundations and methods (large state space) (small state space)

Dynamic programming
algorithm
(finite horizon)

Generalized policy
iteration
(infinite horizon)
1
| 1 | 1

Multi-armed

Policy Policy

Special

structures

improvement evaluation

Reinforcement Value Policy

el SRR iteration iteration
(horizon =1) (horizon > 1)
v
c
- Model-B: RL .
[Model-Free RL odel-Based De-facto definition:
Learn the policy) Learn the (. Remforceme.nt !earnmg =
value function sampling-based policy improvement for
da sequential decision making (horizon > 1)
Policy Optimization Q-Learnﬁmg, = = |7 Learn the Model Given the Model
/ S
(\
> DDPG S~——=
A2C/A3C < c51 I2A
TD3 Adapted from: OpenAl Spinning Up
J ok {

Outline

1. Approximation architectures

a.
b.

Value function approximation for continuous state problems
Features vs function classes

2. Approximate value-based algorithms

Notice

Reminder: We are typically working in the
episodic discounted setting.

Most results smoothly extend to other settings.

NEW: The value functions cannot be represented exactly
(as in the tabular setting).

Recall (L1): Key challenge of huge decision spaces

Arcade Learning Environment (ALE) Game of Go
t
a; = left
Possible game states: 384%84 ~ 1(3366 Possible game states: 319x19 ~ 10172

For reference:
There are between 1078 to 1082 Cannot only explore. Cannot only exploit.

atoms in the observable universe. Must trade off exploration and exploitation.

Wu

10

Understanding this Proposition is the

Q_ I_e a rﬂ | ﬂ g : P rO p e rtl eS main subject of today + next time.

If the learning rate satisfies the Robbins-Monro conditions in all states

s,a € SXA . .
znt(s,a) = 00 zn?(s,a) < o
i=0 1=0

And all state-action pairs are tried infinitely often, then for all s,a €
SXA

0(s, @) — Q*(s, a)

Remark: “infinitely often” requires a steady exploration policy.

Approximating the (state-action) value function

2.5 1.4 3.2 5.4
Q (S a) 1.0 3.2 5.1 6.3
)
5.2 4.2 5.5 7.2
8.7 3.4 2.0 8.0
4.8 2.5 3.5 4.2
S 1.0 | 30 | 33 | 12
-180 -172 -99.7 -150
4.2 2.1 3.2 3.7
2.1 2.0 3.7 3.1
3.0 1.2 3.2 2.7
" »” 0.1 1.5 0.1 1.0
Tabular
b | - —

Qo(s,a) = fy(s,a)

A simple neural network

input hidden output
layer layer layer

“Function approximation”

13

Value Function Approximation

Desiderata

: Rich enough approximation architecture to provide
close enough approximation to the function we are trying to
approximate.

. Effective algorithms for tuning the
parameters of the approximation architecture (“training”).

Example: Optimal replacement problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

b 6(X%, R)=C€
» c(x, K) = c(x) maintenance plus extra costs.
Dynamics:
» p(-|x, R) ~ exp(3) with density d(y) = Bexp~?Y I{y > 0},
» p(-|x, K) ~ x + exp(f) with density d(y — x).

Problem: Minimize the discounted expected cost over an infinite
horizon.

16

Optimal replacement problem

Optimal value function

V() = min {<(x) +7 [" dly—x)V*(y)dy, C-+v / ")V (y)dy)

70

607

507

40

307

207

1 Management cost
c(x)
wear
Lo s e s 6 1 s

70

607

507

407

307

207

10

| Value function

From Exact to Approximate RL

70

60

50

40

30

20

10

Optimal value function L —

Discuss: Is linear function approximation
sufficient to represent the optimal value
function?

Optimal policy
R | K | R|K | R

18

From Exact to Approximate RL

70

60

50

40

30

20
Approximated by a Fourier basis expansion

10 1 1 1 1 1 1 1 1 1

Linear approximation space F := {V,,(x) = iozl ak cos(kw)ﬁi‘j)}

0 1 2 3 4 5 6 7 8 9

10

19

Preview: approximate value iteration

Collect N sample on a uniform grid.

Figure: Left: the target values computed as {7 Vo(x,)}1<n<n. Right:
the approximation V; € F of the target function 7 V.

20

Preview: approximate value iteration

llllllllllllll

Figure: Left: the target values computed as {7 Vi(x,)}1<n<n. Center:
the approximation V, € F of T V;. Right: the approximation V,, € F
after n iterations.

21

Outline

1. Approximation architectures

2. Approximate value-based algorithms

a. Policy evaluation

b. Policy learning: approximate value iteration
. Policy learning: fitted Q iteration
d. Policy learning: deep Q-network (DQN)

22

Recall: earlier progression

= Policy evaluation
* Monte Carlo
* TD(1), i.e. Incremental Monte Carlo
* TD(0)
* TD(A)

= Policy learning
* SARSA
* Q-learning

Consider: How to incorporate function approximation into these?

24

Policy Evaluation
Fixed policy

Fori=1,..,n
Sett =0
Set initial state s

While (s; ; not terminal) [execute one trajectory]
Take action

Observe and
Sett=t+1

EndWhile
EndFor

Return: Estimate of the value function V(")

A Gentle Start: Supervised Learning

Linear space to approximate value functions
d
F =V (s) = z 8:0,(s),6 € R
j=1

With features
@;:S = [0,L] ¢(s) = [91(5) ... 0q(s)]"

27

Approximate Monte-Carlo as Supervised Learning
Distribution over initial states D
Function approximation /5: S - R, 0 € R? [e.g. linear, deepNet]
Build training set of n sgmples

si~D R; = zrt,i =V7(s;) +¢ (Elg] =0)

t=0

Approximate Monte-Carlo as Supervised Learning

Training (batch)

n n

A 1 1

6, = arg memaz; L(si, Ri; 8) = EZ(VQ (s) — R;)?
i= i=

Testing (aka generalization error)

L(6,) = o [(v7(s) - V3,)]

28

Approximate Monte-Carlo as Supervised Learning

Proposition (qualitative)

Let n be the number of samples used to build the Monte-Carlo
training set. Let also r(s,a) € [0, r,4x] and trajectories to be as long

1 . . .
as H = - then approximate Monte-Carlo has a generalization error:

~ 1
L(6,) < +0 i

Variance may be big. d = number of features

Proof: Apply Hoeffding’s inequality 6 = parameterizes Vg

Wu

Approximate Monte-Carlo as Supervised Learning

Monte-Carlo with online training after each sample (s;, R;) with
learning rate a; R
Oiv1=0; —a;VoL(s;, R 6;)
= 0; — a;(Va,(s;) — R;)VgVp,(s))

30

Outline

1. Approximation architectures

2. Approximate value-based algorithms

a. Policy evaluation

b. Policy learning: approximate value iteration
. Policy learning: fitted Q iteration
d. Policy learning: deep Q-network (DQN)

31

Approximate TD(0) as Pseudo-Gradient Descent

Run 1 to generate a single trajectory (Sy, 79, S1, 71,52, 72, o) Sy 1)

TD loss using target
_ B 2
L(se R 0) = (Vo (s) — Be)" = (Va(se) —)
TD update with Iearnlng rate a;
Ori1 = 91: - atveL(St» t))
= U~ Q (Vet(st))VBVG (Sti Ht)

Not really a gradient method...
Discuss: Why not?

Outline

1. Approximation architectures

2. Approximate value-based algorithms

a. Policy evaluation

b. Policy learning: approximate value iteration
. Policy learning: fitted Q iteration
d. Policy learning: deep Q-network (DQN)

33

34

Linear TD (Least Squares TD, i.e. LSTD)

" Projection perspective (assume:

stationary distribution p™) Vrp = gfn*g;;lp TTPo*
= Compact notation: V5 = ®6, where B TD
* @ =[p(s)T; P(s)T; . p(s5)T] € RS*? TV,

© $(5) = [01(5) - 9a()] € RE T 5

? yr |

" |Interested in fixed point solution of 5 0idable :
dh = HP”T”((DQ) error ;

““‘ T 7-[

= With linear approximation, projection g
- e yr
is linear.

Linear TD (Least Squares TD, i.e. LSTD)
Recal: TV =r 4+ yP™V

Vpp = ®0* = 117" TTdO*
= T™Vrp
By definition of projection
the T e, ! T™Verp
unique solution 8* satisfies:) ?i ?v....,‘
0" = arg errelﬁ%r}{IICDH —(r+ yP”(I)G)IIPn | YT : -
: —
Setting gradient to 0, we obtain: ' '—l/
OTDn(DO* — (r + yPTPO*)) = 0 - ¢
\/\7/Tith D, a diagonal matrix with entries ‘V” Vrp

pT. -

Linear TD (Least Squares TD, i.e. LSTD)

Solving for 6

OTD,n(PO* — (r + yPT™®O*)) = 0 Vip = ®6* =117 T"®H*
— TT[VTD
1 : CO = d, where . i TV
C=®'D (I —yP")D,d = D" D, nr T e .
pr(I —yP”) p g ?v....

(projected VI (PVI),
analogous to VI):
q)8t+1 - Hp T(cbgt)
Can write PVI (_axplicitly: ,
Op41 = arg 917611}%1}{”@9 —(r+yP q)et)”p” ‘_l

Vrp =A1P T™Vrp
VTL'
(like TD(0), TD(A)) /F

Linear TD (c.f. NDP, Assumption 6.1 and Prop 6.5)

Theorem (Bradtke and Barto, 1996)

We assume that:

There exists a distribution p™ over § such that hm P™(sy =5s'|sg=5) =p™(s’) >0,Vs,s' €
§; denote p™ = (p”(sl) p"(sy), . ,p”(sg)) and let ITP" be the prOJectlon W|th respect to the

The features (¢;)1<k<k<|s| are linearly independent.

y(/1)

Then, the mappings 74" and I1P" T4 are contractions of factor a; = {adHIPC

Furthermore, the linear TD estimate converges to 8%, and ®8" is the fixed point of the
PO* = M,x T DY

And it has error:

Where L, is the expected loss w.r.t. the stationary distribution p™.

Linear TD converges. y = 0 — accurate. Discuss: Why?
= Error is related to the best possible error. A = 0 - inaccurate. Discuss; Why?

Proof (sketch): Linear TD (A =0 = ay = y)

1. Showthat [1? 77 is a
contraction in L, , with a
unique fixed point Vp.

* 7™ is a contraction

Vep = ®0* = 117" T D"
— H‘DnTT[VTD

T, .
* [1”" is a non-expansion

2. Bound the error using the

Pythagorean theorem.

38

39

Approximate TD

Approximate TD may not converge (i.e. it might diverge) if:

Linear approximation but states s; are obtained by following a
different policy (off-policy learning)

Non-linear approximation and states s; are obtained by following

Outline

1. Approximation architectures

2. Approximate value-based algorithms

a. Policy evaluation

b. Policy learning: approximate value iteration
. Policy learning: fitted Q iteration
d. Policy learning: deep Q-network (DQN)

40

Counterexample: Divergence of Off-policy Linear TD(0)

= Consider the Markov chain induced by m, with two states S = {1, 2}. Reward is always O.
= Considerap’ # p”, that chooses the next state {1,2} with equal probability.

= Linear function approximation with parameter w € R

c V() =w-s
* Note: ¢(s) := s, thatis, (1) = 1,¢(2) = 2

= Recall linear TD update: 1-e€
§t+1 = ét - “t((ptTQt -1 - V¢tT+19t)¢t 1
Compare
= TD(0) with states sampled from p” (converges)
E[wisq] = E[lwe] — a4(1 — V) E[w;] + 0(e)E[w(] €

= TD(0) with states sampled from p’ (diverges for y > 3/4, € small enough, if wy # 0)
E[weys] = Elwe] — a5 (1= 20)E[we] — ar 5 ((1 - €2(1 —y) + €(2 =) JEw(]
1
= Elwe] —ar 5 = 40)Elwe] + 0()E[w,]

Further reading: NDP §6.3 Wu

41

Numerical example: Baird’s counterexample

42

= T ? “““ ? “““ P U i Similar
’/’ | | l { : counterexamples
| ! ! for Q-learning
:
\
\
\ Weightsw = 60
\\
\ m(solid|-) =1 Target policy
\
\ b(dashed|) =6/77
\ b(solid|) = 1/7 ehavior policy
\
\ T v =0.99
\ //’

-
N seie®

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action usually

results in the seventh state, and the dashed action usually results in one of the other six states,
each with equal probability. The reward is always zero.

Further reading: S&B §11.2.

43

Numerical example: Baird’s counterexample

Semi-gradient Off-policy TD

3001

2001

100L

0 Steps 1000

Semi-gradient DP

Further reading: See NDP §6.3
(Example 6.6) for a nonlinear
TD(0) counterexample

W1— We

Wy

0 1000

Sweeps

Figure 11.2: Demonstration of instability on Baird’s counterexample. Shown are the evolution
of the components of the parameter vector w of the two semi-gradient algorithms. The step size Weightsw = 6
was a = 0.01, and the initial weights were w = (1,1,1,1,1,1,10,1)".

Further reading: S&B §11.2.

The deadly triad

The risk of divergence arises whenever we combine:

Off-policy
learning

Claim: Any two without the third is OK. Thehavior * Ttarget

Function Bootstrapping
approximation V(s,) <1 +yV(Sps1)

Further reading: S&B §11.3 Wu

44

Possible remedies (and further readings)

More careful algorithm designs [Sutton et al., 2009; S&B §11.7-11.8]

“Fast gradient-descent methods for temporal-difference learning with linear
function approximation.” ICML.

Gradient TD (GTD)

TD with gradient correction (TDC)

Emphatic TD [Sutton et al., 2016], etc.
“An emphatic approach to the problem of off-policy temporal-difference learning.” JMLR.

guarantees for off-policy and “mildly” non-linear approximators
Reducing variance [S&B §11.9]

Using a target network [Mnih et al., 2015, Zhang et al., 2021]
“Human-level control through deep reinforcement learning.” Nature.
“Breaking the deadly triad with a target network.” ICML.

Target network Qarget: periodically synced by the value network
Value network Q: updated via gradient methods
Key ingredients in (double) deep Q-learning (DQN).

Outline

1. Approximation architectures

2. Approximate value-based algorithms

Policy evaluation

Policy learning: approximate value iteration
Policy learning: fitted Q iteration

Policy learning: deep Q-network (DQN)

o 0 T o

46

Approximate value iteration (AVI)

Recall: value iteration. Start with any V,. Then:
Viers =TV

Contraction propertyof ' = V,, - V™.

. Start with any V/,. Then:
Vier1r = AT Vg

where A is a generic approximation operator.

Standard case:

V41 = arg int [TV, — V||

where F is a function space (e.g. linear, deep neural network).

Approximate value iteration (AVI)

AVI approximation error [Bertsekas & Tsitsiklis, 1996]

Let VK be the function returned by AVI after K iterations and my its
corresponding greedy policy. Then the performance error is bounded as

2 K+1
[V —vm|| < + 1)/_)/|IV*—V0||oo

If A is a projection in L,-norm, then A is a non-expansion and the joint
operator AT is a contraction, which guarantees the existence of a unique
fixed point V = ATV and thus the convergence of AVI.

Performance error = approximation error + initialization-dependent term

Proof (sketch):
Incur some (discounted) approximation error at each iteration
Incur some performance loss due to in value iteration

Approximate Q-value iteration

Analogously to approximate value iteration:
Qr+1 = AT Oy

with A defined over S x A.

Recall: TQ(s,a) = X5, p(s'ls, a)[r(s,a) + ymax Q(s’,a’)]

Computing best action from Q-values is easy
Can use examples to approximate the expectation

Approximate Q-value iteration

Unlike AVI, each iteration is amenable to solving as a regression problem*.
Consider: linear approximation

d
F =40¢(s,a) = z 0,9;(s,a),0 € RY
=1

With features
@;j:SxA - [0,L] ¢(s,a) = [p1(s,a) ... 04(s, a)]"
Each iteration, solve:

_ 2
Qi1 = argmin|lQ —TQ.l|,
With u a distribution over S.

* $ Pseudo-gradient method (like linear TD). Here, it may diverge even with
linear function approximation...

Outline

1. Value function approximation

2. Approximate value-based algorithms

Policy evaluation

Policy learning: approximate value iteration
Policy learning: fitted Q iteration

Policy learning: deep Q-network

QO 0 T o

51

52

Fitted Q-iteration (approximate Q-iteration)

Compute TD targets y;
for the batch Fitted Q-iteration

Solve regression T@/n
problem

Update 6 towards

solution m,q
\"
O
Sample batch ofD O\le«‘e

states actions =

N
?,QS Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Batch + approximate extension of Q-learning

53

Recall: Q-learning

Key idea: incrementally obtain new data and update Q function
using the optimal Bellman equation (greedy)

Q-value iteration Q-learning

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

54

Fitted Q-iteration (approximate Q-iteration)

Compute TD targets y;
for the batch Fitted Q-iteration

Solve regression
problem

Run m, e.g., over a single trajectory

(S0, @0»To» S15 A1, 11, S2) 0oy Ty weey Sy Oy Ty) Update 6 towards

solution m,q
\J
. . . QO
Q-iteration loss using bootstrapped target Sample batch of) e
T . — 2 ; R —
L(Sl:n'al:n! Yin; 0) - Zt(QG (St!at) yt) states actions -
=3 (00502 7y s Qs -
t @
Adapted from Morales, Grokking Deep

QL online update with Iearnmg rate a; Reinforcement Learning, 2020.

|
ng = g —a VGL(Sl o Q1 Vi 0) Not passing the gradient through this 8!

=0, —«a Z (Qe (spa) -1 —vy max St+1» a’)) VoQo (s, ar)

t
$ Pseudo-gradient method. Here, it may diverge even with linear function approximation...

Fitted Q-iteration applied to ATARI Games

55

Atari

Image preprocessing: grey-scale, crop to 84x84

E—
y

Atari

State definition: 4 last frames

At—1,Tt—1,

At—4,Tt—4

57

Atari

Action-value function: deepNet with as many heads as actions

Convolution Convolution Fully connected Fully connected
e - - -

O

palette “ D':

Lal

® 0 0. 0 0 0 0 0 0o
..........j

No 'wp"
. . .
Convolutional layers | -8 . . . =S
Fully connected layers | DE ; O 3) 3
/ . . - BB

‘ 8 / s . °
B/ L\ N\ =

8// / ¢ . .
/, . g o \
g’"' Q . 1,:‘. 9 L] n

i N

210x160 pixel g /
images W|tha H *
128 color z .
g Y/ e
e -
$

With probability (1 — €) =2 execute max, Q(s,a)
With probability & -2 execute random action

Q(Sr al)

Q(Sr a4)

Qfs, a,

58

Still doesn’t quite work. \Why?

Average Reward on Breakout Average Reward on Seaquest

N
0
o

1800
31600 |
S1400 |

o

0

N
o
o

—

(o]

o
o
o
o

—

o

o
(o]
o
o

(o]
o
n
o O O
o O O

Average Reward per Episode

Average Reward

0 1 I 1 L 1 1 1 1 1 I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training Epochs Training Epochs

= Recall: Approximate QL as Pseudo-Gradient Descent

: II\/Iath_ema‘tically: Correlated samples. Violates i.i.d. assumption in supervised
earning.

= Intuition: Unlike in supervised learning, in RL, the agent collects its own
data. If that data is bad, then the result is bad too (and may make future
collection of data even worse).

Outline

1. Value function approximation

2. Approximate value-based algorithms

Policy evaluation

Policy learning: approximate value iteration
Policy learning: fitted Q iteration

Policy learning: deep Q-network

Q 0 T o

60

61

Solution: increase data diversity!

Compute TD targets y;

ﬁ_' for the batch Fitted Q-iteration
Solve regression T@m

problem
Replay buffer Update toward}%? .

solution
L/ Sample batch ofw

states actions < _ ~

?,Qs Adapted from Morales, Grokking Deep

De_co rre I ates Sa m p I es Reinforcement Learning, 2020.

Increased diversity in data =2 less likely
that the data overall is bad for learning

Next issue: chasing a moving target

Q-iteration loss using bootstrapped target

Iteration i

Z(sl:n' A1 Y10 9)

= 2 (QQ(SD a) =Ty max Qo; (st+1, a,))z

t

[terationi + 1

Z(sl:n' A1:n Y1:s 9)

- 2 (Qe(st’ at) e 4 H}léllx Q9i+1 (St"'l' a,))z

t

Solution: change the target slowly
(e.g., 0 < 6 every 1000 steps or 0’ « 78 + (1 — 1)0)
L(sl:n: a1 Y1:m5 9)

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

2
= Z (Qe (spap) —1e—y n};;\X Qo (St+1, a'))
t “Target network”

62

DQN algorithm

process 2
target update
—

W

process 1: data collection

(s,a,s',r)

4

—

p

m(als) (e.g., e-greedy)

evict old data

Adapted from Sergey Levine Wu

63

64

65

DQN — Atari

Performance

8
o
8
3
- 8
-8
<
-8
Lo

2z

Jauses| Jeaul| }sag

%2

E
e

z
<

e

[oA8|-UBWINY MOjog

9AOGE IO [8A8|-UBWINY Y/

||‘|i""li'lli'.IliI'i'ilﬁiiiilliiiiilii

L
|

abuanay s BLINZBJUOW
af3 ejerug
JeYARID)
aygisol4
Splosgisy
UBN-08d 'S\
Buymog

jung ejgnoq
isanbeag
aimuap

usly

Jepiuy

uoxxez

prey Jeny
1sieH yueg
apadiue)
puewwo) Jeddoy)
JOM 4O prezim
8uoz apeg
Xusjsy

O EL
18,0

fasooH 89|
umoq pue dn
Aqueq Buysiy
onpu3

101id Bwi|
femaai4
Jeyse n4-Buny
weyyuen
Japly weag
SiapeAu| aoeds
Buog

siuug|

puog sawer
oosebuey|
Jauuny peoy
Jnessy

]

8wey siy] sueN
oeRY uoweq
Jaydon
Jaquuiy Azes
siuepy
yuejoqoy
Jauung Jejg
inoeaig
Buixog

[lequid 08PIA

Wu

DQN — Atari

Ablation
DQN
Giing V\{ith replay, .With replay, Wit_hout replay, V_Iithout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894 .4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

66

Limitations of DQN

67

Zaxxon

Timev Pilqt

> (o2} oo

] DQN - Alien Space Invaders '
. @2 - Db
over-estimates *§ . N
Q values 0 :
0 4
= 10 1.0
= . & g g o
0 50 100 150 200 0 50 100 150 200 O
= Qver-estimation P Wizard of Wor
leads to training lg% .
instability, 28 e
S S

variance, &
harms overall
performance

—>
core

200

100
Wizard of Wor ‘

Tralmng steps in mllhons

150

4000

3000

2000

1000 -

Deep Reinforcement Learning with Double Q-Learning, Hasselt et al., 2015

DQN estimate
2

0 DQ\ true value

50 100 150 200 O 100 150 200
Training steps (in millions)

JuU

Asterix

80 :

40 DQN

20

10 :

5 .
0 50 100 150 200

Asterix

6000

4000 -

2000
DQN

0
Trammg steps (m mllhons)

Over-estimation in DQN

= Consider

= Qver-estimation issue:

max Q(s,a)

68

Recall: max Q(s,a) is part of

computing the TD targets:
Te +y max Q(se41, @)

E, [mc?x 0 (s, a)] > max E; 10(s, a)]

= Example 1: let Q(s,a) ~ Ber(0.5) for two actions, a,, a,

0.75 « E; lm;lX 0(s, a)]

0.25

0

0.75

0.5 05
BN E
0.5 0.5

1

B W E
0

Note: In practice, @ is usually a
deterministic function. Here
we use a random variable to
represent uncertainty in the
actions & randomness in the
trajectory / MDP.

:Q(s, al): - 0.5

:Q(s, az): - 0.5

= |ssue 1: Sampling max Q (s, a) will over-estimate Q-values
a

Hasselt. Double Q-learning, NIPS 2010.

Over-estimation in DQN

= Consider

max Q (S! a) Note: In practice, @ is usually a
a deterministic function. Here
we use a random variable to

= Over-estimation issue:
represent uncertainty in the

IET [mélX Q (S, a)] > mc?x [ET [Q (S, a)] :rcat;':;;f;r/a:/ld;:wness in the

= Example 2: let Q(s,a) ~ Ber(0.5) for a,, Ber(0.55) for a,

Choose: 0.5 0.5 -]
* a, with probability 0.54 0.23 0.28 53,3028 . . E;|Q(s,a:)| = 0.5
* a4, with probability 0.46 : :

0.450.55 _
00 01 1,0 1,1 W [E[QG a)] 055
(a, as) 0 1 Choose: a, (with probability 1)
= |ssue 2: Actions with lower expected Q-values will often be selected

Wu

Hasselt. Double Q-learning, NIPS 2010.

Double DQN

Solution: “re-sample” Q of the action you think is best. In
expectation, the Q-value will be correct (not overestimated).

But how? In practice, O is deterministic. So use another Q-function.

Double DQN
Implementation: Use two networks 6, and 6, (hence “double”)
In practice: Can combine re-use the Target network as the 2" Q-network.
Compute apax,e = arg H}lE’lX Qo, (Sts1,0")
Update
<0 —a (Q (sp,ar) — 1 —vQ (St+1r amax,t)) VoQo, (s¢, ay)
Alternate between 6, and 6,
Remark: Double Q-learning is the tabular version of double DQN.

Under the same conditions to Q-learning, double Q-learning
converges a.s. to Q.

Hasselt. Double Q-learning, NIPS 2010. Wu

Double DQN - Atari

% Wizard of Wor
Q ;
+=
100 -
o
S Q0 10. :
l n n : g
o B0 : ‘DQN
gL 1. |
— N Double' DQN
§ . ; . :
0 50 100 150 200
Wizard of Wor
4000 Double' DQN
o 3000
8
T S 2000
w0
1000 .
DQN
0!

0 50 100 150 200
Training steps (in millions)

Deep Reinforcement Learning with Double Q-Learning, Hasselt et al., 2015

80
40
20
10 -
5 , , Double DQN

0 50 100 150 200

Asterix

' Double DQN

0 50 100 150 200
Training steps (in millions)

71

72

~3 lines of code
Always worth trying

Double DQN - Atari

91008 PIZI[euLION

< < o
T, 2 2 2 o <2,
%24242% % % % % 4
et AA? = @ o >
*ASLIR[OS * %
NOJ ﬁozm 9YRALL]
NOJ 2[quoq] | IejIARIN)
[JERUELETY

oun| aqr
(poums) NOQ 219nod . 98UAIY S BUINZIJUOIN

SPIO1dISY
*x[[BFH gk *
uewoRJ S|\
Ieprury
**OBUDADY SIRZ **
p UOIY

apadnua))

Suimogy

— D11 116 (NP
9913801

Human

= weyyueny,
— AONDO] 90]
(= 2u07 a[13eqg
L= PRy ALY
[**xpuUnoIIngGs:x

Aqao(] Surysiq

1 uoxxey,

f——— Suoq

Aemoaly

— 10p1}] ureog]

[= (SO} jueg]

1011 d PwWLL,

[——— ower) SIy J, oueN

= I10A\\ JO pIezip

T 10)SBJ\ T]-Sunyf

ompug

[e— —u=0m w@::u.m.
s1opeauy aoedg

= umo(J pue dn

[] kxXTudoydxx

) **JOPUJO(T**

[XISy

——= ooaeSuey|

[——— quuI[) AZRI))

van Hasselt, Guegz, Silver, 2015

L eeee—— [OUUNY] PROY
[— JOUUT) TR)S

L e— ._m:aoO

NurI0qoOYy

yun(y ayqno(g
r——] |11 SS
] 1O} 201 ¢]

[e—— 30}]\ O (]
[e——— SR)\

[requid 0apIA

Wu

Rainbow DQN

200%

Median human-normalized score

Hessel, Matteo, et al. "Rainbow:
Combining Improvements in Deep
Reinforcement Learning.” 2017.

100%

0%

I

DQN 73

- DDQN
— Prioritized DDQN

~ Dueling DDQN

== Rainbow

A3C /
Distributional DQN
Noisy DQN

PO

gap

YR i

1
100 200
Millions of frames

S
S

74

Revisiting Rainbow: more is not always better

— More accessible
deep RL research

Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil
DeepMind DeepMind
Will Dabney Dan Horgan
DeepMind DeepMind

Medan human-norm.

Figure |: Median human-normalized performance across
57 Atari games. We pare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN's best performance after 7M frames,
surpass any bascline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.

Hado van Hasselt Tom Schaul Georg Ostrovski
DeepMind DeepMind DeepMind
Bilal Piot Mohammad Azar David Silver
DeepMind DeepMind DeepMind
The cost of Rainbow:
e ~5 days to train a game on a P100
e 57 games
e 5independent seeds
e P100 costs about US$6000
Lower-bound of cost:
e 34,200 GPU hours
e 1425 days
e Total cost: EXPENSIVE
Wu

75

Arcade Learning Environment (ALE) 50+ Atari 2600 games

Revisiting Rainbow: more is not always better

CartPole-v0 Acrobot-vl LunarLander-v2 MountainCar-v(

Training time for :
Rainbow: .
34,200 GPU hours

Training time for MinAtar

Revisiting Rainbow: '
~ 78 GPU hours =
3.25 days

Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021. Wu

Revisiting Rainbow: more is not always better
= Rainbow still >> DQN

CartPole Acrobot 200 LunarLander MountainCar

200 ~100 -100

175 = —150 100 B
E igg / o _ggg > Rainbow 0 200

| = 4 + Multi-step —-100 ” o
3 100 /// \ -300 —+— + Noisy 2 o5
é) 75 H =350 —+— + Dueling —-200 —-400 5
if] —400 +— + Double _ o S| = '
;g /" —450 + Prioritized Zgg ~./ |=500 /
5 e —~500 + Distributional |— —600 S P e
Asterix Breakout Freeway Seaquest Spacelnvaders
. V1 188
40
10 5014 DON 12 80
E 30 = 40 Rainbow 10 70
3 y - :7/,;7/';:4 == 8 e = a0 + :J/Iulti-step 8 60
fZ— - == —+— + Noisy
é) 20 /'7/ 6 = —+— + Dueling 6 A 50
/ / 20 +— + Double 4 ;o 40 = Y
1014 41 10 + Prioritized > / 30 V
+ Distributional 4 201 ¢
0 0 0
Iteration Iteration Iteration Iteration Iteration
Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021. Wu

77

gap

A menu of value-based (RL) algorithms

= Dynamic programming Slow Easy to debug
= Value iteration

= Q-value iteration
= Q-learning

= Fitted Q-iteration

= DQN

= DDQN

. e ey . v \
Prioritized experience replay Efficiency Complexity

= Rainbow DQN (fast) (hard to debug)

Tip: Use the simplest algorithm the solves your problem

Wu

79

From Q-learning to DQN

Function approximation Policy evaluation Policy learning

Features vs Approximate Monte Approximate (Q-)value
function class Carlo iteration
Linear Approximate TD Fitted Q-iteration
Non-linear Least squares TD (LSTD) Deep Q Networks (DQN)
TD(0) divergence Double DQN (DDQN)
The deadly triad Rainbow DQN

Methods for sequential

decision making

80

Lay of the lanc

Sampling-based

6.7920: Reinforcement learning:
(large state space)

foundations and methods

Policy
improvement

Policy

evaluation

Dynamic
programming
(small state space)

algorithm

Dynamic programming

(finite horizon)

Generalized policy
iteration
(infinite horizon)

1

Special

structures

learning

Reinforcement

(horizon > 1)

¥

Model-Free RL

Learn the
value function

Q-Learning

Policy
iteration

Value

iteration

De-facto definition:
Reinforcement learning =
sampling-based policy improvement for
sequential decision making (horizon > 1)

Summary

: features vs function class

Unlike its tabular counterparts, approximate value function methods
may diverge, even for policy evaluation
, pseudo-gradient methods, and its linear version

shares convergence properties with
and lends itself to regression.

avoids enumeration of the state space by fitting
the Q function to bootstrap targets.
Basis for a value-based deep RL methods, including

DQN: and other
advances

References

1. DPOCvol2 §2.5.3; SB 16.5

2. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lecture 4.

3. Neuro-Dynamic Programming (NDP). §3.1-3.2, Ch 6.

82

http://incompleteideas.net/book/the-book-2nd.html

Reference: Detailed proof for Linear TD (Prop 6.5)

And theorem for the incremental version

Wu

Proof: Linear TD (A =0 = ay = V)
First, want to show that

The transition matrix induced by ™ does not increase the (weighted) norm:
IIP”VIIEn =2 PT ()5 p(s'[s, m(s))V (s"))?
Zp”(s)zp(s 5, 7DV (5"’

Zp”(s WG = IV

The second inequality foIIows the Jensen’s inequality.
The third equality holds because p™ is a stationary distribution.

Then it immediately follows that ,i.e.,
1TV, — T”Vzllp,, = yl[P*(V; — VZ)”pn <yllV; — VZ”pn-

It can be shown that

- Unique fixed pOint VTD = HpnTﬂVTD.

Proof: Linear TD (A =0 —» ay = y)

Now, let’s consider the error:

By , we have: Vrp = PO™ = Trdo*
= TmV.
2 2 TD
= v = 1V 0V~ Vi
But: , , T s, T™Verp
1"V Vil = [PV — 177 Vi | O & ?-.
< |77V = T™Vpp|2e < ? yr Y -
Thus | | E
| | £
< v - V"||,2)n +y? | |_|/

Which corresponds to the result after reordering. h ‘

Incremental Linear TD

Theorem (Tsitsiklis and Van Roy, 1996; c.f. NDP, Prop 6.5)

Let the learning rate 7, satisfy Y.;»0 7y = 9, and Y4»q Nz < oo.

We assume that there exists a distribution p over § such that Vs, s’ € S,
lim P(s; = s'|so = s) = p(s") > 0 and that the features (¢;)1 <<k <|s| are
finearly independent. Let the updates be given by:

t
Ory1 = 0r + 1:0; Z(y/l)t_kgb(sk)
k=0

Then there exists a fixed 6" such that tlim 0, = 68*. Furthermore, we obtain:
—00

Y.
= infllVe = V1l

Vo = V7l < =

% See NDP §6.3.3 for detailed analysis. Need to cope with updates that
worsen value function. Noise is NOT conditionally mean zero.

Reference: Detailed proof for Approximate Value Iteration

And performance loss lemma

Wu

Proof: Approximate Value Iteration

P . L = TV, — AT Vi ||ow. Thisis thel t
roof. Let e 0r<nka<xlr(|| i Al is is the larges

approximation error done over the iterations.
V" = Virallo S TV = TVielloo + 1TVie = Vierslloo
<ylIV =Villo + €

then
V" =Villo < (L +y + -+ 7 De+ vy IV = Vlle
< e VIV = Vol
Since from we have that ||V — VTK||,, <
f_—yy IV* — Vi ||, then we obtain
K+1

2 2
Y - Y
—¥) 1—-y

V" = Volle

V* — VTL’K - <
|| Il < 5

From Approximation Error to Performance Loss

Let V € RN be an approximation of V* and 7 its corresponding
greedy policy, then

)
IV = VTl < 7 _WW JVF = Vo

Vv '
performance loss approx. error

Furthermore, there exists € > 0 such that if ||V — V*||, <€, then
m is optimal.

89

90

Proof: Approximation Error to Performance Loss

IV* = VTloo < [[TV" =T"Vl]loo + I[TTV =TTV
<|TVF =TVl +7[V = V7w
SNV = Vi +7(IV = Voo + V7 = VT |)

