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1. DPOC vol2 §2.5.3

2. Neuro-Dynamic Programming (NDP). §3.1-3.2.

3. SB 16.5

Readings

http://incompleteideas.net/book/the-book-2nd.html
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Learning milestone!
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By the end of this lecture, you should understand the founda>ons of 
Deep Q Networks (DQN), the launching point of modern RL. Phew!
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Value-based RL methods
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Example:
§ Q-learning
§ SARSA
§ Approximate value itera>on
§ FiMed Q-itera>on
§ DQN
§ Double DQN
§ …

Environment

Ac8on-value 
func8on
𝑄(𝑠,⋅)

Ac#on

max
w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

update

Bootstrap target
e.g. 𝑟 + 𝛾max

!"
𝑄(𝑠", 𝑎′)
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Outline
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1. Approxima>on architectures

2. Approximate value-based algorithms
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Adapted from: OpenAI Spinning Up

Lay of the land
7Methods for sequen<al 

decision making

Sampling-based
(large state space)

Policy 
improvement

Mul<-armed 
bandits 

(horizon = 1)

Reinforcement 
learning

(horizon ≥ 1)

Policy 
evalua<on

Dynamic 
programming 

(small state space)

Dynamic programming 
algorithm 

(finite horizon)

Generalized policy 
itera<on

(infinite horizon)

Value 
itera<on

Policy 
itera<on

Special 
structures

De-facto defini2on: 
Reinforcement learning = 

sampling-based policy improvement for 
sequen2al decision making (horizon ≥ 1)Today

6.7920: Reinforcement learning: 
founda#ons and methods

Learn the 
value func.on

Learn the policy
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Outline
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1. Approxima+on architectures
a. Value func8on approxima8on for con8nuous state problems
b. Features vs func8on classes

2. Approximate value-based algorithms
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No0ce
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Reminder: We are typically working in the
episodic discounted seCng.

Most results smoothly extend to other seCngs.
NEW: The value func9ons cannot be represented exactly 

(as in the tabular seCng).
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Recall (L1): Key challenge of huge decision spaces

For reference: 
There are between 1078 to 1082 
atoms in the observable universe.

Cannot only explore. Cannot only exploit.
Must trade off explora8on and exploita8on.

10

Possible game states: 319𝑥19 ≈ 10!"#Possible game states: 3$%×$% ≈ 10''((

Arcade Learning Environment (ALE) Game of Go



Wu

Q-Learning: Proper@es
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Proposi9on
If the learning rate sa>sfies the Robbins-Monro condi>ons in all states 
𝑠, 𝑎 ∈ 𝑆×𝐴

(
!"#

$

𝜂% 𝑠, 𝑎 = ∞	 (
!"#

$

𝜂%& 𝑠, 𝑎 < ∞

And all state-ac>on pairs are tried infinitely oTen, then for all 𝑠, 𝑎 ∈
𝑆×𝐴	

.𝑄 𝑠, 𝑎
'.).
𝑄∗ 𝑠, 𝑎

§ Remark: “infinitely o1en” requires a steady explora:on policy.

Understanding this Proposi0on is the 
main subject of today + next 0me.
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Approxima@ng the (state-ac@on) value func@on

𝑎

𝑠

2.5 1.4

1.0

5.2

8.7

4.8

1.0

-180

4.2

2.1

3.0

0.1

3.2

4.2

3.4

2.5

3.0

-172

2.1

2.0

1.2

1.5

3.2 5.4

5.1

5.5

2.0

3.5

3.3

-99.7

3.2

3.7

3.2

0.1

6.3

7.2

8.0

4.2

1.2

-150

3.7

3.1

2.7

1.0

𝑄(𝑠, 𝑎) 𝑄) 𝑠, 𝑎 = 𝑓)(𝑠, 𝑎)

“Tabular” “Func8on approxima8on”
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Value Func@on Approxima@on
14

Desiderata
§ Expressiveness: Rich enough approxima>on architecture to provide 

close enough approxima>on to the func>on we are trying to 
approximate.

§ Computa>onal considera>ons: Effec>ve algorithms for tuning the 
parameters of the approxima>on architecture (“training”).
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Example: Op@mal replacement problem

∼

∼
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Op@mal replacement problem

𝑐(𝑥)

𝑥
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From Exact to Approximate RL

10

20
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Op8mal value func8on

K K KR R R

Op8mal policy

x

Discuss: Is linear func8on approxima8on 
sufficient to represent the op8mal value 
func8on?
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From Exact to Approximate RL
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Approximated by a Fourier basis expansion
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Preview: approximate value itera@on
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Preview: approximate value itera@on
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Outline
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1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)
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Recall: earlier progression
24

§ Policy evalua>on
• Monte Carlo
• TD(1), i.e. Incremental Monte Carlo
• TD(0)
• TD(𝜆)

§ Policy learning
• SARSA
• Q-learning

Consider: How to incorporate func>on approxima>on into these?
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Policy Evalua@on
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Fixed policy 𝝅

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set ini9al state 𝑠#
3. While (𝑠$,& not terminal)   [execute one trajectory]

1. Take ac)on 𝑎',) = 𝜋 𝑠',)
2. Observe next state 𝑠'*+,)  and reward 𝑟',) = 𝑟 𝑠',) , 𝑎',)
3. Set 𝑡 = 𝑡 + 1
EndWhile

EndFor

Return: Es9mate of the value func9on +𝑉' ⋅
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A Gentle Start: Supervised Learning
26

Linear space to approximate value func>ons

ℱ = 𝑉+ 𝑠 =(
,"-

.

𝜃,𝜑, 𝑠 , 𝜃 ∈ ℝ.

With features
𝜑,: 𝑆 → 0, 𝐿 	 𝜙 𝑠 = 𝜑- 𝑠 …𝜑. 𝑠 /
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Approximate Monte-Carlo as Supervised Learning
27

§ Distribu>on over ini>al states 𝒟
§ Func>on approxima>on 𝑉+: 𝑆 → ℝ, 𝜃 ∈ ℝ.  [e.g. linear, deepNet]
§ Build training set of 𝑛 samples

𝑠!~	𝒟	 𝑅! =(
%"#

0

𝑟%,! = 𝑉2 𝑠! + 𝜖! 	 𝔼 𝜖! = 0
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Approximate Monte-Carlo as Supervised Learning
28

§ Training (batch)

.𝜃3 = argmin
+

1
𝑛(
!"-

3

𝐿 𝑠! , 𝑅!; 𝜃 =
1
𝑛(
!"-

3

𝑉+ 𝑠! − 𝑅! &

§ Tes>ng (aka generaliza>on error)
𝐿 .𝜃3 = 𝔼𝒟 𝑉2 𝑠 − 𝑉5+* 𝑠

&
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Approximate Monte-Carlo as Supervised Learning
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Proposi9on (qualita9ve)
Let 𝑛 be the number of samples used to build the Monte-Carlo 
training set.  Let also 𝑟 𝑠, 𝑎 ∈ 0, 𝑟678  and trajectories to be as long 
as 𝐻 = -

-9:
, then approximate Monte-Carlo has a generaliza>on error:

𝐿 .𝜃3 ≤ min
+
𝐿 𝜃 + 𝑂

1
1 − 𝛾

𝑑
𝑛

F Tends to the best possible approxima>on as 𝑛 tends to infinity.
D Variance may be big.
§ Proof: Apply Hoeffding’s inequality

𝑑 = number of features
𝜃	= parameterizes 𝑉)
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Approximate Monte-Carlo as Supervised Learning
30

§ Monte-Carlo with online training aTer each sample 𝑠! , 𝑅!  with 
learning rate 𝛼!

.𝜃!;- = .𝜃! − 𝛼!∇+𝐿 𝑠! , 𝑅!; 𝜃!
	 = .𝜃! 	− 𝛼! 𝑉++ 𝑠! − 𝑅! ∇+𝑉++ 𝑠!
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Outline
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1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)
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Approximate TD(0) as Pseudo-Gradient Descent
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§ Run 𝜋 to generate a single trajectory 𝑠#, 𝑟#, 𝑠-, 𝑟-, 𝑠&, 𝑟&, … , 𝑠3 , 𝑟3
§ TD loss using bootstrapped target

T𝐿 𝑠% , T𝑅%; 𝜃 = 𝑉+ 𝑠% − T𝑅%
& = 𝑉+ 𝑠% − 𝑟% − 𝛾𝑉+, 𝑠%;-

&

§ TD online update with learning rate 𝛼%
.𝜃%;- = .𝜃% − 𝛼%∇+ T𝐿 𝑠% , T𝑅%; .𝜃%
	 = .𝜃% − 𝛼% 𝑉5+, 𝑠% − 𝑟% − 𝛾𝑉5+, 𝑠%;- ∇+𝑉+ 𝑠%; .𝜃%

D Not really a gradient method…
§ Discuss: Why not?
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1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)
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Linear TD (Least Squares TD, i.e. LSTD)
34

§ Projec>on perspec>ve (assume: 
sta>onary distribu>on 𝜌2)

§ Compact nota>on: 𝑉+ = Φ𝜃, where
• Φ = 𝜙 𝑠! -; 𝜙 𝑠# -; …𝜙 𝑠. - ∈ ℝ.×/

• 𝜙 𝑠 = 𝜑! 𝑠 …𝜑/ 𝑠 - ∈ ℝ/

§ Interested in fixed point solu>on of
Φ𝜃 = Π<0𝒯2 Φ𝜃

§ With linear approxima>on, projec>on 
is linear.

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error
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Linear TD (Least Squares TD, i.e. LSTD)
35

§ Recall: 𝒯2𝑉 = 𝑟 + 𝛾𝑃2𝑉

§ By defini>on of projec>on (assume 
linearly independent features Φ), the 
unique solu>on 𝜃∗ sa>sfies:

𝜃∗ = arg min
+∈ℝ4

Φ𝜃 − 𝑟 + 𝛾𝑃2Φ𝜃 <0
&

§ Sedng gradient to 0, we obtain:
Φ/𝐷<0 Φ𝜃∗ − 𝑟 + 𝛾𝑃2Φ𝜃∗ = 0

With 𝐷1# a diagonal matrix with entries 
𝜌2.

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error
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Linear TD (Least Squares TD, i.e. LSTD)
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Solving for 𝜃∗
Φ)𝐷*# Φ𝜃∗ − 𝑟 + 𝛾𝑃'Φ𝜃∗ = 0

§ Direct solu9on: 𝐶𝜃 = 𝑑, where 
𝐶 = Φ)𝐷*# 𝐼	 − 𝛾𝑃' Φ, 𝑑 = Φ)𝒟*#𝑟

§ Itera9ve method (projected VI (PVI), 
analogous to VI): 

Φ𝜃$+, = Π*#𝒯 Φ𝜃$
• Can write PVI explicitly: 
𝜃'*+ = arg min

,∈ℝ0
Φ𝜃 − 𝑟 + 𝛾𝑃/Φ𝜃' 01

1

§ Incremental variants (like TD(0), TD(𝜆))

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error
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Linear TD (c.f. NDP, Assump/on 6.1 and Prop 6.5)
37

Theorem (Bradtke and Barto, 1996)
We assume that:

1. [Sta'onary distribu'on] There exists a distribu0on 𝜌! over 𝒮 such that lim
"→$

𝑃! 𝑠" = 𝑠% 𝑠& = 𝑠 = 𝜌! 𝑠% > 0, ∀𝑠, 𝑠% ∈
𝒮; denote 𝜌! = 𝜌! 𝑠' , 𝜌! 𝑠( , … , 𝜌! 𝑠𝒮  and let Π*#  be the projec0on with respect to the weighted Euclidean norm 
⋅ *# .

2. [Features are full rank] The features 𝜙+ ',-,., 𝒮  are linearly independent.

Then, the mappings 𝒯/,! and Π*#𝒯/,! are contrac0ons of factor 𝛼/ =
1 '2/
'21/

 w.r.t ⋅ *# .  

Furthermore, the linear TD es0mate converges to 𝜃∗, and Φ𝜃∗ is the fixed point of the projected Bellman operator:
Φ𝜃∗ = Π*#𝒯/,!Φ𝜃∗

And it has error:
𝐿*# 𝜃∗ ≤

1

1 − 𝛼/
(
min
4
𝐿*# 𝜃

Where 𝐿*#  is the expected loss w.r.t. the sta0onary distribu0on 𝜌!.

F Linear TD converges.
F Error is related to the best possible error.

F 𝛾 = 0 → accurate. Discuss: Why?
F 𝜆 = 0 → inaccurate. Discuss: Why?
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Proof (sketch): Linear TD (𝜆 = 0 → 𝛼! = 𝛾)
1. Show that Π<0𝒯2  is a 

contrac>on in 𝐿&,<0 with a 
unique fixed point 𝑉/=.
• 𝒯2 is a contrac8on
• Π1# is a non-expansion

2. Bound the error using the 
Pythagorean theorem.

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
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Approximate TD
39

Approximate TD may not converge (i.e. it might diverge) if:
§ Linear approxima>on but states 𝑠!  are obtained by following a 

different policy (off-policy learning)
§ Non-linear approxima>on and states 𝑠!  are obtained by following 𝜋
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1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua1on

§ Approximate Monte Carlo
§ Approximate TD(0)
§ Convergence result
§ Divergence counterexample

b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)
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Counterexample: Divergence of Off-policy Linear TD(0)
§ Consider the Markov chain induced by 𝜋, with two states 𝑆 = {1, 2}. Reward is always 0.
§ Consider a 𝜌H ≠ 𝜌/, that chooses the next state {1,2} with equal probability.
§ Linear funcCon approximaCon with parameter 𝑤 ∈ ℝ

• 𝑉2(𝑠) = 𝑤 ⋅ 𝑠
• Note: 𝜙 𝑠 ≔ 𝑠, that is, 𝜙 1 = 1, 𝜙 2 = 2

§ Recall linear TD update:
.𝜃'*+ = .𝜃' − 𝛼' 𝜙'I𝜃' − 𝑟' 	− 𝛾𝜙'*+I 𝜃' 𝜙'

Compare
§ TD(0) with states sampled from 𝜌/ (converges)

𝔼 𝑤345 = 𝔼 𝑤3 − 𝛼34 1 − 𝛾 𝔼 𝑤3 + 𝑂(𝜖)𝔼 𝑤3
§ TD(0) with states sampled from 𝜌H (diverges for 𝛾 > 3/4, 𝜖 small enough, if 𝑤J ≠ 0)

𝔼 𝑤345 = 𝔼 𝑤3 − 𝛼3
1
2
1 − 2𝛾 𝔼 𝑤3 − 𝛼3

1
2

1 − 𝜖 2 1 − 𝛾 + 𝜖 2 − 𝛾 𝔼 𝑤3

	 = 	𝔼 𝑤3 − 𝛼3
1
2
3 − 4𝛾 𝔼 𝑤3 + 𝑂(𝜖)𝔼 𝑤3

Further reading: NDP §6.3

1 2

ϵ

1
1 − ϵ
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Numerical example: Baird’s counterexample

Further reading: S&B §11.2.

Similar 
counterexamples 

for Q-learning

Behavior policy

Target policy

Weights 𝑤 ≡ 𝜃
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Numerical example: Baird’s counterexample

Further reading: S&B §11.2.

Weights 𝑤 ≡ 𝜃

Further reading: See NDP §6.3 
(Example 6.6) for a nonlinear 
TD(0) counterexample
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The risk of divergence arises whenever we combine:

The deadly triad
44

𝑉 𝑠5 ← 𝑟5 + 𝛾𝑉(𝑠56!)

𝜋789:;<=> ≠ 𝜋?:>@8?

Further reading: S&B §11.3

Claim: Any two without the third is OK.

Off-policy 
learning

Func8on 
approxima8on

Bootstrapping
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Possible remedies (and further readings)
45

§ More careful algorithm designs [SuXon et al., 2009; S&B §11.7-11.8]
• “Fast gradient-descent methods for temporal-difference learning with linear 

func)on approxima)on.” ICML.
§ Gradient TD (GTD)
§ TD with gradient correc#on (TDC)

• Empha)c TD [SuPon et al., 2016], etc.
§ “An empha#c approach to the problem of off-policy temporal-difference learning.” JMLR.

• Convergence guarantees for off-policy and “mildly” non-linear approximators
§ Reducing variance [S&B §11.9]
§ Using a target network [Mnih et al., 2015, Zhang et al., 2021]

• “Human-level control through deep reinforcement learning.” Nature.
• “Breaking the deadly triad with a target network.” ICML.
• Target network 𝑄MNOPQM: periodically synced by the value network 
• Value network 𝑄: updated via gradient methods
• Key ingredients in (double) deep Q-learning (DQN).
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Outline
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1. Approxima>on architectures

2. Approximate value-based algorithms
a. Policy evalua8on
b. Policy learning: approximate value itera1on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network (DQN)
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Approximate value itera@on (AVI)
47

§ Recall: value itera>on. Start with any 𝑉#. Then:
𝑉@;- = 𝒯𝑉@

§ Contrac>on property of 𝒯 ⟹ 𝑉@ → 𝑉∗.

§ Approximate value itera>on. Start with any 𝑉#. Then:
𝑉@;- = 𝒜𝒯𝑉@

 where 𝒜 is a generic approxima>on operator.
§ Standard case: 

𝑉@;- = arg inf
A∈ℱ

||𝒯𝑉@ − 𝑉||

 where ℱ is a func>on space (e.g. linear, deep neural network).
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Approximate value itera@on (AVI)
48

AVI approxima9on error [Bertsekas & Tsitsiklis, 1996] 
Let 𝑉B be the func9on returned by AVI aber 𝐾 itera9ons and 𝜋B its 
corresponding greedy policy. Then the performance error is bounded as 

𝑉∗ − 𝑉/0
S
≤

2𝛾
1 − 𝛾 1 max

JTUVW
𝒯𝑉U −𝒜𝒯𝑉U S

+
2𝛾W*+

1 − 𝛾
𝑉∗ − 𝑉J S

§ If 𝒜 is a projec9on in 𝐿C-norm, then 𝒜 is a non-expansion and the joint 
operator 𝒜𝒯 is a contrac9on, which guarantees the existence of a unique 
fixed point B𝑉 = 𝒜𝒯 B𝑉 and thus the convergence of AVI.

§ Performance error = approxima9on error + ini9aliza9on-dependent term
§ Proof (sketch):

• Incur some (discounted) approxima)on error at each itera)on
• Incur some performance loss due to par)al policy evalua)on in value itera)on
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Approximate Q-value itera@on
49

§ Analogously to approximate value itera>on:
𝑄@;- = 𝒜𝒯𝑄@

 with 𝒜 defined over S x A.

§ Recall: 𝒯𝑄 𝑠, 𝑎 = ∑)C 𝑝 𝑠C 𝑠, 𝑎 [𝑟 𝑠, 𝑎 + 𝛾max
'A
	𝑄(𝑠C, 𝑎C)]

1. Compu8ng best ac8on from Q-values is easy
2. Can use examples to approximate the expecta8on
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Approximate Q-value itera@on
50

§ Unlike AVI, each itera9on is amenable to solving as a regression problem*.
§ Consider: linear approxima9on

ℱ = 𝑄D 𝑠, 𝑎 =F
EF,

G

𝜃E𝜑E 𝑠, 𝑎 , 𝜃 ∈ ℝG

With features
𝜑E: 𝑆×𝐴 → 0, 𝐿 	 𝜙 𝑠, 𝑎 = 𝜑, 𝑠, 𝑎 …𝜑G 𝑠, 𝑎 )

§ Each itera9on, solve:
𝑄H+, = argmin

I∈ℱ
𝑄	 − 𝒯𝑄H L

M

With 𝜇 a distribu9on over S.

* D Pseudo-gradient method (like linear TD). Here, it may diverge even with 
linear func9on approxima9on…
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Outline
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1. Value func>on approxima>on

2. Approximate value-based algorithms
a. Policy evalua8on
b. Policy learning: approximate value itera8on
c. Policy learning: fiDed Q itera1on
d. Policy learning: deep Q-network
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FiUed Q-itera8on

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.

FiWed Q-itera@on (approximate Q-itera@on)
52

Sample batch of 𝑛 
states ac0ons

Compute TD targets 𝑦+ 
for the batch

Solve regression 
problem

Update 𝜃 towards 
solu0on

Batch + approximate extension of Q-learning
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Recall: Q-learning
53

§ Key idea: incrementally obtain new data and update Q func>on 
using the op>mal Bellman equa>on (greedy)

Q-value itera8on

V

𝑄 ≈ 𝑞 $

𝑄
𝑄∗

(𝑄)

Q-learning

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.
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FiUed Q-itera8on

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.

FiWed Q-itera@on (approximate Q-itera@on)
54

§ Run 𝜋, e.g., over a single trajectory
. 𝑠& , 𝑎& , 𝑟& , 𝑠' , 𝑎' , 𝑟' , 𝑠( , 𝑎( , 𝑟( , … , 𝑠: , 𝑎: , 𝑟:

§ Q-itera6on loss using bootstrapped target
H𝐿 𝑠':: , 𝑎':: , 𝑦'::; 𝜃 = ∑" 𝑄4 𝑠" , 𝑎" − 𝑦" (

=Q
"

𝑄4 𝑠" , 𝑎" − 𝑟" − 𝛾max<!
𝑄4" 𝑠"=' , 𝑎

%
(

§ QL online update with learning rate 𝛼+
W𝜃+=' = W𝜃+ 	− 𝛼+∇4 H𝐿 𝑠':: , 𝑎':: , 𝑦'::; 𝜃

= W𝜃+ 	− 𝛼+Q
"

𝑄4 𝑠" , 𝑎" − 𝑟" − 𝛾max<!
𝑄4" 𝑠"=' , 𝑎

% ∇4𝑄4 𝑠" , 𝑎"

D Pseudo-gradient method. Here, it may diverge even with linear func6on approxima6on…

Sample batch of 𝑛 
states ac0ons

Compute TD targets 𝑦+ 
for the batch

Solve regression 
problem

Update 𝜃 towards 
solu0on

Not passing the gradient through this 𝜃!
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FiWed Q-itera@on applied to ATARI Games
55
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Image preprocessing: grey-scale, crop to 84x84
Atari
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State defini>on: 4 last frames
Atari
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Atari

Q(s, a1)

Q(s, a4)

Q(s, an)

With probability (1 – ε) à execute maxa Q(s,a)
With probability      ε     à execute random ac:on

Ac>on-value func>on: deepNet with as many heads as ac>ons

Convolu#onal layers
Fully connected layers
…
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S@ll doesn’t quite work. Why?
59

§ Recall: Approximate QL as Pseudo-Gradient Descent
§ Mathema9cally: Correlated samples. Violates i.i.d. assump9on in supervised 

learning. 
§ Intui9on: Unlike in supervised learning, in RL, the agent collects its own 

data. If that data is bad, then the result is bad too (and may make future 
collec9on of data even worse).
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Outline
60

1. Value func>on approxima>on

2. Approximate value-based algorithms
a. Policy evalua8on
b. Policy learning: approximate value itera8on
c. Policy learning: fiUed Q itera8on
d. Policy learning: deep Q-network
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Solu@on: increase data diversity!
61

§ De-correlates samples
§ Increased diversity in data à less likely 

that the data overall is bad for learning 

FiUed Q-itera8on

Sample batch of 𝑛 
states ac0ons

Compute TD targets 𝑦+ 
for the batch

Solve regression 
problem

Update 𝜃 towards 
solu0on

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.

Replay buffer
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Next issue: chasing a moving target
62

Q-itera0on loss using bootstrapped target

§ Itera0on 𝑖	
\𝐿 𝑠'::, 𝑎'::, 𝑦'::; 𝜃

=_
"

𝑄4 𝑠", 𝑎" − 𝑟" − 𝛾max<&
𝑄4' 𝑠"=', 𝑎

%
(

§ Itera0on 𝑖 + 1
\𝐿 𝑠'::, 𝑎'::, 𝑦'::; 𝜃

=_
"

𝑄4 𝑠", 𝑎" − 𝑟" − 𝛾max<&
𝑄4'() 𝑠"=', 𝑎

%
(

§ Solu0on: change the target slowly 
(e.g., 𝜃̅ ← 𝜃	every 1000 steps or 𝜃̅% ← 𝜏𝜃 + (1 − 𝜏) ̅𝜃)

\𝐿 𝑠'::, 𝑎'::, 𝑦'::; 𝜃

=_
"

𝑄4 𝑠", 𝑎" − 𝑟" − 𝛾max<&
𝑄4 𝑠"=', 𝑎%

(
Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.

“Target network”
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DQN algorithm

Adapted from Sergey Levine

63
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Performance
DQN – Atari
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Abla>on
DQN – Atari
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§ DQN 
over-es>mates 
Q values

§ Over-es>ma>on 
leads to training 
instability, 
variance, & 
harms overall 
performance

Limita&ons of DQN

Deep Reinforcement Learning with Double Q-Learning, Hasselt et al., 2015

67
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Over-es@ma@on in DQN
§ Consider

max
'
𝑄 𝑠, 𝑎

§ Over-es>ma>on issue:
𝔼D max

'
.𝑄 𝑠, 𝑎 ≥ max

'
𝔼D .𝑄 𝑠, 𝑎

§ Example 1: let .𝑄 𝑠, 𝑎 ∼ Ber(0.5) for two ac>ons, 𝑎-, 𝑎&

§ Issue 1: Sampling max
'

.𝑄 𝑠, 𝑎  will over-es>mate Q-values
Hasselt. Double Q-learning, NIPS 2010.

𝔼Z J𝑄 𝑠, 𝑎! → 0.5

𝔼Z J𝑄 𝑠, 𝑎# → 0.5

0.5 0.5

0.5 0.5

0 1

0.75 ← 𝔼Z max
[

J𝑄 𝑠, 𝑎 0.25

0.75

0 1

Recall: max
<
𝑄 𝑠, 𝑎  is part of 

compu0ng the TD targets:
𝑟" + 𝛾max< 𝑄 𝑠"=', 𝑎

Note: In prac0ce, k𝑄 is usually a 
determinis0c func0on. Here 
we use a random variable to 
represent uncertainty in the 
ac0ons & randomness in the 
trajectory / MDP.
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Over-es@ma@on in DQN
§ Consider

max
'
𝑄 𝑠, 𝑎

§ Over-es>ma>on issue:
𝔼D max

'
.𝑄 𝑠, 𝑎 ≥ max

'
𝔼D .𝑄 𝑠, 𝑎

§ Example 2: let .𝑄 𝑠, 𝑎 ∼ Ber(0.5) for 𝑎-, Ber(0.55) for 𝑎&

§ Issue 2: Ac>ons with lower expected Q-values will oTen be selected
Hasselt. Double Q-learning, NIPS 2010.

𝔼Z J𝑄 𝑠, 𝑎! → 0.5

𝔼Z J𝑄 𝑠, 𝑎# → 0.55

0.5 0.5

0.45 0.55

0 1 Choose: 𝑎# (with probability 1)

0.23 0.28

0,0 0,1 1,0 1,1

0.23 0.28
Choose:
• 𝑎# with probability 0.54
• 𝑎! with probability 0.46

(𝑎!, 𝑎#)

Note: In prac0ce, k𝑄 is usually a 
determinis0c func0on. Here 
we use a random variable to 
represent uncertainty in the 
ac0ons & randomness in the 
trajectory / MDP.



Wu

Double DQN
70

§ Solu>on: “re-sample” .𝑄 of the ac>on you think is best. In 
expecta>on, the Q-value will be correct (not overes>mated).

§ But how? In prac>ce, .𝑄 is determinis>c. So use another Q-func>on.
§ Double DQN
• Implementa8on: Use two networks 𝜃! and 𝜃# (hence “double”)

§ In prac:ce: Can combine re-use the Target network as the 2nd Q-network.
• Compute 𝑎\:],5 = argmax

[(
𝑄)) 𝑠56!, 𝑎

^

• Update
𝜃! ← 𝜃! − 𝛼 𝑄)* 𝑠5 , 𝑎5 − 𝑟5 − 𝛾𝑄)* 𝑠56!, 𝑎\:],5 ∇)𝑄)* 𝑠5 , 𝑎5

• Alternate between 𝜃! and 𝜃#
§ Remark: Double Q-learning is the tabular version of double DQN. 

Under the same condi>ons to Q-learning, double Q-learning 
converges a.s. to 𝑄∗.

Hasselt. Double Q-learning, NIPS 2010.
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Double DQN - Atari

Deep Reinforcement Learning with Double Q-Learning, Hasselt et al., 2015

71
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Double DQN - Atari

van Hasselt, Guez, Silver, 2015 

~3 lines of code
Always worth trying
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Rainbow DQN

Hessel, MaUeo, et al. ”Rainbow: 
Combining Improvements in Deep 
Reinforcement Learning.” 2017. 

gap
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Revisi@ng Rainbow: more is not always beWer
74

→ More accessible 
deep RL research

Obando-Ceron J. S., Castro P. S. Revisi<ng Rainbow: Promo<ng more insigh^ul and inclusive deep reinforcement learning research. ICML, 2021.
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Arcade Learning Environment (ALE)
75

50+ Atari 2600 games



Wu

Revisi@ng Rainbow: more is not always beWer
76

§ Careful choice of 
smaller yet 
representa9ve tasks

§ Training 9me for 
Rainbow: 
34,200 GPU hours

§ Training 9me for 
Revisi9ng Rainbow:
≈ 78 GPU hours = 
3.25 days

§ 438x less compute to 
get the same results

Obando-Ceron J. S., Castro P. S. Revisi<ng Rainbow: Promo<ng more insigh^ul and inclusive deep reinforcement learning research. ICML, 2021.
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Revisi@ng Rainbow: more is not always beWer
77

§ Rainbow s>ll >> DQN

Obando-Ceron J. S., Castro P. S. Revisi<ng Rainbow: Promo<ng more insigh^ul and inclusive deep reinforcement learning research. ICML, 2021.

gap
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A menu of value-based (RL) algorithms
78

§ Dynamic programming
§ Value itera>on
§ Q-value itera>on
§ Q-learning
§ FiMed Q-itera>on
§ DQN
§ DDQN
§ Priori>zed experience replay
§ Rainbow DQN

Complexity
(hard to debug)

Efficiency
(fast)

Easy to debugSlow

Tip: Use the simplest algorithm the solves your problem
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From Q-learning to DQN
79

FuncCon approximaCon

Features vs 
funcCon class

Linear

Non-linear

Policy evaluaCon

Approximate Monte 
Carlo

Approximate TD

Least squares TD (LSTD)

TD(0) divergence

The deadly triad

Policy learning

Approximate (Q-)value 
iteraCon

FiRed Q-iteraCon

Deep Q Networks (DQN)

Double DQN (DDQN)

Rainbow DQN
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Adapted from: OpenAI Spinning Up

Lay of the land
80Methods for sequen<al 

decision making

Sampling-based
(large state space)

Policy 
improvement

Mul<-armed 
bandits 

(horizon = 1)

Reinforcement 
learning

(horizon ≥ 1)

Policy 
evalua<on

Dynamic 
programming 

(small state space)

Dynamic programming 
algorithm 

(finite horizon)

Generalized policy 
itera<on

(infinite horizon)

Value 
itera<on

Policy 
itera<on

Special 
structures

De-facto defini2on: 
Reinforcement learning = 

sampling-based policy improvement for 
sequen2al decision making (horizon ≥ 1)

6.7920: Reinforcement learning: 
founda#ons and methods

Learn the policy Learn the 
value func2on
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Summary

§ Value func>on approxima>on: features vs func>on class
§ Unlike its tabular counterparts, approximate value func>on methods 

may diverge, even for policy evalua>on
• Approximate TD, pseudo-gradient methods, and its linear version

§ Approximate Q-value itera>on shares convergence proper>es with 
approximate value itera>on and lends itself to regression.

§ FiMed Q itera>on avoids enumera>on of the state space by fidng 
the Q func>on to bootstrap targets.
• Basis for a value-based deep RL methods, including Deep Q Networks (DQN).

§ DQN: replay buffer, target networks, over-es>ma>on and other 
advances
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Reference: Detailed proof for Linear TD (Prop 6.5)

83

And theorem for the incremental version
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Proof: Linear TD (𝜆 = 0 → 𝛼! = 𝛾)
First, want to show that Π1#𝒯2 is a contrac8on in 𝐿#,1# with a unique fixed point.
§ The transi8on matrix induced by 𝜋 does not increase the (weighted) norm:

• 𝑃+𝑉 ,>
- = ∑. 𝜌+ 𝑠 ∑./𝑝 𝑠/ 𝑠, 𝜋 𝑠 𝑉 𝑠/ -

≤N
.

𝜌+ 𝑠 N
.?
𝑝 𝑠/ 𝑠, 𝜋 𝑠 𝑉 𝑠/ -

=N
.?
𝜌+ 𝑠′ 𝑉 𝑠/ - = 𝑉 ,>

-

• The second inequality follows the Jensen’s inequality.
• The third equality holds because 𝜌+ is a sta:onary distribu:on.

§ Then it immediately follows that 𝒯2 is a contrac8on in 𝐿#,1#, i.e.,
𝒯2𝑉! − 𝒯2𝑉# 1# = 𝛾 𝑃2 𝑉! − 𝑉# 1# ≤ 𝛾 𝑉! − 𝑉# 1#

§ It can be shown that Π1# is a non-expansion.

§ à unique fixed point 𝑉-3 = Π1#𝒯2𝑉-3. 
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Proof: Linear TD (𝜆 = 0 → 𝛼! = 𝛾)
Now, let’s consider the error:
§ By Pythagorean theorem, we have:

𝑉/ − 𝑉Il 01
1

= 𝑉/ − Π01𝑉/ 01
1
+ Π01𝑉/ − 𝑉Il 01

1

§ But:
Π01𝑉/ − 𝑉Il 01

1
= Π01𝑉/ − Π01𝒯/𝑉Il 01

1

≤ 𝒯/𝑉/ − 𝒯/𝑉Il 01
1 ≤ 𝛾1 𝑉/ − 𝑉Il 01

1

§ Thus
𝑉/ − 𝑉Il 01

1

≤ 𝑉/ − Π01𝑉/ 01
1
+ 𝛾1 𝑉/ − 𝑉Il 01

1

§ Which corresponds to the result aVer reordering.
∎        .

𝑉/= = Φ𝜃∗ = Π<0𝒯2Φ𝜃∗
	 = Π<0𝒯2𝑉/=

ℱ
Π1#𝑉2

𝑉-3 = Π1#𝒯2𝑉-3

𝒯2 𝒯2𝑉-3

𝑉2 𝒯2
unavoidable

error
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Incremental Linear TD
86

Theorem (Tsitsiklis and Van Roy, 1996; c.f. NDP, Prop 6.5)
Let the learning rate 𝜂$ sa9sfy ∑$N# 𝜂$ = ∞, and ∑$N# 𝜂$M < ∞.
We assume that there exists a distribu9on 𝜌 over 𝒮 such that ∀𝑠, 𝑠O ∈ 𝒮, 
lim
$→C

𝑃 𝑠$ = 𝑠O|𝑠# = 𝑠 = 𝜌 𝑠O > 0 and that the features 𝜙B CDEDFD 𝒮  are 
linearly independent.  Let the updates be given by:

𝜃$+, = 𝜃$ + 𝜂$𝛿$6
HF#

$

𝛾𝜆 $QH𝜙 𝑠H

Then there exists a fixed 𝜃∗ such that lim
$→C

𝜃$ = 𝜃∗.  Furthermore, we obtain:

𝑉D∗ − 𝑉' M,* ≤
1 − 𝜆𝛾
1 − 𝛾

inf
D

𝑉D − 𝑉' M,*

F See NDP §6.3.3 for detailed analysis.  Need to cope with updates that 
worsen value func9on. Noise is NOT condi9onally mean zero. Leverage 
stochas9c approxima9on results for Markovian noise (NDP §4.4).
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Reference: Detailed proof for Approximate Value Itera?on
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And performance loss lemma
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Proof.  Let 𝜖 = max
#P@PQ

𝒯𝑉@ −𝒜𝒯𝑉@ $.  This is the largest 
approxima>on error done over the itera>ons.

𝑉∗ − 𝑉@;- $ ≤ 𝒯𝑉∗ − 𝒯𝑉@ $ + 𝒯𝑉@ − 𝑉@;- $
	 ≤ 𝛾 𝑉∗ − 𝑉@ $ + 𝜖

then 
𝑉∗ − 𝑉@ $ ≤ 1 + 𝛾 +⋯+ 𝛾Q9- 𝜖 + 𝛾Q 𝑉∗ − 𝑉# $

≤
1

1 − 𝛾
𝜖 + 𝛾Q 𝑉∗ − 𝑉# $	

Since from performance loss lemma we have that 𝑉∗ − 𝑉24 $ ≤
&:
-9:

𝑉∗ − 𝑉@ $, then we obtain

𝑉∗ − 𝑉2Q $ ≤
2𝛾

1 − 𝛾 & 𝜖 +
2𝛾Q;-

1 − 𝛾
𝑉∗ − 𝑉# $

Proof: Approximate Value Itera@on
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From Approxima@on Error to Performance Loss 
89



Wu

90

Proof: Approxima@on Error to Performance Loss 


