
Wu

Approximate value-based RL
How to approximately solve an RL problem

Cathy Wu

6.7920 Reinforcement Learning: Founda9ons and Methods

Fall 2024

Wu

2

1. DPOC vol2 §2.5.3

2. Neuro-Dynamic Programming (NDP). §3.1-3.2.

3. SB 16.5

Readings

http://incompleteideas.net/book/the-book-2nd.html

Wu

Learning milestone!

3

By the end of this lecture, you should understand the founda>ons of
Deep Q Networks (DQN), the launching point of modern RL. Phew!

Wu

Value-based RL methods
4

Example:
§ Q-learning
§ SARSA
§ Approximate value itera>on
§ FiMed Q-itera>on
§ DQN
§ Double DQN
§ …

Environment

Ac8on-value
func8on
𝑄(𝑠,⋅)

Ac#on

max
w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

update

Bootstrap target
e.g. 𝑟 + 𝛾max

!"
𝑄(𝑠", 𝑎′)

Wu

Outline
5

1. Approxima>on architectures

2. Approximate value-based algorithms

Wu

Adapted from: OpenAI Spinning Up

Lay of the land
7Methods for sequen<al

decision making

Sampling-based
(large state space)

Policy
improvement

Mul<-armed
bandits

(horizon = 1)

Reinforcement
learning

(horizon ≥ 1)

Policy
evalua<on

Dynamic
programming

(small state space)

Dynamic programming
algorithm

(finite horizon)

Generalized policy
itera<on

(infinite horizon)

Value
itera<on

Policy
itera<on

Special
structures

De-facto defini2on:
Reinforcement learning =

sampling-based policy improvement for
sequen2al decision making (horizon ≥ 1)Today

6.7920: Reinforcement learning:
founda#ons and methods

Learn the
value func.on

Learn the policy

Wu

Outline
8

1. Approxima+on architectures
a. Value func8on approxima8on for con8nuous state problems
b. Features vs func8on classes

2. Approximate value-based algorithms

Wu

No0ce

9

Reminder: We are typically working in the
episodic discounted seCng.

Most results smoothly extend to other seCngs.
NEW: The value func9ons cannot be represented exactly

(as in the tabular seCng).

Wu

Recall (L1): Key challenge of huge decision spaces

For reference:
There are between 1078 to 1082
atoms in the observable universe.

Cannot only explore. Cannot only exploit.
Must trade off explora8on and exploita8on.

10

Possible game states: 319𝑥19 ≈ 10!"#Possible game states: 3$%×$% ≈ 10''((

Arcade Learning Environment (ALE) Game of Go

Wu

Q-Learning: Proper@es
11

Proposi9on
If the learning rate sa>sfies the Robbins-Monro condi>ons in all states
𝑠, 𝑎 ∈ 𝑆×𝐴

(
!"#

$

𝜂% 𝑠, 𝑎 = ∞	 (
!"#

$

𝜂%& 𝑠, 𝑎 < ∞

And all state-ac>on pairs are tried infinitely oTen, then for all 𝑠, 𝑎 ∈
𝑆×𝐴	

.𝑄 𝑠, 𝑎
'.).
𝑄∗ 𝑠, 𝑎

§ Remark: “infinitely o1en” requires a steady explora:on policy.

Understanding this Proposi0on is the
main subject of today + next 0me.

Wu

13

Approxima@ng the (state-ac@on) value func@on

𝑎

𝑠

2.5 1.4

1.0

5.2

8.7

4.8

1.0

-180

4.2

2.1

3.0

0.1

3.2

4.2

3.4

2.5

3.0

-172

2.1

2.0

1.2

1.5

3.2 5.4

5.1

5.5

2.0

3.5

3.3

-99.7

3.2

3.7

3.2

0.1

6.3

7.2

8.0

4.2

1.2

-150

3.7

3.1

2.7

1.0

𝑄(𝑠, 𝑎) 𝑄) 𝑠, 𝑎 = 𝑓)(𝑠, 𝑎)

“Tabular” “Func8on approxima8on”

Wu

Value Func@on Approxima@on
14

Desiderata
§ Expressiveness: Rich enough approxima>on architecture to provide

close enough approxima>on to the func>on we are trying to
approximate.

§ Computa>onal considera>ons: Effec>ve algorithms for tuning the
parameters of the approxima>on architecture (“training”).

Wu

16

Example: Op@mal replacement problem

∼

∼

Wu

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

17

Op@mal replacement problem

𝑐(𝑥)

𝑥
0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

𝑥

Wu

18

From Exact to Approximate RL

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

Op8mal value func8on

K K KR R R

Op8mal policy

x

Discuss: Is linear func8on approxima8on
sufficient to represent the op8mal value
func8on?

Wu

19

From Exact to Approximate RL

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

Approximated by a Fourier basis expansion

Wu

20

Preview: approximate value itera@on

Wu

21

Preview: approximate value itera@on

Wu

Outline
22

1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)

Wu

Recall: earlier progression
24

§ Policy evalua>on
• Monte Carlo
• TD(1), i.e. Incremental Monte Carlo
• TD(0)
• TD(𝜆)

§ Policy learning
• SARSA
• Q-learning

Consider: How to incorporate func>on approxima>on into these?

Wu

Policy Evalua@on
25

Fixed policy 𝝅

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set ini9al state 𝑠#
3. While (𝑠$,& not terminal) [execute one trajectory]

1. Take ac)on 𝑎',) = 𝜋 𝑠',)
2. Observe next state 𝑠'*+,) and reward 𝑟',) = 𝑟 𝑠',) , 𝑎',)
3. Set 𝑡 = 𝑡 + 1
EndWhile

EndFor

Return: Es9mate of the value func9on +𝑉' ⋅

Wu

A Gentle Start: Supervised Learning
26

Linear space to approximate value func>ons

ℱ = 𝑉+ 𝑠 =(
,"-

.

𝜃,𝜑, 𝑠 , 𝜃 ∈ ℝ.

With features
𝜑,: 𝑆 → 0, 𝐿 	 𝜙 𝑠 = 𝜑- 𝑠 …𝜑. 𝑠 /

Wu

Approximate Monte-Carlo as Supervised Learning
27

§ Distribu>on over ini>al states 𝒟
§ Func>on approxima>on 𝑉+: 𝑆 → ℝ, 𝜃 ∈ ℝ. [e.g. linear, deepNet]
§ Build training set of 𝑛 samples

𝑠!~	𝒟	 𝑅! =(
%"#

0

𝑟%,! = 𝑉2 𝑠! + 𝜖! 	 𝔼 𝜖! = 0

Wu

Approximate Monte-Carlo as Supervised Learning
28

§ Training (batch)

.𝜃3 = argmin
+

1
𝑛(
!"-

3

𝐿 𝑠! , 𝑅!; 𝜃 =
1
𝑛(
!"-

3

𝑉+ 𝑠! − 𝑅! &

§ Tes>ng (aka generaliza>on error)
𝐿 .𝜃3 = 𝔼𝒟 𝑉2 𝑠 − 𝑉5+* 𝑠

&

Wu

Approximate Monte-Carlo as Supervised Learning
29

Proposi9on (qualita9ve)
Let 𝑛 be the number of samples used to build the Monte-Carlo
training set. Let also 𝑟 𝑠, 𝑎 ∈ 0, 𝑟678 and trajectories to be as long
as 𝐻 = -

-9:
, then approximate Monte-Carlo has a generaliza>on error:

𝐿 .𝜃3 ≤ min
+
𝐿 𝜃 + 𝑂

1
1 − 𝛾

𝑑
𝑛

F Tends to the best possible approxima>on as 𝑛 tends to infinity.
D Variance may be big.
§ Proof: Apply Hoeffding’s inequality

𝑑 = number of features
𝜃	= parameterizes 𝑉)

Wu

Approximate Monte-Carlo as Supervised Learning
30

§ Monte-Carlo with online training aTer each sample 𝑠! , 𝑅! with
learning rate 𝛼!

.𝜃!;- = .𝜃! − 𝛼!∇+𝐿 𝑠! , 𝑅!; 𝜃!
	 = .𝜃! 	− 𝛼! 𝑉++ 𝑠! − 𝑅! ∇+𝑉++ 𝑠!

Wu

Outline
31

1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)

Wu

Approximate TD(0) as Pseudo-Gradient Descent
32

§ Run 𝜋 to generate a single trajectory 𝑠#, 𝑟#, 𝑠-, 𝑟-, 𝑠&, 𝑟&, … , 𝑠3 , 𝑟3
§ TD loss using bootstrapped target

T𝐿 𝑠% , T𝑅%; 𝜃 = 𝑉+ 𝑠% − T𝑅%
& = 𝑉+ 𝑠% − 𝑟% − 𝛾𝑉+, 𝑠%;-

&

§ TD online update with learning rate 𝛼%
.𝜃%;- = .𝜃% − 𝛼%∇+ T𝐿 𝑠% , T𝑅%; .𝜃%
	 = .𝜃% − 𝛼% 𝑉5+, 𝑠% − 𝑟% − 𝛾𝑉5+, 𝑠%;- ∇+𝑉+ 𝑠%; .𝜃%

D Not really a gradient method…
§ Discuss: Why not?

Wu

Outline
33

1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)

Wu

Linear TD (Least Squares TD, i.e. LSTD)
34

§ Projec>on perspec>ve (assume:
sta>onary distribu>on 𝜌2)

§ Compact nota>on: 𝑉+ = Φ𝜃, where
• Φ = 𝜙 𝑠! -; 𝜙 𝑠# -; …𝜙 𝑠. - ∈ ℝ.×/

• 𝜙 𝑠 = 𝜑! 𝑠 …𝜑/ 𝑠 - ∈ ℝ/

§ Interested in fixed point solu>on of
Φ𝜃 = Π<0𝒯2 Φ𝜃

§ With linear approxima>on, projec>on
is linear.

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error

Wu

Linear TD (Least Squares TD, i.e. LSTD)
35

§ Recall: 𝒯2𝑉 = 𝑟 + 𝛾𝑃2𝑉

§ By defini>on of projec>on (assume
linearly independent features Φ), the
unique solu>on 𝜃∗ sa>sfies:

𝜃∗ = arg min
+∈ℝ4

Φ𝜃 − 𝑟 + 𝛾𝑃2Φ𝜃 <0
&

§ Sedng gradient to 0, we obtain:
Φ/𝐷<0 Φ𝜃∗ − 𝑟 + 𝛾𝑃2Φ𝜃∗ = 0

With 𝐷1# a diagonal matrix with entries
𝜌2.

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error

Wu

Linear TD (Least Squares TD, i.e. LSTD)
36

Solving for 𝜃∗
Φ)𝐷*# Φ𝜃∗ − 𝑟 + 𝛾𝑃'Φ𝜃∗ = 0

§ Direct solu9on: 𝐶𝜃 = 𝑑, where
𝐶 = Φ)𝐷*# 𝐼	 − 𝛾𝑃' Φ, 𝑑 = Φ)𝒟*#𝑟

§ Itera9ve method (projected VI (PVI),
analogous to VI):

Φ𝜃$+, = Π*#𝒯 Φ𝜃$
• Can write PVI explicitly:
𝜃'*+ = arg min

,∈ℝ0
Φ𝜃 − 𝑟 + 𝛾𝑃/Φ𝜃' 01

1

§ Incremental variants (like TD(0), TD(𝜆))

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error

Wu

Linear TD (c.f. NDP, Assump/on 6.1 and Prop 6.5)
37

Theorem (Bradtke and Barto, 1996)
We assume that:

1. [Sta'onary distribu'on] There exists a distribu0on 𝜌! over 𝒮 such that lim
"→$

𝑃! 𝑠" = 𝑠% 𝑠& = 𝑠 = 𝜌! 𝑠% > 0, ∀𝑠, 𝑠% ∈
𝒮; denote 𝜌! = 𝜌! 𝑠' , 𝜌! 𝑠(, … , 𝜌! 𝑠𝒮 and let Π*# be the projec0on with respect to the weighted Euclidean norm
⋅ *# .

2. [Features are full rank] The features 𝜙+ ',-,., 𝒮 are linearly independent.

Then, the mappings 𝒯/,! and Π*#𝒯/,! are contrac0ons of factor 𝛼/ =
1 '2/
'21/

 w.r.t ⋅ *# .

Furthermore, the linear TD es0mate converges to 𝜃∗, and Φ𝜃∗ is the fixed point of the projected Bellman operator:
Φ𝜃∗ = Π*#𝒯/,!Φ𝜃∗

And it has error:
𝐿*# 𝜃∗ ≤

1

1 − 𝛼/
(
min
4
𝐿*# 𝜃

Where 𝐿*# is the expected loss w.r.t. the sta0onary distribu0on 𝜌!.

F Linear TD converges.
F Error is related to the best possible error.

F 𝛾 = 0 → accurate. Discuss: Why?
F 𝜆 = 0 → inaccurate. Discuss: Why?

Wu

38

Proof (sketch): Linear TD (𝜆 = 0 → 𝛼! = 𝛾)
1. Show that Π<0𝒯2 is a

contrac>on in 𝐿&,<0 with a
unique fixed point 𝑉/=.
• 𝒯2 is a contrac8on
• Π1# is a non-expansion

2. Bound the error using the
Pythagorean theorem.

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2

Wu

Approximate TD
39

Approximate TD may not converge (i.e. it might diverge) if:
§ Linear approxima>on but states 𝑠! are obtained by following a

different policy (off-policy learning)
§ Non-linear approxima>on and states 𝑠! are obtained by following 𝜋

Wu

Outline
40

1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)

Wu

41

Counterexample: Divergence of Off-policy Linear TD(0)
§ Consider the Markov chain induced by 𝜋, with two states 𝑆 = {1, 2}. Reward is always 0.
§ Consider a 𝜌H ≠ 𝜌/, that chooses the next state {1,2} with equal probability.
§ Linear funcCon approximaCon with parameter 𝑤 ∈ ℝ

• 𝑉2(𝑠) = 𝑤 ⋅ 𝑠
• Note: 𝜙 𝑠 ≔ 𝑠, that is, 𝜙 1 = 1, 𝜙 2 = 2

§ Recall linear TD update:
.𝜃'*+ = .𝜃' − 𝛼' 𝜙'I𝜃' − 𝑟' 	− 𝛾𝜙'*+I 𝜃' 𝜙'

Compare
§ TD(0) with states sampled from 𝜌/ (converges)

𝔼 𝑤345 = 𝔼 𝑤3 − 𝛼34 1 − 𝛾 𝔼 𝑤3 + 𝑂(𝜖)𝔼 𝑤3
§ TD(0) with states sampled from 𝜌H (diverges for 𝛾 > 3/4, 𝜖 small enough, if 𝑤J ≠ 0)

𝔼 𝑤345 = 𝔼 𝑤3 − 𝛼3
1
2
1 − 2𝛾 𝔼 𝑤3 − 𝛼3

1
2

1 − 𝜖 2 1 − 𝛾 + 𝜖 2 − 𝛾 𝔼 𝑤3

	 = 	𝔼 𝑤3 − 𝛼3
1
2
3 − 4𝛾 𝔼 𝑤3 + 𝑂(𝜖)𝔼 𝑤3

Further reading: NDP §6.3

1 2

ϵ

1
1 − ϵ

Wu

42

Numerical example: Baird’s counterexample

Further reading: S&B §11.2.

Similar
counterexamples

for Q-learning

Behavior policy

Target policy

Weights 𝑤 ≡ 𝜃

Wu

43

Numerical example: Baird’s counterexample

Further reading: S&B §11.2.

Weights 𝑤 ≡ 𝜃

Further reading: See NDP §6.3
(Example 6.6) for a nonlinear
TD(0) counterexample

Wu

The risk of divergence arises whenever we combine:

The deadly triad
44

𝑉 𝑠5 ← 𝑟5 + 𝛾𝑉(𝑠56!)

𝜋789:;<=> ≠ 𝜋?:>@8?

Further reading: S&B §11.3

Claim: Any two without the third is OK.

Off-policy
learning

Func8on
approxima8on

Bootstrapping

Wu

Possible remedies (and further readings)
45

§ More careful algorithm designs [SuXon et al., 2009; S&B §11.7-11.8]
• “Fast gradient-descent methods for temporal-difference learning with linear

func)on approxima)on.” ICML.
§ Gradient TD (GTD)
§ TD with gradient correc#on (TDC)

• Empha)c TD [SuPon et al., 2016], etc.
§ “An empha#c approach to the problem of off-policy temporal-difference learning.” JMLR.

• Convergence guarantees for off-policy and “mildly” non-linear approximators
§ Reducing variance [S&B §11.9]
§ Using a target network [Mnih et al., 2015, Zhang et al., 2021]

• “Human-level control through deep reinforcement learning.” Nature.
• “Breaking the deadly triad with a target network.” ICML.
• Target network 𝑄MNOPQM: periodically synced by the value network
• Value network 𝑄: updated via gradient methods
• Key ingredients in (double) deep Q-learning (DQN).

Wu

Outline
46

1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua8on
b. Policy learning: approximate value itera1on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)

Wu

Approximate value itera@on (AVI)
47

§ Recall: value itera>on. Start with any 𝑉#. Then:
𝑉@;- = 𝒯𝑉@

§ Contrac>on property of 𝒯 ⟹ 𝑉@ → 𝑉∗.

§ Approximate value itera>on. Start with any 𝑉#. Then:
𝑉@;- = 𝒜𝒯𝑉@

 where 𝒜 is a generic approxima>on operator.
§ Standard case:

𝑉@;- = arg inf
A∈ℱ

||𝒯𝑉@ − 𝑉||

 where ℱ is a func>on space (e.g. linear, deep neural network).

Wu

Approximate value itera@on (AVI)
48

AVI approxima9on error [Bertsekas & Tsitsiklis, 1996]
Let 𝑉B be the func9on returned by AVI aber 𝐾 itera9ons and 𝜋B its
corresponding greedy policy. Then the performance error is bounded as

𝑉∗ − 𝑉/0
S
≤

2𝛾
1 − 𝛾 1 max

JTUVW
𝒯𝑉U −𝒜𝒯𝑉U S

+
2𝛾W*+

1 − 𝛾
𝑉∗ − 𝑉J S

§ If 𝒜 is a projec9on in 𝐿C-norm, then 𝒜 is a non-expansion and the joint
operator 𝒜𝒯 is a contrac9on, which guarantees the existence of a unique
fixed point B𝑉 = 𝒜𝒯 B𝑉 and thus the convergence of AVI.

§ Performance error = approxima9on error + ini9aliza9on-dependent term
§ Proof (sketch):

• Incur some (discounted) approxima)on error at each itera)on
• Incur some performance loss due to par)al policy evalua)on in value itera)on

Wu

Approximate Q-value itera@on
49

§ Analogously to approximate value itera>on:
𝑄@;- = 𝒜𝒯𝑄@

 with 𝒜 defined over S x A.

§ Recall: 𝒯𝑄 𝑠, 𝑎 = ∑)C 𝑝 𝑠C 𝑠, 𝑎 [𝑟 𝑠, 𝑎 + 𝛾max
'A
	𝑄(𝑠C, 𝑎C)]

1. Compu8ng best ac8on from Q-values is easy
2. Can use examples to approximate the expecta8on

Wu

Approximate Q-value itera@on
50

§ Unlike AVI, each itera9on is amenable to solving as a regression problem*.
§ Consider: linear approxima9on

ℱ = 𝑄D 𝑠, 𝑎 =F
EF,

G

𝜃E𝜑E 𝑠, 𝑎 , 𝜃 ∈ ℝG

With features
𝜑E: 𝑆×𝐴 → 0, 𝐿 	 𝜙 𝑠, 𝑎 = 𝜑, 𝑠, 𝑎 …𝜑G 𝑠, 𝑎)

§ Each itera9on, solve:
𝑄H+, = argmin

I∈ℱ
𝑄	 − 𝒯𝑄H L

M

With 𝜇 a distribu9on over S.

* D Pseudo-gradient method (like linear TD). Here, it may diverge even with
linear func9on approxima9on…

Wu

Outline
51

1. Value func>on approxima>on

2. Approximate value-based algorithms
a. Policy evalua8on
b. Policy learning: approximate value itera8on
c. Policy learning: fiDed Q itera1on
d. Policy learning: deep Q-network

Wu

FiUed Q-itera8on

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

FiWed Q-itera@on (approximate Q-itera@on)
52

Sample batch of 𝑛
states ac0ons

Compute TD targets 𝑦+
for the batch

Solve regression
problem

Update 𝜃 towards
solu0on

Batch + approximate extension of Q-learning

Wu

Recall: Q-learning
53

§ Key idea: incrementally obtain new data and update Q func>on
using the op>mal Bellman equa>on (greedy)

Q-value itera8on

V

𝑄 ≈ 𝑞 $

𝑄
𝑄∗

(𝑄)

Q-learning

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Wu

FiUed Q-itera8on

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

FiWed Q-itera@on (approximate Q-itera@on)
54

§ Run 𝜋, e.g., over a single trajectory
. 𝑠& , 𝑎& , 𝑟& , 𝑠' , 𝑎' , 𝑟' , 𝑠(, 𝑎(, 𝑟(, … , 𝑠: , 𝑎: , 𝑟:

§ Q-itera6on loss using bootstrapped target
H𝐿 𝑠':: , 𝑎':: , 𝑦'::; 𝜃 = ∑" 𝑄4 𝑠" , 𝑎" − 𝑦" (

=Q
"

𝑄4 𝑠" , 𝑎" − 𝑟" − 𝛾max<!
𝑄4" 𝑠"=' , 𝑎

%
(

§ QL online update with learning rate 𝛼+
W𝜃+=' = W𝜃+ 	− 𝛼+∇4 H𝐿 𝑠':: , 𝑎':: , 𝑦'::; 𝜃

= W𝜃+ 	− 𝛼+Q
"

𝑄4 𝑠" , 𝑎" − 𝑟" − 𝛾max<!
𝑄4" 𝑠"=' , 𝑎

% ∇4𝑄4 𝑠" , 𝑎"

D Pseudo-gradient method. Here, it may diverge even with linear func6on approxima6on…

Sample batch of 𝑛
states ac0ons

Compute TD targets 𝑦+
for the batch

Solve regression
problem

Update 𝜃 towards
solu0on

Not passing the gradient through this 𝜃!

Wu

FiWed Q-itera@on applied to ATARI Games
55

Wu

56

Image preprocessing: grey-scale, crop to 84x84
Atari

Wu

57

State defini>on: 4 last frames
Atari

Wu

58

Atari

Q(s, a1)

Q(s, a4)

Q(s, an)

With probability (1 – ε) à execute maxa Q(s,a)
With probability ε à execute random ac:on

Ac>on-value func>on: deepNet with as many heads as ac>ons

Convolu#onal layers
Fully connected layers
…

Wu

S@ll doesn’t quite work. Why?
59

§ Recall: Approximate QL as Pseudo-Gradient Descent
§ Mathema9cally: Correlated samples. Violates i.i.d. assump9on in supervised

learning.
§ Intui9on: Unlike in supervised learning, in RL, the agent collects its own

data. If that data is bad, then the result is bad too (and may make future
collec9on of data even worse).

Wu

Outline
60

1. Value func>on approxima>on

2. Approximate value-based algorithms
a. Policy evalua8on
b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network

Wu

Solu@on: increase data diversity!
61

§ De-correlates samples
§ Increased diversity in data à less likely

that the data overall is bad for learning

FiUed Q-itera8on

Sample batch of 𝑛
states ac0ons

Compute TD targets 𝑦+
for the batch

Solve regression
problem

Update 𝜃 towards
solu0on

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Replay buffer

Wu

Next issue: chasing a moving target
62

Q-itera0on loss using bootstrapped target

§ Itera0on 𝑖	
\𝐿 𝑠'::, 𝑎'::, 𝑦'::; 𝜃

=_
"

𝑄4 𝑠", 𝑎" − 𝑟" − 𝛾max<&
𝑄4' 𝑠"=', 𝑎

%
(

§ Itera0on 𝑖 + 1
\𝐿 𝑠'::, 𝑎'::, 𝑦'::; 𝜃

=_
"

𝑄4 𝑠", 𝑎" − 𝑟" − 𝛾max<&
𝑄4'() 𝑠"=', 𝑎

%
(

§ Solu0on: change the target slowly
(e.g., �̅� ← 𝜃	every 1000 steps or �̅�% ← 𝜏𝜃 + (1 − 𝜏) ̅𝜃)

\𝐿 𝑠'::, 𝑎'::, 𝑦'::; 𝜃

=_
"

𝑄4 𝑠", 𝑎" − 𝑟" − 𝛾max<&
𝑄4 𝑠"=', 𝑎%

(
Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

“Target network”

Wu

DQN algorithm

Adapted from Sergey Levine

63

Wu

64

Wu

65

Performance
DQN – Atari

Wu

66

Abla>on
DQN – Atari

Wu

§ DQN
over-es>mates
Q values

§ Over-es>ma>on
leads to training
instability,
variance, &
harms overall
performance

Limita&ons of DQN

Deep Reinforcement Learning with Double Q-Learning, Hasselt et al., 2015

67

Wu

68

Over-es@ma@on in DQN
§ Consider

max
'
𝑄 𝑠, 𝑎

§ Over-es>ma>on issue:
𝔼D max

'
.𝑄 𝑠, 𝑎 ≥ max

'
𝔼D .𝑄 𝑠, 𝑎

§ Example 1: let .𝑄 𝑠, 𝑎 ∼ Ber(0.5) for two ac>ons, 𝑎-, 𝑎&

§ Issue 1: Sampling max
'

.𝑄 𝑠, 𝑎 will over-es>mate Q-values
Hasselt. Double Q-learning, NIPS 2010.

𝔼Z J𝑄 𝑠, 𝑎! → 0.5

𝔼Z J𝑄 𝑠, 𝑎# → 0.5

0.5 0.5

0.5 0.5

0 1

0.75 ← 𝔼Z max
[

J𝑄 𝑠, 𝑎 0.25

0.75

0 1

Recall: max
<
𝑄 𝑠, 𝑎 is part of

compu0ng the TD targets:
𝑟" + 𝛾max< 𝑄 𝑠"=', 𝑎

Note: In prac0ce, k𝑄 is usually a
determinis0c func0on. Here
we use a random variable to
represent uncertainty in the
ac0ons & randomness in the
trajectory / MDP.

Wu

69

Over-es@ma@on in DQN
§ Consider

max
'
𝑄 𝑠, 𝑎

§ Over-es>ma>on issue:
𝔼D max

'
.𝑄 𝑠, 𝑎 ≥ max

'
𝔼D .𝑄 𝑠, 𝑎

§ Example 2: let .𝑄 𝑠, 𝑎 ∼ Ber(0.5) for 𝑎-, Ber(0.55) for 𝑎&

§ Issue 2: Ac>ons with lower expected Q-values will oTen be selected
Hasselt. Double Q-learning, NIPS 2010.

𝔼Z J𝑄 𝑠, 𝑎! → 0.5

𝔼Z J𝑄 𝑠, 𝑎# → 0.55

0.5 0.5

0.45 0.55

0 1 Choose: 𝑎# (with probability 1)

0.23 0.28

0,0 0,1 1,0 1,1

0.23 0.28
Choose:
• 𝑎# with probability 0.54
• 𝑎! with probability 0.46

(𝑎!, 𝑎#)

Note: In prac0ce, k𝑄 is usually a
determinis0c func0on. Here
we use a random variable to
represent uncertainty in the
ac0ons & randomness in the
trajectory / MDP.

Wu

Double DQN
70

§ Solu>on: “re-sample” .𝑄 of the ac>on you think is best. In
expecta>on, the Q-value will be correct (not overes>mated).

§ But how? In prac>ce, .𝑄 is determinis>c. So use another Q-func>on.
§ Double DQN
• Implementa8on: Use two networks 𝜃! and 𝜃# (hence “double”)

§ In prac:ce: Can combine re-use the Target network as the 2nd Q-network.
• Compute 𝑎\:],5 = argmax

[(
𝑄)) 𝑠56!, 𝑎

^

• Update
𝜃! ← 𝜃! − 𝛼 𝑄)* 𝑠5 , 𝑎5 − 𝑟5 − 𝛾𝑄)* 𝑠56!, 𝑎\:],5 ∇)𝑄)* 𝑠5 , 𝑎5

• Alternate between 𝜃! and 𝜃#
§ Remark: Double Q-learning is the tabular version of double DQN.

Under the same condi>ons to Q-learning, double Q-learning
converges a.s. to 𝑄∗.

Hasselt. Double Q-learning, NIPS 2010.

Wu

Double DQN - Atari

Deep Reinforcement Learning with Double Q-Learning, Hasselt et al., 2015

71

Wu

72

Double DQN - Atari

van Hasselt, Guez, Silver, 2015

~3 lines of code
Always worth trying

Wu

73

Rainbow DQN

Hessel, MaUeo, et al. ”Rainbow:
Combining Improvements in Deep
Reinforcement Learning.” 2017.

gap

Wu

Revisi@ng Rainbow: more is not always beWer
74

→ More accessible
deep RL research

Obando-Ceron J. S., Castro P. S. Revisi<ng Rainbow: Promo<ng more insigh^ul and inclusive deep reinforcement learning research. ICML, 2021.

Wu

Arcade Learning Environment (ALE)
75

50+ Atari 2600 games

Wu

Revisi@ng Rainbow: more is not always beWer
76

§ Careful choice of
smaller yet
representa9ve tasks

§ Training 9me for
Rainbow:
34,200 GPU hours

§ Training 9me for
Revisi9ng Rainbow:
≈ 78 GPU hours =
3.25 days

§ 438x less compute to
get the same results

Obando-Ceron J. S., Castro P. S. Revisi<ng Rainbow: Promo<ng more insigh^ul and inclusive deep reinforcement learning research. ICML, 2021.

Wu

Revisi@ng Rainbow: more is not always beWer
77

§ Rainbow s>ll >> DQN

Obando-Ceron J. S., Castro P. S. Revisi<ng Rainbow: Promo<ng more insigh^ul and inclusive deep reinforcement learning research. ICML, 2021.

gap

Wu

A menu of value-based (RL) algorithms
78

§ Dynamic programming
§ Value itera>on
§ Q-value itera>on
§ Q-learning
§ FiMed Q-itera>on
§ DQN
§ DDQN
§ Priori>zed experience replay
§ Rainbow DQN

Complexity
(hard to debug)

Efficiency
(fast)

Easy to debugSlow

Tip: Use the simplest algorithm the solves your problem

Wu

From Q-learning to DQN
79

FuncCon approximaCon

Features vs
funcCon class

Linear

Non-linear

Policy evaluaCon

Approximate Monte
Carlo

Approximate TD

Least squares TD (LSTD)

TD(0) divergence

The deadly triad

Policy learning

Approximate (Q-)value
iteraCon

FiRed Q-iteraCon

Deep Q Networks (DQN)

Double DQN (DDQN)

Rainbow DQN

Wu

Adapted from: OpenAI Spinning Up

Lay of the land
80Methods for sequen<al

decision making

Sampling-based
(large state space)

Policy
improvement

Mul<-armed
bandits

(horizon = 1)

Reinforcement
learning

(horizon ≥ 1)

Policy
evalua<on

Dynamic
programming

(small state space)

Dynamic programming
algorithm

(finite horizon)

Generalized policy
itera<on

(infinite horizon)

Value
itera<on

Policy
itera<on

Special
structures

De-facto defini2on:
Reinforcement learning =

sampling-based policy improvement for
sequen2al decision making (horizon ≥ 1)

6.7920: Reinforcement learning:
founda#ons and methods

Learn the policy Learn the
value func2on

Wu

81

Summary

§ Value func>on approxima>on: features vs func>on class
§ Unlike its tabular counterparts, approximate value func>on methods

may diverge, even for policy evalua>on
• Approximate TD, pseudo-gradient methods, and its linear version

§ Approximate Q-value itera>on shares convergence proper>es with
approximate value itera>on and lends itself to regression.

§ FiMed Q itera>on avoids enumera>on of the state space by fidng
the Q func>on to bootstrap targets.
• Basis for a value-based deep RL methods, including Deep Q Networks (DQN).

§ DQN: replay buffer, target networks, over-es>ma>on and other
advances

Wu

References
82

1. DPOC vol2 §2.5.3; SB 16.5

2. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lecture 4.

3. Neuro-Dynamic Programming (NDP). §3.1-3.2, Ch 6.

http://incompleteideas.net/book/the-book-2nd.html

Wu

Reference: Detailed proof for Linear TD (Prop 6.5)

83

And theorem for the incremental version

Wu

84

Proof: Linear TD (𝜆 = 0 → 𝛼! = 𝛾)
First, want to show that Π1#𝒯2 is a contrac8on in 𝐿#,1# with a unique fixed point.
§ The transi8on matrix induced by 𝜋 does not increase the (weighted) norm:

• 𝑃+𝑉 ,>
- = ∑. 𝜌+ 𝑠 ∑./𝑝 𝑠/ 𝑠, 𝜋 𝑠 𝑉 𝑠/ -

≤N
.

𝜌+ 𝑠 N
.?
𝑝 𝑠/ 𝑠, 𝜋 𝑠 𝑉 𝑠/ -

=N
.?
𝜌+ 𝑠′ 𝑉 𝑠/ - = 𝑉 ,>

-

• The second inequality follows the Jensen’s inequality.
• The third equality holds because 𝜌+ is a sta:onary distribu:on.

§ Then it immediately follows that 𝒯2 is a contrac8on in 𝐿#,1#, i.e.,
𝒯2𝑉! − 𝒯2𝑉# 1# = 𝛾 𝑃2 𝑉! − 𝑉# 1# ≤ 𝛾 𝑉! − 𝑉# 1#

§ It can be shown that Π1# is a non-expansion.

§ à unique fixed point 𝑉-3 = Π1#𝒯2𝑉-3.

Wu

85

Proof: Linear TD (𝜆 = 0 → 𝛼! = 𝛾)
Now, let’s consider the error:
§ By Pythagorean theorem, we have:

𝑉/ − 𝑉Il 01
1

= 𝑉/ − Π01𝑉/ 01
1
+ Π01𝑉/ − 𝑉Il 01

1

§ But:
Π01𝑉/ − 𝑉Il 01

1
= Π01𝑉/ − Π01𝒯/𝑉Il 01

1

≤ 𝒯/𝑉/ − 𝒯/𝑉Il 01
1 ≤ 𝛾1 𝑉/ − 𝑉Il 01

1

§ Thus
𝑉/ − 𝑉Il 01

1

≤ 𝑉/ − Π01𝑉/ 01
1
+ 𝛾1 𝑉/ − 𝑉Il 01

1

§ Which corresponds to the result aVer reordering.
∎ .

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error

Wu

Incremental Linear TD
86

Theorem (Tsitsiklis and Van Roy, 1996; c.f. NDP, Prop 6.5)
Let the learning rate 𝜂$ sa9sfy ∑$N# 𝜂$ = ∞, and ∑$N# 𝜂$M < ∞.
We assume that there exists a distribu9on 𝜌 over 𝒮 such that ∀𝑠, 𝑠O ∈ 𝒮,
lim
$→C

𝑃 𝑠$ = 𝑠O|𝑠# = 𝑠 = 𝜌 𝑠O > 0 and that the features 𝜙B CDEDFD 𝒮 are
linearly independent. Let the updates be given by:

𝜃$+, = 𝜃$ + 𝜂$𝛿$6
HF#

$

𝛾𝜆 $QH𝜙 𝑠H

Then there exists a fixed 𝜃∗ such that lim
$→C

𝜃$ = 𝜃∗. Furthermore, we obtain:

𝑉D∗ − 𝑉' M,* ≤
1 − 𝜆𝛾
1 − 𝛾

inf
D

𝑉D − 𝑉' M,*

F See NDP §6.3.3 for detailed analysis. Need to cope with updates that
worsen value func9on. Noise is NOT condi9onally mean zero. Leverage
stochas9c approxima9on results for Markovian noise (NDP §4.4).

Wu

Reference: Detailed proof for Approximate Value Itera?on

87

And performance loss lemma

Wu

88

Proof. Let 𝜖 = max
#P@PQ

𝒯𝑉@ −𝒜𝒯𝑉@ $. This is the largest
approxima>on error done over the itera>ons.

𝑉∗ − 𝑉@;- $ ≤ 𝒯𝑉∗ − 𝒯𝑉@ $ + 𝒯𝑉@ − 𝑉@;- $
	 ≤ 𝛾 𝑉∗ − 𝑉@ $ + 𝜖

then
𝑉∗ − 𝑉@ $ ≤ 1 + 𝛾 +⋯+ 𝛾Q9- 𝜖 + 𝛾Q 𝑉∗ − 𝑉# $

≤
1

1 − 𝛾
𝜖 + 𝛾Q 𝑉∗ − 𝑉# $	

Since from performance loss lemma we have that 𝑉∗ − 𝑉24 $ ≤
&:
-9:

𝑉∗ − 𝑉@ $, then we obtain

𝑉∗ − 𝑉2Q $ ≤
2𝛾

1 − 𝛾 & 𝜖 +
2𝛾Q;-

1 − 𝛾
𝑉∗ − 𝑉# $

Proof: Approximate Value Itera@on

Wu

From Approxima@on Error to Performance Loss
89

Wu

90

Proof: Approxima@on Error to Performance Loss

