Fall 2024

Policy gradient

Simplicity at the cost of variance

Cathy Wu

6.7920: Reinforcement Learning: Foundations and Methods

Wu

Readings

1. Josh Achiam. Spinning Up. Part 3: Intro to Policy Optimization.
OpenAl, 2018.

2. NDP §6.1: Generic issues — from parameters to policies

3. SB Chapter 13: Policy Gradient Methods

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
http://incompleteideas.net/book/the-book-2nd.html

Outline

1. From Policy Iteration to Policy Search
2. Policy gradient methods

3. Actor-critic

Outline

1. From Policy Iteration to Policy Search
2. Policy gradient methods

3. Actor-critic

Methods for sequential

I—ay Of th e | a n C decision making

6.7920: Reinforcement learning: sampling-based Dynamic
programming

foundations and methods (large state space) el e

Dynamic programming Generalized policy
algorithm iteration
(finite horizon) (infinite horizon)
1
| 1 | 1

Policy Policy

Special

structures

improvement evaluation

Reinforcement
learning

(horizon = 1)
’

1 R}

Multi-armed
bandits
(horizon =1)

Value Policy

iteration iteration

[Model-Free RL Model-Based RL

TOd ay Learn the policy (—J Learn the

\'value function

De-facto definition:
Reinforcement learning =
sampling-based policy improvement for

I

P NI sequential decision making (horizon > 1)
P s Policy Optimization ~ Q-Learning Learn the Model Given the Model
N
/ N
N\
1 Policy Gradient <«— (\ DQN World Models
\ > DDPG F—‘
\A2C/ A3C < I C51 12A
< TD3 7 Adapted from: OpenAl Spinning Up
PPON _ < 7 R-DON
= | SAC_ -~ % (Qrbe
it . A
TRPO HER MBVE Wu

Value-based methods

max
w.p.1—€

Action-value update

ndom

function
/ Q(S

Action w.p. €

Environment

Bootstrap target
I eg.7 +ymax Q(s',a")

state,
reward

|

Policy-based methods

. |
— Policy ==

update: .
Increase T[(|S)
probability
of selecting
actions w/ Action
higher
returns,
ie. X n

state,
reward

Environment

RL methods overview

l

Optimize policies
(and only policies)

Policy gradients
REINFORCE
Genetic algorithms

Elements of both
DDPG, PPO, TD3, SAC

* Warning: precise definitions may vary

l

Optimize value

functions
(and only value functions)

Value iteration
Q-learning
SARSA

DQN

Rainbow DQN

The best methods use
elements of both.

Wu

Example: Frozen Lake (Gymnasium)

= Aim:
* Make it to the goal
* Don’t fall into the holes %

= Slippery (stochastic actions)

= QObservation: current location

Wu

10

https://gymnasium.farama.org/environments/toy_text/frozen_lake/

Example: Parameterized Policy

How do we represent a policy?

E’ﬂ & = = |

Normal Policy Gibbs (softmax) Policy
N CETIO) @ls) e¥Qo(s0)
e —— 204(8) nails) = Y
) = oV Eareq e’
Continuous actions Discrete actions

Differentiable! - autodiff via PyTorch

Example: Parameterized Policy

How do we represent a policy?

e
m(als)
Normal Policy , Gibbs (softmax) P(olig:y
— :KQG s,a
1 _(a #9(5)) _ e
m(als) = —— e ZO'wz (s) T[(CllS) - KQg(s, I)
(|) aw(s)m Za’ec/le o\s.a
Then:
Then:
(a — 1e(s)) Vg logm(als) = KVgQg(s,a)
Vo logm(als) = a2 (s) ZVBHH(S) -K Z m(a'|s)VeQe(s,a’)
a—pg(s))” —a5(s) a’eA
Ve logm(als) = (3) = Ve ()
Uw(s)

Continuous actions Discrete actions

12

Policy gradient = gradient ascent for MDPs

Consider a parameterized policy 7y (- |5)

Local approximation to
performance of the
policy
True objective

(the performance of
the policy)

V() L(6)

Adapted from Matteo Pirotta

13

14

Policy Gradient = gradient ascent for MDPs
V(mg,) = E [Z Ttlﬂek»M‘ =E__ p(t|mg,, M) [R(7)]

Policy Gradient
Ors1 = Ok + ai VoV (6y)

1. How do we compute V,V(0)?
‘ 2. How quickly do we update (i.e. ay)? _l
REINFORCE, variance reduction,

baselines, generalized advantage NPG, TRPO, PPO
estimation (GAE)

Function approximation

Last time: Add function approximation to value iteration

This time: Add function approximation to policy iteration. Sorta.

15

Policy Iteration: Recap

Let 7ty be an arbitrary stationary policy.

whilek =1, ...,K do
Policy Evaluation: given m, compute V, = V7
Policy Improvement: find 1 that is better than

- e.g. compute the greedy policy:
Ti+1(s) € argmax {r(s, a)+y z p(yls,a)V (y)}
y

return the last policy mg

end

Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

€©) Issues: Function approximation for V™ = Does it still converge?
Continuous Actions?

16

17

Approximate Policy Iteration with Q Functions
Recall the state-action cost-to-go function: Q;(s,a) =r(s,a) +y 2o p(s'|s, a)Qn(s’, n(s’))
Approximate PI:

Fork =0,1,2,...

Approximate the value under my: Qg, = O,

Solve for an improved policy
M4+1(S) € argminQg, (s,a) VSES
a€cA(s)

@, can be approximated by either TD or Monte Carlo methods.

Same story as fitted Q-iteration. No longer guaranteed to converge.

W, pTE+3

Ve

[V

Transitional phase Stationary phase

Iterations (k) Wu

From Policy Iteration to Policy Search

Approximate a stochastic policy directly using function approximation
mg:S — P(A) with 8 € R4

Let V (1g) denote the of policy mg
Policy optimization problem
max V (1mg)
Tlg
Solution 1: Policy Search/Blackbox optimization:
Use global optimizers or gradient by finite-difference methods
Policy tg can also be w.r.t. 8
Solution 2: Policy gradient optimization:
Compute the gradient VgV (6) and follow the ascent direction
Vot (s, a) should exist

Policy Gradient as Policy Update

Approximate Policy Iteration Policy Gradient
Mopyy = AGMAX QO (5.0 () Brr1 = O + axVoV ()
Unstable (fast) (slow)
No convergence Convergence to

How do we compute V,V (0)?
How quickly do we update (i.e. ay)?

Outline

1. From Policy lteration to Policy Search

2. Policy gradient methods

a.
b.
C.

REINFORCE

Representing a policy (discrete and continuous!)
Variance reduction (temporal structure and baselines)

3. Actor-critic

20

Assume: finite-horizon setting

Discount y excluded to simplify notation.

Wu

Policy Gradient (Finite-Horizon)
Givenan MDP M = (S, A, p,r, T, u) and a policy Tg,- Fork=1,2,..
1. Use my, to collect data 7.

2. Use T to approximate gradient of: Maximizing this is ultimately
what we desire

€, (efr,,)R]

Main issue: MDP is a complex object to

- wis an initial state distribution differentiate through, i.e. Vo P(t|mg, M).
(Example: Frozen Lake)

T = (Sor Ao, 70,51, A1, 715+, ST—1, AT—1, T'T—1, ST)
(includes terminal reward) is a trajectory

* R(7) its return (sum of rewards).

3. Update 6k+1 — Gk + (ZkV/;V(T[gk) How??

22

https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/toy_text/frozen_lake.py

Policy Gradient (Finite-Horizon)

Policy Gradient Theorem [Williams, 1992; Sutton et al., 2000]

For any finite-horizon MDP M = (S, A, p,r, T, u) and differentiable
policy g

T—1
VoV (mg) = E; p(-|, M) R(7) z Volog my (st at)]
t=0

Model-free! Why?
Compare: taking gradient through trajectory-space is difficult

VoV (1g) = VoE. [R(2)] = V, j R()

Proof

The objective is an . Want to compute the gradient w.r.t. 6
(simplify notation from: V (1rg) to V(8)). First,

VoV (0) = VoE,[R(7)] = Vy j P(t|mg, M)R(T)dT

Log trick = j P(t|mg, M)R(7)dT
VH lOgP(Tlﬂel M)
V@P(Tlﬂg,M)
T = [Pelm, M) R()dr
= [E[R(7)Vg logP(z|mg, M)]
Last expression is an gradient estimator

Just sample t,~ P(t|mg, M), and compute §; = R(t;)Vg log P(t|mg, M)
: Need to be able to compute & differentiate the density P(t|mg, M) w.r.t 6

Wu

Proof

Likelihood (with stochastic policies)

P(clmg, M) = u(s0) | [0 (@clsp(sennlse ar)
t=0

logP(z|mg, M) = logu(so) +) logmg(aclsy) +logp(sesqlse ar)

T-1

Vg logP(z|mg, M) = Vg logu(sy) + 2 Vg logmg(aclsy) + Vg log plsiyqlse, ar)
t=0

Alternative proof: likelihood rescaling

Interested in policy gradient:

Likelihood rescaling
V(0 +4) = Eqg [R(T(Q))]
Apply chain rule to get
VA V(O + D) ‘A=0 = Eq o) [R(T(H))]
= E;[R(7) Xt Vg log mg (aclse)]

Policy Gradient (Finite-Horizon)

Policy Gradient Theorem [Williams, 1992; Sutton et al., 2000]

For any finite-horizon MDP M = (S, A, p,r, T, u) and differentiable
policy g

T—1
VoV (mg) = E; p(-|, M) R(7) z Volog my (st at)]
t=0

Model-free! Why?
Compare: taking gradient through trajectory-space is difficult

VoV (1g) = VoE. [R(2)] = V, j R()

REINFORCE

Let Ty be an arbitrary policy.

At each iteration k =1, ..., K
Sample m trajectories t; = (sg, a9, 7o, S1, -++» ST—1, A7-1, 171, ST) following
Compute unbiased gradient-estimate:

A\

1 m T-1 T-1
T2V (o) £ i(i rg)(z 7o log o, ()
t=0

i=1 \t=0 /
Update parameters:
9k+1 = Hk + akVQV(Tl'gk)

Return last policy g,

REINFORCE [Williams, 1992]

1. lLetmg, be an arbitrary policy.
2. Ateachiterationk =1, ..., K

* Sample m trajectories 7; = (so,ao, T0r S1» ves

. Compute unbiased gradie

. Update parameters:

ST—1,A1-1,1TT=-1, ST) fO”OWing Ty

vionte Carlo approximation

Or+1 = O + akV/g\V(ngk) of policy gradient

3. Return last policy g,

29

30

REINFORCE as Supervised Learning
gt = R(7)Vg log P(7¢|mg, M)
= R(t;) measures how good is sample T,

= Moving in the direction of g, pushes up the P(z¢|mo, M)
log probability of the sample in proportion R(z,)
to how good it is.

Interpretation: uses good trajectories as T
supervised examples
* Like maximum likelihood in supervised learning
* Good stuff are made more likely while bad less
* Trial and Error approach

From “CS 294-112: Deep Reinforcement
Learning” slides by S. Levine Wu

Dynamic programming vs policy gradient

How would policy gradient solve shortest path?

Destination

Destination is node 5.

31

REINFORCE

Pros
Easy to compute
Does not use Markov property!
Can be used in partially observable MDPs without modification

Issues
Use a MC estimate of Q(s, a)
It has possibly a very large variance

Needs many samples to converge

32

Policy gradient = gradient ascent for MDPs

Consider a parameterized policy 7y (- |5)

Local approximation to
performance of the
policy
True objective

(the performance of
the policy)

V() L(6)

Adapted from Matteo Pirotta

33

34

Policy-based vs value-based methods

max
. I
—— Policy =P wp.1-€¢ Action-value update

update: (- |s) function

Increase
probability Q (S
of selecting random
actions w/ Action w.p. €

higher Bootstrap target

returns, eg.r+y max Q(s',ah

ie. X n I
Value-based methods

Policy-based methods state,
= Sensible & simple © reward

= Local convergence [

guarantees only

= Also “works” for
partial observation,
nonstationary
settings

= Doesn’t work that
well (on its own) ®

Environment

State'd = Conceptually more
rewar complicated
= Global convergence
guarantees for
tabular discounted

infinite horizon
MDPs ©

= Doesn’t work that
well outside of its.
comfort zone (on its

own) ® W

Key challenge: Policy gradient has high variance
Consider a parar\ﬁe\terized policy my (- |s)
\ Why?
Local approximation to

&/ \ g
performance of the

policy
True objective
(the performance of
the policy)

L(0)

Vo) =5 ()(Z g (o)

t=0
Adapted from Matteo Pirotta

35

36

Policy Gradient: Temporal Structure (Causality)

Discuss: Why
VoV (mg) = z Vg logmg (aclse) z Ty

does this help
t'=t with variance?

Because Vt - Actions don’t affect past rewards

Vg logmy(als,) 2 1 |To.e—] = (Tl>jﬂ9(5t, a)Vglogmy(als,)da

t'=0
Ti)jveﬂe(a|5t)da

1
t—1
= <Z rl-) Vo j mg(al|s;)da =0

t'=0 \ J
N4
=1
In literature known as G(PO)MDP [Peters and Schaal, 2008b].

a~77,'9

7
t

Policy Gradient: Baseline

Further reduce the variance by introducing a baseline b(s)

T—1 T—1
VoV(my) = E z Vo logmy(s,, a;) z ry —b(s;)
t=0 t'=t

The gradient estimate is still unbiased.

Proof: State-dependent baselines do not introduce bias (zero mean).

Solution: Baseline

Regular policy gradient
gi = R(z;)Vg log P(z;|mg, M)

R(t;)

T

Encourage all trajectories

Suppose: nonnegative rewards

Policy gradient with baseline
gi = (R(zy) = V(1,))Vg log P(z;|mg, M)

P(z;|m, M)

R(t;)

T

Encourage trajectories that are
better than average

38

Variance reduction via baseline?

Baseline
T—1 T—1
VoV(mg) = E z Vg logmg (s¢, a) z rer— b(se)
t=0 t'=t

“Near optimal choice” that minimize the variance is the expected
sum of returns:

= V70(s)

t=
Interpretation: increase the log probability of an action a; proportionally to
how much returns are better than expected (relative values).

Intuition: To reduce variance, try to maximize the covariance
between x and y

Var(x — y) = Var(x) — 2Cov(x, y) + Var(y)

39

Optimal Baseline Derivation
Vo,V (1) = E;|Vg, log P(z|mg) (R(7) — b)]

Y

= g(7)

Var = E;[(g()(R(7) — b))?] — (E.[g(r)(R(z) — b)])*
= E.[g(@R®)]?

0 0
ap AT = ag,&[g(r)Z(R(r) —Ob)Z]a a
= W — 2 Ec[g(@)*R(DD] + - Eo[b?g(1)’]
o Efg(@PRM@)]
= b0 =g o7

Expected return weighted by the magnitude of the gradient.

Outline

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic

SR

Compatible function approximation
Advantages and Advantage Actor-Critic (A2C)
Asynchronous A2C (A3C)

Deep Deterministic Policy Gradient (DDPG)
Soft Actor-Critic (SAC)

41

42

Policy gradients & high variance: the saga continues

R -
T - \.% R }Biased
/ / / — * B
So <\ — R High variance
E— — unbiased

T from off-policy data

Monte-Carlo policy gradient is unbiased but still has high variance

T-1 T—1
VoV (1) = E [z Vg logmg (aclse) Z Tt"
t=0 t'=t

Policy gradient is on-policy (doesn’t re-use data =2 inefficient!)

Policy- and value-based methods = actor-critic
Monte-Carlo policy gradient is but still has

T-1
VoV (mg) = E lz Vg logmg (a¢|se)]
t=0

Incorporate an estimate of Q™ (s, a) = actor-critic
: estimate the value function
: update the policy in the direction suggested by the critic

T—1
2 Vg logmg (a;ls;) ‘
t=0

These are equivalent (see HW).

Actor-critic

V@ V(T[Q) = E

Actor-critic methods

. update .
— Policy <« Action-value , update
update: (- |s) function
Increase
probability Q (S,')
of selecting sample
actions w/ Action L
higher Bootstrap target
returns, eg.r+y max Q(s',ah
ie. X n I
state, state,
reward reward

|

Environment

44

Actor-Critic

Algorithm maintains two sets of parameters: 6 — mgy, w — Q,

fort=0,.., T —1do
a;~1g(St,) and observe 1 and s,

Compute temporal difference
6 =1t + YQu (St41, Ar41) — Qo (St ar)
Update Q estimate
w=w-+ Bgtvaw(st' at)
Update policy
6 =6 + aVqlogmg(a;|s:)Q, (st ar)

end

Actor-Critic

Issues:
Q. (s, a) is a biased estimate of Q™0(s, a)

The update of 8 may not follow the gradient of VgV (1rg)

Solution:

Choose the approximation space Q,, (s, a) carefully
== approximation between Q,, and g

47

Compatible Function Approximation

Actor-critic

T-1
VeV(me) =E|) 0™ (st)
t=0
Re-write using occupancy measures
VoV (mg) = Es.qme Ea~rc9[Q"0 (s, a)]
Interpretation (inner product): projection of 09 (s, a) onto v

subspace spanned by

Let Q,,(s,a) = Zi a;[Vglog mg (s, a)l;
where w = (a;))g,

Compatible Function Approximation

Theorem (Silver, 2014)

An action value function space Q, is with a policy space
Tlg if:
V,0,(s,a) = Vglogmy(s,a)
And if w minimizes the squared error

w = arg m(jn E. [z Ty (als)(Qne (s,a) — Qu(s, a))z

Then:
Vg V(T[Q) — IEsfvdnﬁ’ Ea~n9 [VB log Tty (als)]

* Remark 1: conditions for which the policy gradient is exact.
* Remark 2: approximately satisfied by linear function approximation.

Sample Efficiency in Actor-Critic

Sample efficiency is pretty poor

All samples need to be generated by the current policy (on-policy
learning)

Samples are discarded after a single update

Variance reduction techniques
Asynchronous training (A3C)

Use samples from other policies via (not very
stable) (next time)

Conservative approaches (next time)
Newton for Quasi-newton methods

Actor-Critic with a Baseline

VQV(TL'Q) = Es~dn9 [z V@T[Q (S, (1)(Q7T9(S, Cl) —)

minimizes the variance

V™ (s) is a good choice as baseline
It in average reward [Bhatnagar et al., 2009]

A™(s,a) = Q™(s,a) — V™(s) is the advantage function

Actor-Critic with Advantage Function (A2C)
It is possible to estimate V™ and Q™ (e.g. by TD(0))

A" = Q, — Vy is a biased and unstable estimate
Solution:

Consider the temporal difference error
8T =r(s,a) + yVme(s') — V™o(s)
6™6 is an
E[67¢[s,a] = E[r(s,a) + yV™0(s")[s,a] — V™e(s)
— QTEQ (Sl Cl) — Ve (S)

Actor-Critic with Advantage Function (A2C)
Estimate only I, — &, = r + yV,(s") — V,(s)

= Convergence results with compatible function approximation [Bhatnagar et
al., 2009]

fort =0,...,T do Compare (actor-critic):
9 6t =1t + ¥Quw(Se+1, Arv1) — Qul(se, ar)
a;~m’(s:,) and observer r; and Sy ® = o+ B6:V, 04 (1, ar)

. 0 =0+ aVglogmg(als)Q, (s, ar)
Compute temporal difference

=1t + YV (Se41) — Vo(Se)
Update V estimate

v=v+ L5, Vy,V,(st)
Update policy

0 =60+ ad.Vglogmg(as|s;)
end

55

Generalized advantage estimation (GAE) (2016)

A2C: Compute advantages in manner analogous to TD(0)
GAE: Compute advantages in manner analogous to TD(A)

Can generally be used with actor-critic methods
Example algorithm: TRPO (next time)

Generalized advantage estimation demo: learning to run and stand up

A Compilation of Robots Falling Down at the DARPA Robotics Challenge

| -
% 0
—

https://www.youtube.com/watch?v=SHLuf2ZBQSw
https://www.youtube.com/watch?v=g0TaYhjpOfo

Asynchronous Advantage Actor-Critic (A3C)

(networks) with their own weights,
who interact with a different copy of
the environment in parallel.

The agents (or) train in

parallel using a

They periodically update the global
network with their d@. —

Remark: In practice, 8 denotes the

shared weights for the value Worker
function and the policy (multi- 1
headed network) S

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.

Global Network

Policy i(s) V(s)

Network

1

Input (s)

— — —
Worker 2 Worker 3 Worker n

! ! !

Environment 2 Environment3 ... Environmentn

Figure from Atrisha Sarkar

Wu

57

Asynchronous Advantage Actor-Critic (A3C)

= Improved training exploration & stability.

16000 Beamrider 600 Breakout 30 Pong 12000 Q*bert 1600 Space Invaders
— DQON — DQN — DQN — DQON
14000 — 1- — — 1400 — 1-
1-step Q 500 1-step Q 20 10000 1-step Q 1-step Q
12000 — 1-step SARSA — 1-step SARSA R — — 1-step SARSA 1200 — 1-step SARSA
— n-step Q — n-step Q —— n-step Q —— n-step Q
10000 A3C 400 A3C 10 8000 A3C 1000 A3C
L < < o
S 8000 S 300 0 6000 S 800
A _/)) »n
/ 4
e 200 -10 — 1001“ = 4000 o
— 1-step
o0 100 202 SEMERARAE 500 / n
2000 n-step Q 200 %
A3C
0 0 -30 0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours) Training time (hours) Training time (hours) Training time (hours)

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016. Wu

Outline

1.

From Policy Iteration to Policy Search
Policy gradient methods

Actor-critic

Compatible function approximation
Advantages and Advantage Actor-Critic (A2C)
Asynchronous A2C (A3C)

Deep Deterministic Policy Gradient (DDPG)
Soft Actor-Critic (SAC)

JE NS

58

59

Bringing policies back to value-based methods

= Recall: value-based methods have trouble handling continuous actions/large action spaces
= Key idea: simplify Q using deterministic policies

S

Deep Deterministic Policy Gradient (DDPG) (2014)
= Recall: Vp(m) = Es~dn[r(s,n(s))]

= VeVp(0) = Xsd™(s)Vp1g(s)V, Q7 (s, @)l amrry(s) = Esar|Voma ($)VaQ™ (s,)| gory(s)]
Plug it into an actor-critic framework

Q(S, al)
Q(S, aZ)
Q(S, a3)

Q(s,a) s

= Use TD(0) to update a parametric representation of Q™

8t = Ry + ¥Qu(St41, A1) — Qu (St ar) ; TD error in SARSA

Wip1 = W + @, 6:V,,Qu (st ar)

Or11 =0 + agV,0Q,,(st,a;)Vemg(s) ; Deterministic policy
a=mg(s) gradient theorem

= |ssue: Need to explicitly force exploration, e.g. “behavior policy” B(-)~ N (6, 0 8?)

Policy Iteration: Recap

Let 7ty be an arbitrary stationary policy.

whilek =1, ...,K do
Policy Evaluation: given m, compute V, = V7
Policy Improvement: find 1 that is better than

- e.g. compute the greedy policy:
Ti+1(s) € argmax {r(s, a)+y z p(yls,a)V (y)}
y

return the last policy mg

end

Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

€©) Issues: Function approximation for V™ = Does it still converge?
Continuous Actions?

60

1

Recap: Approximate Policy Iteration with Q Functions
Recall the state-action cost-to-go function: Q;(s,a) =r(s,a) +y 2o p(s'|s, a)Qn(s’, n(s’))
Approximate PI:

Fork =0,1,2,...

Approximate the value under my: Qg, = O,

Solve for an improved policy
M4+1(S) € argminQg, (s,a) VSES
a€cA(s)

@, can be approximated by either TD or Monte Carlo methods.

Same story as fitted Q-iteration. No longer guaranteed to converge.

W, pTE+3

Ve

[V

Transitional phase Stationary phase

Iterations (k) Wu

Soft policy iteration [Haarnoja, 2018]

Soft policy evaluation:

We define the bellman backup operator forany @ : § x A — R:

T™Q(st,at) = r(st, ar) + VEq,, . np[V (st41)]

where we have the soft state value function: entropy regularization

V(St) = Eatr\m[Q(st,at) —

Under standard assumptions: Q% will converge to the soft Q-value of

mTask — o

alog w(az|s:)]

Soft policy iteration [Haarnoja, 2018]

Soft policy improvement:

For each state, we do the following update:

wnew—argmmDKL(ol ey - exB(- @ (o -))

eIl Z/Told St)

Then we have

Qv (s, a¢) > Q™ (s,a) V(st,a:) €S x A, |A] < 0.

Soft policy iteration:

Under standard assumptions: The sequence Q™ is monotonically
increasing and bounded. So, it converges to some *.

63

Soft actor-critic (SAC) [Haarnoja, 2018]

Soft policy iteration + function approximation

1.

3.

[Soft policy evaluation]
Train the action-value function Qg, minimizing:

. 1 2
arg mgln Esa)en [E (Qe (Se,ap) — (T(St; a;) + VIE[Vlﬁ (s)]))]
| Fix the target network (e.g. DQN) — increase stability / break dependences
Train the (soft) value function V,,, minimizing:
]V(l/)) - St~D [2 Vl/) (St) at~n¢ [QQ (St) at) log 7T¢ (atlst)])]

ft policy improv R
[Soft policy improvement] entropy regularization

Fit the new (stochastic) policy 7 :

. exp|nQg] replace max with
arg md}n Eser |Dri | ol 7 5] softmax

Wu

64

Soft actor-critic (SAC) [Haarnoja,

7000
6000
5000
4000
3000
2000

average return

1000

—1000

0.0

0.5

Ant-v2

1.0 15 2.0
million steps

2.5

3.0

15000

12500

=

0000

average return
w ~
o vl
o o
o o

2500

0.0

SAC
DDPG

PPO

0.5

HalfCheetah-v2

1.0 15 2.0
million steps

2.5

3.0

2018]

average return

8000

6000

4000

2000

Humanoid-v2

4 6
million steps

10

65

Further reading

Soft policy iteration and soft actor-critic

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,”
ICML, 2018.

Blog post: https://yzhang1918.github.io/posts/sac/

Soft Q-learning

Haarnoja T., Tang H., Abbeel P,, Levine S, “Reinforcement Learning with Deep
Energy-Based Policies,” ICML 2017.

Blog post: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

66

https://yzhang1918.github.io/posts/sac/
https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Implementations of RL algorithms

For research and prototyping:
CleanRL: https://docs.cleanrl.dev/
A Deep Reinforcement Learning library
that provides high-quality single-file
implementation with research-friendly
features

For scaling up:

RLIib:
https://docs.ray.io/en/latest/rllib/index.ht

ml
Industry-grade reinforcement learning
Built on distributed execution engine Ray

Overview

Proximal Policy Gradient (PPO)

Deep Q-Learning (DQN)
Categorical DQN (C51)

Deep Deterministic Policy
Gradient (DDPG)

Soft Actor-Critic (SAC)

Twin Delayed Deep Deterministic
Policy Gradient (TD3)

Phasic Policy Gradient (PPG)

Random Network Distillation
(RND)

Robust Policy Optimization (RPO)
QDagger
ed

Hyperparameter Tuning

Resume Training

67

RL!LI:

Available Algorithms - Overview
Offline

Model-free On-policy RL
Model-free Off-policy RL
Model-based RL
Derivative-free

RL for recommender systems
Contextual Bandits

Multi-agent

Others

https://docs.cleanrl.dev/
https://docs.ray.io/en/latest/rllib/index.html
https://docs.ray.io/en/latest/rllib/index.html

69

Recap

Policy gradient methods offer a conceptually simple class of methods
for reinforcement learning.

They work by directly optimizing the policy (rather than the value
function) by approximating the gradient of the value function.

Policy gradient methods attempt to maximize the likelihood of good
trajectories.

" The policy gradient theorem enables us to estimate the gradient through
Monte Carlo trajectory samples (REINFORCE algorithm).

= Advantages: no Markovian assumption, often effective for continuous
action space problems.

= Disadvantages: high variance and on-policy (limited sample efficiency).

= Avariety of approaches help to reduce variance: temporal structure,
baselines, incorporate a critic.

= Core practical policy gradient / actor-critic methods: REINFORCE, SAC,
TRPO, PPO (next lecture).

Wu

References

1. Matteo Pirotta. FAIR. Reinforcement Learning. 2019, Lecture 5.

2. Matteo Pirotta. Reinforcement Learning Summer School, 2019.
Policy Search: Actor-Critic Methods.

70

