
Wu

Policy gradient
Simplicity at the cost of variance

Cathy Wu

6.7920: Reinforcement Learning: Foundations and Methods

Fall 2023

Wu

4

1. NDP §6.1: Generic issues – from parameters to policies

2. SB Chapter 13: Policy Gradient Methods

Readings

http://incompleteideas.net/book/the-book-2nd.html

Wu

Outline
5

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic

Wu

Outline
6

1. From Policy Itera1on to Policy Search

2. Policy gradient methods

3. Actor-cri<c

Wu

Ref (RL): OpenAI Spinning Up

Lay of the land
9Methods for sequential

decision making

Sampling-based
(large state space)

Policy
improvement

MulF-armed
bandits

(horizon = 1)

Reinforcement
learning

(horizon ≥ 1)

Policy
evaluation

Dynamic
programming

(small state space)

Dynamic programming
algorithm

(finite horizon)

Generalized policy
iteration

(infinite horizon)

Value
iteration

Policy
iteration

Special
structures

De-facto definition:
Reinforcement learning =

sampling-based policy improvement for
sequential decision making (horizon ≥ 1)

Today

6.7920: Reinforcement learning:
foundations and methods

Wu

Value-based methods
10

Environment

Ac5on-value
func5on
𝑄(𝑠,⋅)

Action

max
w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

update

Bootstrap target
e.g. 𝑟 + 𝛾max

!"
𝑄(𝑠", 𝑎′)

Wu

Policy-based methods
11

Environment

Action

Policy
𝜋(⋅ |𝑠)

sample

state,
reward

update:
Increase

probability
of selec<ng
ac<ons w/

higher
returns,

 i.e. ∑!"#$ 𝑟!

Wu

12

How do we represent a policy?
Example: Parameterized Policy

Normal Policy

𝜋 𝑎 𝑠 =
1

𝜎& 𝑠 2𝜋
𝑒
'
(')0 * 1

+,21 (*)

Then:

∇/ log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇/ 𝑠
𝜎&+ 𝑠

∇/𝜇/ 𝑠

∇& log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇/ 𝑠

+ − 𝜎&+ 𝑠
𝜎&0 𝑠

∇&𝜇& 𝑠

Gibbs (softmax) Policy

𝜋 𝑎 𝑠 =
𝑒𝒦20 *,(

∑(3∈𝒜 𝑒𝒦20 *,(3

Then:
∇/ log 𝜋 𝑎 𝑠 = 𝒦∇/𝑄/ 𝑠, 𝑎

	 −𝒦 4
(3∈𝒜

𝜋 𝑎6 𝑠 ∇/𝑄/ 𝑠, 𝑎6

Continuous actions Discrete ac5ons

Wu

RL methods overview
13

Value-basedPolicy-based Actor-critic*

* Warning: precise definitions may vary

Op5mize policies
(and only policies) Optimize value

functions
(and only value functions)

Elements of both

Policy gradients
REINFORCE
Genetic algorithms Value iteration

Q-learning
SARSA
DQN
Rainbow DQN

DDPG, PPO, TD3, SAC

The best methods use
elements of both.

Model

OpBonal

Wu

Policy gradient = gradient ascent for MDPs

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approximation to
performance of the
policy

😀

😇
True objective
(the performance of
the policy)

V(θ)

αg

Consider a parameterized policy 𝜋!(⋅ |𝑠)

14

Wu

Policy Gradient = gradient ascent for MDPs
15

1. How do we compute 𝛁𝜽𝑽 𝜽 ?
2. How quickly do we update (i.e. 𝛼")?

Policy Gradient
𝜃"#$ = 𝜃" + 𝛼"∇%𝑉 𝜃"

REINFORCE, variance reduction,
baselines, generalized advantage

estimation (GAE)
NPG, TRPO, PPO

𝑉 𝜋!# = 𝔼 ,
"#$

%&'

𝑟"|𝜋!# , 𝑀 = 𝔼(~	ℙ 𝜏 𝜋!# , 𝑀
ℛ 𝜏

Wu

Function approximation

16

Last time: Add function approximation to value iteration
This time: Add function approximation to policy iteration. Sorta.

Wu

Policy IteraEon: Recap
17

Let 𝜋! be an arbitrary stationary policy.
while 𝑘 = 1,… , 𝐾 do
 Policy Evaluation: given 𝜋" compute 𝑉" = 𝑉##
 Policy Improvement: find 𝜋"$% that is better than 𝜋"
 - e.g. compute the greedy policy:

𝜋"$% 𝑠 ∈ argmax
&∈𝒜

𝑟 𝑠, 𝑎 + 𝛾4
)

𝑝 𝑦 𝑠, 𝑎	 𝑉##(𝑦)

 return the last policy 𝜋*
end
§ Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

Issues: Function approximation for 𝑉## ⟹ Does it still converge?
 Continuous Actions?
?

Wu

Approximate Policy Iteration with 𝑄 Functions
18

Recall the state-action cost-to-go function: 𝑄7 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑*3 𝑝(𝑠′|𝑠, 𝑎)𝑄7 𝑠6, 𝜋 𝑠6

Approximate PI:
§ For 𝑘 = 0, 1, 2, …

1. Approximate the value under 𝜋,: 𝑄!# ≈ 𝑄-#
2. Solve for an improved policy

𝜋,.' 𝑠 ∈ argmin
/∈1 2

𝑄!# 𝑠, 𝑎 	 ∀𝑠 ∈ 𝒮

𝑄>3 can be approximated by either TD or Monte Carlo methods.
Same story as fitted Q-iteration. No longer guaranteed to converge.

Wu

From Policy IteraEon to Policy Search
26

§ Approximate a stochastic policy directly using function approximation
𝜋+: 𝑆 → 𝒫 𝒜 	with	𝜃 ∈ ℝ,

§ Let 𝑉 𝜋+ denote the policy performance of policy 𝜋+
Ø Policy optimization problem

max
#$

𝑉 𝜋+

Solution 1: Policy Search/Blackbox optimization:
 Use global optimizers or gradient by finite-difference methods
 Policy 𝜋+ can also be not differentiable w.r.t. 𝜃
Solution 2: Policy gradient optimization:
 Compute the gradient ∇+𝑉 𝜃 and follow the ascent direction
 ∇+𝜋+ 𝑠, 𝑎 should exist

Wu

Policy Gradient as Policy Update
30

1. How do we compute 𝛁𝜽𝑽 𝜽 ?
2. How quickly do we update (i.e. 𝛼")?

Approximate Policy Iteration
𝜋%345 = argmax

&6
𝑄&6 𝑠, 𝜋% 𝑠

Unstable (fast)
No convergence

Policy Gradient
𝜃"#$ = 𝜃" + 𝛼"∇%𝑉 𝜃"

Smooth, fine control (slow)
Convergence to local op<ma

Wu

Outline
38

1. From Policy Iteration to Policy Search

2. Policy gradient methods
a. REINFORCE
b. Representing a policy (discrete and continuous!)
c. Variance reduction (temporal structure and baselines)

3. Actor-critic

Wu

Assume: finite-horizon setting

39

Discount 𝛾 excluded to simplify notation.

Wu

Policy Gradient (Finite-Horizon)
40

Given an MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and a policy 𝜋%7. For k = 1,2,…
1. Use 𝜋%3 to collect data 𝜏.
2. Use 𝜏 to approximate gradient of:

𝑉 𝜋%3 = 𝔼 B
'()

*+$

𝑟'|𝜋%3, 𝑀 = 𝔼,~	ℙ 𝜏 𝜋%3, 𝑀
ℛ 𝜏

where
• 𝜇 is an initial state distribution
• 𝜏 = 𝑠$, 𝑎$, 𝑟$, 𝑠', 𝑎', 𝑟', … , 𝑠*+$, 𝑎*+$, 𝑟*+$, 𝑠* (includes terminal reward)

is a trajectory
• ℛ 𝜏 its return (sum of rewards).

3. Update 𝜃"#$ = 𝜃" + 𝛼" E∇%𝑉 𝜋%3

Maximizing this is ultimately
what we desire

How?

Main issue: MDP is a complex object to
differentiate through, i.e. ∇!ℙ 𝜏 𝜋! , 𝑀

Wu

Policy Gradient (Finite-Horizon)
41

Policy Gradient Theorem [Williams, 1992; SuZon et al., 2000]
For any finite-horizon MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and differentiable
policy 𝜋%

∇%𝑉 𝜋% = 𝔼,~ℙ ⋅ 𝜋,𝑀 𝑅 𝜏 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎'

§ Model-free! Why?
§ Compare: taking gradient through trajectory-space is difficult

∇%𝑉 𝜋% = ∇%𝔼, 𝑅 𝜏 = ∇%Kℙ 𝜏 𝜋% , 𝑀 𝑅 𝜏 𝑑𝜏

Gradient is now on the inside! We can
differentiate through (differentiable) policies.

Wu

43

§ The objective is an expectation. Want to compute the gradient w.r.t. 𝜃
(simplify notation from: 𝑉 𝜋+ 	to	𝑉 𝜃). First, bring the gradient to the inside.

∇+𝑉 𝜃 = ∇+𝔼- 𝑅 𝜏 = ∇+Kℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

	 = K∇+ℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

	 = Kℙ 𝜏 𝜋+, 𝑀 ∇+ logℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

	 = 𝔼- 𝑅 𝜏 ∇+ logℙ 𝜏 𝜋+, 𝑀
§ Last expression is an unbiased gradient estimator

Just sample 𝜏.~	ℙ 𝜏 𝜋+, 𝑀 , and compute Q𝑔. = 𝑅 𝜏. ∇+ logℙ 𝜏. 𝜋+, 𝑀
§ Issue: Need to be able to compute & differentiate the density ℙ 𝜏 𝜋+, 𝑀 w.r.t 𝜃

Proof

Log trick
∇! logℙ 𝜏 𝜋! , 𝑀

=
∇!ℙ 𝜏 𝜋! , 𝑀
ℙ 𝜏 𝜋! , 𝑀

Wu

44

Proof
Likelihood (with stochastic policies)

ℙ 𝜏 𝜋! , 𝑀 = 𝜇 𝑠$ E
"#$

%&'

𝜋! 𝑎" 𝑠" 𝑝 𝑠".' 𝑠" , 𝑎"

logℙ 𝜏 𝜋! , 𝑀 = log 𝜇 𝑠$ +,
"#$

%&'

log 𝜋! 𝑎" 𝑠" + log 𝑝 𝑠".' 𝑠" , 𝑎"

∇! logℙ 𝜏 𝜋! , 𝑀 = ∇! log 𝜇 𝑠$ +,
"#$

%&'

∇! log 𝜋! 𝑎" 𝑠" + ∇! log 𝑝 𝑠".' 𝑠" , 𝑎"
0 0

à model free

Wu

45

Alternative proof: likelihood rescaling
§ Interested in policy gradient: ∇0	𝑉 𝜃 + Δ |0()
§ Likelihood rescaling

𝑉 𝜃 + Δ = 𝔼,(%) 𝑅 𝜏(𝜃)
∏' 𝜋%#0(𝑎'|𝑠')
∏' 𝜋%(𝑎'|𝑠')

§ Apply chain rule to get

∇0	𝑉 𝜃 + Δ S
0()

= 𝔼,(%) 𝑅 𝜏(𝜃) B
'

∇	𝜋% 𝑎' 𝑠'
𝜋% 𝑎' 𝑠'

	 	 	 	 = 𝔼H 𝑅 𝜏 ∑I ∇J log 𝜋J 𝑎I 𝑠I

Wu

Policy Gradient (Finite-Horizon)
46

Policy Gradient Theorem [Williams, 1992; Sutton et al., 2000]
For any finite-horizon MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and differentiable
policy 𝜋%

∇%𝑉 𝜋% = 𝔼,~ℙ ⋅ 𝜋,𝑀 𝑅 𝜏 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎'

§ Model-free! Why?
§ Compare: taking gradient through trajectory-space is difficult

∇%𝑉 𝜋% = ∇%𝔼, 𝑅 𝜏 = ∇%Kℙ 𝜏 𝜋% , 𝑀 𝑅 𝜏 𝑑𝜏

Gradient is now on the inside! We can
differentiate through (differentiable) policies.

Wu

REINFORCE [Williams, 1992]
47

1. Let 𝜋%5 be an arbitrary policy.
2. At each iteration 𝑘 = 1,… , 𝐾
• Sample 𝑚 trajectories 𝜏8 = 𝑠9, 𝑎9, 𝑟9, 𝑠:, … , 𝑠;':, 𝑎;':, 𝑟;':, 𝑠; following 𝜋,
• Compute unbiased gradient estimate:

L∇!𝑉 𝜋!# =
1
𝑚,

8#'

9

,
"#$

%&'

𝑟"8 ,
"#$

%&'

∇! log 𝜋!# 𝑎"
8 𝑠"8

• Update parameters:
𝜃,.' = 𝜃, + 𝛼, L∇!𝑉 𝜋!#

3. Return last policy 𝜋%:

Monte Carlo approximation
of policy gradient

Wu

48

How do we represent a policy?
Example: Parameterized Policy

Normal Policy

𝜋 𝑎 𝑠 =
1

𝜎& 𝑠 2𝜋
𝑒
'
(')0 * 1

+,21 (*)

Then:

∇/ log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇/ 𝑠
𝜎&+ 𝑠

∇/𝜇/ 𝑠

∇& log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇/ 𝑠

+ − 𝜎&+ 𝑠
𝜎&0 𝑠

∇&𝜇& 𝑠

Gibbs (softmax) Policy

𝜋 𝑎 𝑠 =
𝑒𝒦20 *,(

∑(3∈𝒜 𝑒𝒦20 *,(3

Then:
∇/ log 𝜋 𝑎 𝑠 = 𝒦∇/𝑄/ 𝑠, 𝑎

	 −𝒦 4
(3∈𝒜

𝜋 𝑎6 𝑠 ∇/𝑄/ 𝑠, 𝑎6

Continuous actions Discrete actions

Wu

49

Policy Gradient via AutomaEc DifferenEaEon
§ Manually coding the derivative can be tedious
⟹ use auto diff

§ Define a graph parameterized by 𝜃	such that its gradient is the policy
gradient

“Pseudo loss”: weighted maximum likelihood

V𝑉 =
1
𝑚
B
3($

4

B
'()

*+$

log 𝜋% 𝑠3,' , 𝑎3,' X𝑞3,'

Where:
§ X𝑞3,' = ∑"()

*; 𝑟"3 for REINFORCE and
§ X𝑞3,' = ∑"('

*; 𝑟"3 for G(PO)MDP.
Note that 𝔼 ∇% V𝑉 = ∇%𝑉 𝜋% .

Wu

50

X𝑔' = 𝑅 𝜏' ∇% logℙ 𝜏' 𝜋% , 𝑀
§ 𝑅 𝜏' measures how good is sample 𝜏'
§ Moving in the direction of X𝑔' pushes up the

log probability of the sample in proportion
to how good it is.

Interpretation: uses good trajectories as
supervised examples
• Like maximum likelihood in supervised learning
• Good stuff are made more likely while bad less
• Trial and Error approach

From “CS 294-112: Deep Reinforcement
Learning” slides by S. Levine

𝑅 𝜏"

𝜏

REINFORCE as Supervised Learning

ℙ 𝜏" 𝜋! , 𝑀

Wu

Dynamic programming vs policy gradient

51

How would policy gradient solve shortest path?

1

2 3

4

6

0.5

1

32

5 52

Destination
5

7 5 Destination is node 5.

Wu

REINFORCE
52

Pros
§ Easy to compute
§ Does not use Markov property!
§ Can be used in partially observable MDPs without modification

Issues
§ Use an MC estimate of 𝑄(𝑠, 𝑎)
§ It has possibly a very large variance
§ Needs many samples to converge

Wu

Policy gradient = gradient ascent for MDPs

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approximation to
performance of the
policy

😀

😇
True objective
(the performance of
the policy)

V(θ)

αg

Consider a parameterized policy 𝜋!(⋅ |𝑠)

53

Wu

Policy-based vs value-based methods
54

Value-based methods
§ Conceptually more

complicated
§ Global convergence

guarantees for
tabular discounted
infinite horizon
MDPs J

§ Doesn’t work that
well outside of its
comfort zone (on its
own) LEnvironment

Action-value
function
𝑄(𝑠,⋅)

AcBon

Policy
𝜋(⋅ |𝑠)

sample
max

w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase

probability
of selecting
actions w/

higher
returns,

 i.e. ∑!"#$ 𝑟!

Policy-based methods
§ Sensible & simple J
§ Local convergence

guarantees only
§ Also “works” for

partial observation,
nonstationary
settings

§ Doesn’t work that
well (on its own) L

Wu

Key challenge: Policy gradient has high variance

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approximation to
performance of the
policy

😀

True objective
(the performance of
the policy)

V(θ)

αg

Consider a parameterized policy 𝜋!(⋅ |𝑠)

55

Wu

Policy Gradient: Temporal Structure (Causality)
58

∇+𝑉 𝜋+ = 𝔼 4
./!

01%

∇+ log 𝜋+ 𝑎. 𝑠. 4
.%/.

01%

𝑟.%

Because ∀𝑡	:

𝔼(~70 ∇/ log 𝜋/ 𝑎 𝑠=)
=3>9

=':

𝑟8 |𝜏9:=': =)
=3>9

=':

𝑟8 .𝜋/ 𝑠= , 𝑎 ∇/ log 𝜋/ 𝑎 𝑠= 𝑑𝑎

	 = 4
.%/!

.1%

𝑟2 K∇+𝜋+ 𝑎 𝑠. 𝑑𝑎

	 = 4
.%/!

.1%

𝑟2 ∇+K𝜋+ 𝑎 𝑠. 𝑑𝑎 = 0

In literature known as G(PO)MDP [Peters and Schaal, 2008b].
≔ 1

Discuss: Why
does this help
with variance?

Actions don’t affect past rewards

Wu

Policy Gradient: Baseline
60

§ Further reduce the variance by introducing a baseline 𝑏 𝑠

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎' B
'<('

*+$

𝑟'< − 𝑏 𝑠'

§ The gradient es<mate is s<ll unbiased.
§ “Near op<mal choice” that minimize the variance is the expected

sum of returns:

𝑏⋆ 𝑠 ≈ 𝔼 B
'()

*+$

𝑟'|𝑠) = 𝑠, 𝜋% , 𝑀 = 𝑉&6 𝑠

• Interpreta(on: increase the log probability of an ac5on 𝑎" propor5onally to
how much returns are be-er than expected (rela5ve values).

Discuss: Why does this help with variance?

Wu

baseline

Intuition (variance reduction):

Var(x� y) = Var(x)� 2Cov(x, y) + Var(y)

Variance reduction via baseline?
61

∇!𝑉 𝜋! = 𝔼 ,
"#$

%&'

∇! log 𝜋! 𝑠" , 𝑎" ,
"%#"

%&'

𝑟"% − 𝑏 𝑠"

To reduce variance, try to maximize the covariance between x and y

Wu

62Optimal Baseline Derivation
Rough Idea

∇%@𝑉 𝜋% = 𝔼, ∇%@ logℙ 𝜏 𝜋% (𝑅 𝜏 − 𝑏)

Var = 𝔼, (𝑔 𝜏 𝑅 𝜏 − 𝑏)7 − 𝔼, 𝑔 𝜏 𝑅 𝜏 − 𝑏 7

⟹ 𝔼, 𝑔 𝜏 𝑅 𝜏 7	
𝜕
𝜕b
Var =

𝜕
𝜕b
𝔼, 𝑔 𝜏 7 𝑅 𝜏 − 𝑏 7

	 =
𝜕
𝜕b𝔼, 𝑔 𝜏 7𝑅 𝜏 7 − 2

𝜕
𝜕b𝔼, 𝑔 𝜏 7𝑅 𝜏 𝑏 +

𝜕
𝜕b𝔼, 𝑏

7𝑔 𝜏 7

⟹ 𝑏⋆ 𝜏 =
𝔼, 𝑔 𝜏 7𝑅 𝜏
𝔼, 𝑔 𝜏 7

Expected return weighted by the magnitude of the gradient.

≔ 𝑔 𝜏

[Baseline is unbiased
in expectation]

0

Wu

63

Wu

Convergence Results
70

§ Policy gradient is stochastic gradient
𝜃"#$ = 𝜃" + 𝛼" ∇𝑉 𝜃" + noise

§ 𝑉 is non-convex
§ ⟹ converge asymptotically to a stationary point or a local minimum

(under standard technical assumptions)
What is the quality of this point?

Dynamics are linear (LQ systems) ⟹ global convergence [Fazel et al.,
2018].
§ Surprising since min

&
𝑉LQ(𝜋) may be not convex, and 𝑉LQ is not

smooth but is “almost” smooth (far from un/stable boundaries).
§ Hint: use properties of functions that are gradient dominated.

Wu

Convergence Results
71

Issues
§ Non-convexity of the loss function
§ Unnatural policy parameterization: parameters that are far in

Euclidean distance may describe the same policy (we will talk about
this later)

§ Insufficient exploration: naïve stochastic exploration
§ Large variance of stochastic gradients: generally increases with the

length of the horizon
Solution:
⟹ similar to LQ, we need structural assumptions [Bhandari and Russo,
2019]
See also [Zhang et al., 2019] for convergence results.

Wu

Outline
76

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic
a. Compatible function approximation
b. Advantages and Advantage Actor-Critic (A2C)
c. Asynchronous A2C (A3C)
d. Deep Deterministic Policy Gradient (DDPG)
e. Soft Actor-Critic (SAC)

Wu

Policy gradients & high variance: the saga continues
77

§ Monte-Carlo policy gradient is unbiased but still has high variance

∇!𝑉 𝜋! = 𝔼 ,
"#$

%&'

∇! log 𝜋! 𝑎" 𝑠" ,
"%#"

%&'

𝑟"%

§ Policy gradient is on-policy (doesn’t re-use data à inefficient!)

𝑠$
𝜏

𝑅

𝜏
𝑅

𝜏 from off-policy data

𝑅

𝑅∗ High variance
unbiased

Biased

Wu

Policy- and value-based methods à actor-critic
78

§ Monte-Carlo policy gradient is unbiased but still has high variance

∇!𝑉 𝜋! = 𝔼 ,
"#$

%&'

∇! log 𝜋! 𝑎" 𝑠" ,
"%#"

%&'

𝑟"%

§ Incorporate an estimate of 𝑄& 𝑠, 𝑎 ⟹ actor-critic
• Critic: estimate the value function
• Actor: update the policy in the direction suggested by the critic

§ Actor-critic

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑎' 𝑠' 𝑄&6(𝑠' , 𝑎')	

§ These are equivalent (see HW).

Wu

Actor-critic methods
79

Environment

Action-value
function
𝑄(𝑠,⋅)

Action

Policy
𝜋(⋅ |𝑠)

sample

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase

probability
of selecting
actions w/

higher
returns,

 i.e. ∑!"#$ 𝑟!

update

Wu

Actor-Critic
80

§ Algorithm maintains two sets of parameters: 𝜃 ⟼ 𝜋% , 𝜔 ⟼ 𝑄8
§ Critic can use 𝑇𝐷 0

for 𝑡 = 0,… , 𝑇 − 1 do
𝑎'~𝜋% 𝑠' ,⋅ and observe 𝑟' and 𝑠'#$
Compute temporal difference

𝛿' = 𝑟' + 𝛾𝑄8 𝑠'#$, 𝑎'#$ − 𝑄8 𝑠' , 𝑎'
Update 𝑄 estimate

𝜔 = 𝜔 + β𝛿'∇8𝑄8 𝑠' , 𝑎'
Update policy

𝜃 = 𝜃 + 𝛼∇% log 𝜋% 𝑎' 𝑠' 𝑄8 𝑠' , 𝑎'
end

Wu

Actor-Critic
81

Issues:
§ 𝑄8 𝑠, 𝑎 is a biased estimate of 𝑄&6 𝑠, 𝑎
§ The update of 𝜃 may not follow the gradient of ∇%𝑉(𝜋%)

Solution:
§ Choose the approximation space 𝑄8(𝑠, 𝑎) carefully
⟹ compatible function approximation between 𝑄8 and 𝜋%

Wu

CompaEble FuncEon ApproximaEon
82

§ Actor-critic

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑎' 𝑠' 𝑄&6(𝑠' , 𝑎')	

§ Re-write using occupancy measures
∇%𝑉 𝜋% = 𝔼9~:>6𝐸;~&6 ∇% log 𝜋% 𝑎 𝑠 𝑄&6 𝑠, 𝑎

§ Interpretation (inner product): projection of 𝑄&6 𝑠, 𝑎 	onto
subspace spanned by ∇% log 𝜋% 𝑎 𝑠

§ Let 𝑄8 𝑠, 𝑎 = ∑3 𝛼3[∇%log	𝜋% 𝑠, 𝑎]𝑖	
where 𝜔 = 𝛼3 |%|

Wu

Compatible Function Approximation
84

Theorem (Silver, 2014)
An action value function space 𝑄8 is compatible with a policy space
𝜋% if:
1. [Feature Selection] ∇8𝑄8 𝑠, 𝑎 = ∇%log	𝜋% 𝑠, 𝑎
2. [Least Squares Fitting] And if 𝜔 minimizes the squared error

𝜔 = argmin
8
𝔼9~:>6 B

;

𝜋% 𝑎 𝑠 𝑄&6 𝑠, 𝑎 − 𝑄8 𝑠, 𝑎 7

Then:
∇%𝑉 𝜋% = 𝔼9~:>6𝐸;~&6 ∇% log 𝜋% 𝑎 𝑠 𝑄8 𝑠, 𝑎

• Remark 1: condi5ons for which the policy gradient is exact.
• Remark 2: approximately sa5sfied by linear func5on approxima5on.

Wu

Sample Efficiency in Actor-Critic
86

Issues:
§ Sample efficiency is pretty poor
§ All samples need to be generated by the current policy (on-policy

learning)
§ Samples are discarded after a single update
Solutions:
§ Variance reduction techniques
§ Asynchronous training (A3C)
§ Use samples from other policies via importance sampling (not very

stable) (next time)
§ Conservative approaches (next time)
§ Newton for Quasi-newton methods

Wu

Actor-Critic with a Baseline
87

∇%𝑉 𝜋% = 𝔼9~:>6 B
;

∇%𝜋% 𝑠, 𝑎 𝑄&6 𝑠, 𝑎 − 𝑏 𝑠

§ 𝑏(𝑠) minimizes the variance
§ 𝑉&(𝑠) is a good choice as baseline
• It minimizes the variance in average reward [Bhatnagar et al., 2009]

§ 𝐴& 𝑠, 𝑎 = 𝑄& 𝑠, 𝑎 − 𝑉& 𝑠 is the advantage function

Wu

Actor-CriEc with Advantage FuncEon (A2C)
88

§ It is possible to estimate 𝑉& and 𝑄& independently (e.g. by 𝑇𝐷 0)
§ 𝐴& = 𝑄8 − 𝑉𝒱 is a biased and unstable estimate
Solution:
§ Consider the temporal difference error

𝛿&6 = 𝑟 𝑠, 𝑎 + 𝛾𝑉&6 𝑠> − 𝑉&6 𝑠
§ 𝛿&6 is an unbiased estimate of the advantage

𝔼 𝛿&6 𝑠, 𝑎 = 𝔼 𝑟 𝑠, 𝑎 + 𝛾𝑉&6 𝑠> 𝑠, 𝑎 − 𝑉&6 𝑠
	 = 𝑄&6 𝑠, 𝑎 − 𝑉&6 𝑠

Wu

Actor-Critic with Advantage Function (A2C)
90

§ Estimate only 𝑉4 ⟼ 𝛿4 = 𝑟 + 𝛾𝑉4 𝑠5 − 𝑉4 𝑠
F Convergence results with compatible function approximation [Bhatnagar et
al., 2009]

for 𝑡 = 0,… , 𝑇 do
𝑎.~𝜋+ 𝑠.,⋅ and observer 𝑟. and 𝑠.$%
Compute temporal difference

𝛿. = 𝑟. + 𝛾𝑉4 𝑠.$% − 𝑉4 𝑠.
Update 𝑉 estimate

𝑣 = 𝑣 + 𝛽𝛿.∇4𝑉4 𝑠.
Update policy

𝜃 = 𝜃 + 𝛼𝛿6∇+ log 𝜋+ 𝑎. 𝑠.
end

Compare (actor-critic):
𝛿% = 𝑟% + 𝛾𝑄& 𝑠%'#, 𝑎%'# − 𝑄& 𝑠%, 𝑎%
𝜔 = 𝜔 + β𝛿%∇&𝑄& 𝑠%, 𝑎%

𝜃 = 𝜃 + 𝛼∇(log 𝜋(𝑎% 𝑠% 𝑄& 𝑠%, 𝑎%

Wu

Generalized advantage esEmaEon (GAE) (2016)
91

§ A2C: Compute advantages in manner analogous to TD(0)
§ GAE: Compute advantages in manner analogous to TD(𝜆)
§ Can generally be used with actor-critic methods
• Example algorithm: TRPO (next time)

Generalized advantage estimation demo: learning to run and stand up

A Compilation of Robots Falling Down at the DARPA Robotics Challenge

🤕

https://www.youtube.com/watch?v=SHLuf2ZBQSw
https://www.youtube.com/watch?v=g0TaYhjpOfo

Wu

Asynchronous Advantage Actor-Critic (A3C)
95

§ Multiple independent agents
(networks) with their own weights,
who interact with a different copy of
the environment in parallel.

§ The agents (or workers) train in
parallel using a global network 𝜃.
They periodically update the global
network with their 𝑑𝜃.

§ Remark: In practice, 𝜃 denotes the
shared weights for the value
function and the policy (multi-
headed network)

Figure from Atrisha Sarkar

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.

Wu

Asynchronous Advantage Actor-Critic (A3C)
96

§ Improved training exploration & stability.

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.

Wu

Outline
97

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic
a. Compatible function approximation
b. Advantages and Advantage Actor-Critic (A2C)
c. Asynchronous A2C (A3C)
d. Deep Deterministic Policy Gradient (DDPG)
e. Soft Actor-Critic (SAC)

Wu

Bringing policies back to value-based methods
98

§ Recall: value-based methods have trouble handling continuous actions/large action spaces
§ Key idea: simplify Q using deterministic policies

Deep Deterministic Policy Gradient (DDPG) (2014)
§ Recall: 𝑉& 𝜋 = 𝔼'~)) 𝑟 𝑠, 𝜋 𝑠
§ ∇*𝑉& 𝜃 = ∑' 𝑑+ 𝑠 ∇*𝜋* 𝑠 ∇,𝑄+ 𝑠, 𝑎 |,-+* ' = 𝔼'~)) |∇*𝜋* 𝑠 ∇,𝑄+ 𝑠, 𝑎 ,-+* '

Plug it into an actor-critic framework

§ Use 𝑇𝐷 0 to update a parametric representation of 𝑄+
𝛿. = 𝑅. + 𝛾𝑄/ 𝑠.01, 𝑎.01 − 𝑄/ 𝑠. , 𝑎.
𝑤.01 = 𝑤. + 𝛼/𝛿.∇/𝑄/ 𝑠. , 𝑎.
𝜃.01 = 𝜃. + 𝛼*∇,𝑄/ 𝑠. , 𝑎. ∇*𝜋* 𝑠 U

,-+* '

§ Issue: Need to explicitly force exploration, e.g. “behavior policy” 𝛽 ⋅ ~	𝒩 𝜃, 𝜎𝛽2

Q𝑠
𝑄 𝑠, 𝑎'
𝑄 𝑠, 𝑎?
𝑄 𝑠, 𝑎@

Q𝑠 𝑄 𝑠, 𝑎𝜋𝑠 𝑎

; TD error in SARSA

; Deterministic policy
gradient theorem

Wu

Soft policy iteration [Haarnoja, 2018]
100

§ Under standard assumptions: 𝑄" will converge to the soft Q-value of
𝜋 as 𝑘 → ∞

§ Soft policy evaluation:

entropy regulariza5on

Wu

Soft policy iteration [Haarnoja, 2018]
101

Soft policy iteration:
§ Under standard assumptions: The sequence 𝑄&; is monotonically

increasing and bounded. So, it converges to some 𝜋∗.

§ Soft policy improvement:

Wu

Soft actor-critic (SAC) [Haarnoja, 2018]
102

Son policy itera<on + func<on approxima<on
1. [SoI policy evalua1on]

Train the ac<on-value func<on 𝑄%, minimizing:

argmin
%
𝔼 9,; ∈\

1
2
𝑄% 𝑠' , 𝑎' − 𝑟 𝑠' , 𝑎' + 𝛾𝔼 𝑉]̂ 𝑠>

7

! Fix the target network (e.g. DQN) → increase stability / break dependences

2. Train the (son) value func<on 𝑉 , minimizing:

𝐽_ 𝜓 = 𝔼9A~`
1
2
𝑉 𝑠' − 𝔼;A~&B 𝑄% 𝑠' , 𝑎' − log 𝜋a 𝑎' 𝑠'

7

3. [SoI policy improvement]
Fit the new (stochas<c) policy 𝜋a:

argmin
a
𝔼9∈\ 𝐷bc 𝜋a||

exp 𝜂𝑄%
𝑍

[𝑠]	 replace max with
softmax

entropy regularization

Wu

Soft actor-critic (SAC) [Haarnoja, 2018]
103

Wu

Further reading
104

§ Son policy itera<on and son actor-cri<c
• T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Sog actor-cri5c: Off-policy

maximum entropy deep reinforcement learning with a stochas5c actor,”
ICML, 2018.
• Blog post: hjps://yzhang1918.github.io/posts/sac/

§ Son Q-learning
• Haarnoja T., Tang H., Abbeel P., Levine S, “Reinforcement Learning with Deep

Energy-Based Policies,” ICML 2017.
• Blog post: hjps://bair.berkeley.edu/blog/2017/10/06/sog-q-learning/

https://yzhang1918.github.io/posts/sac/
https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Wu

Implementations of RL algorithms
105

§ For research and prototyping:
• CleanRL: https://docs.cleanrl.dev/
• A Deep Reinforcement Learning

library that provides high-quality
single-file implementation with
research-friendly features

§ For scaling:
• Rllib:

https://docs.ray.io/en/latest/rllib/inde
x.html
• Industry-grade reinforcement learning

https://docs.cleanrl.dev/
https://docs.ray.io/en/latest/rllib/index.html
https://docs.ray.io/en/latest/rllib/index.html

Wu

Summary
§ Policy gradient methods are an alternative and powerful class of

reinforcement learning methods, based on directly optimizing the policy,
rather than the value function.

§ Policy gradient methods attempt to maximize the likelihood of good
trajectories.

§ Benefits over value-function based methods include not needing Markovian
assumption and are often more effective for continuous action space
problems.

§ Disadvantages: high variance and on-policy (less sample efficient).
§ Similar challenges include: exploration vs exploitation.
§ A variety of approaches help to reduce variance: temporal structure,

baselines, actor-critic methods.
§ Core practical policy gradient methods: REINFORCE, SAC, TRPO, PPO. More

later.

108

Wu

References
112

1. Matteo Pirotta. FAIR. Reinforcement Learning. 2019, Lecture 5.

2. Matteo Pirotta. Reinforcement Learning Summer School, 2019.
Policy Search: Actor-Critic Methods.

