
Wu

Policy gradient
Simplicity at the cost of variance

Cathy Wu

6.7920: Reinforcement Learning: Founda9ons and Methods

Fall 2024

Wu

2

1. Josh Achiam. Spinning Up. Part 3: Intro to Policy Optimization.
OpenAI, 2018.

2. NDP §6.1: Generic issues – from parameters to policies

3. SB Chapter 13: Policy Gradient Methods

Readings

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
http://incompleteideas.net/book/the-book-2nd.html

Wu

Outline
3

1. From Policy Itera2on to Policy Search

2. Policy gradient methods

3. Actor-cri2c

Wu

Outline
5

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic

Wu

Adapted from: OpenAI Spinning Up

Lay of the land
6Methods for sequen:al

decision making

Sampling-based
(large state space)

Policy
improvement

Multi-armed
bandits

(horizon = 1)

Reinforcement
learning

(horizon ≥ 1)

Policy
evaluation

Dynamic
programming

(small state space)

Dynamic programming
algorithm

(finite horizon)

Generalized policy
itera:on

(infinite horizon)

Value
itera:on

Policy
iteration

Special
structures

De-facto definition:
Reinforcement learning =

sampling-based policy improvement for
sequential decision making (horizon ≥ 1)

Today

6.7920: Reinforcement learning:
foundations and methods

Learn the
value function

Learn the policy

Wu

Value-based methods
7

Environment

Action-value
function
𝑄(𝑠,⋅)

Action

max
w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

update

Bootstrap target
e.g. 𝑟 + 𝛾max

!"
𝑄(𝑠", 𝑎′)

Wu

Policy-based methods
8

Environment

Ac=on

Policy
𝜋(⋅ |𝑠)

sample

state,
reward

update:
Increase

probability
of selecting
actions w/

higher
returns,

 i.e. ∑!"#$ 𝑟!

Wu

RL methods overview
9

Value-basedPolicy-based Actor-critic*

* Warning: precise definitions may vary

Optimize policies
(and only policies) Optimize value

functions
(and only value functions)

Elements of both

Policy gradients
REINFORCE
Gene8c algorithms Value itera8on

Q-learning
SARSA
DQN
Rainbow DQN

DDPG, PPO, TD3, SAC

The best methods use
elements of both.

Wu

Example: Frozen Lake (Gymnasium)
10

§ Aim:
• Make it to the goal
• Don’t fall into the holes

§ Slippery (stochastic actions)
§ Observation: current location

https://gymnasium.farama.org/environments/toy_text/frozen_lake/

Wu

11

How do we represent a policy?
Example: Parameterized Policy

Normal Policy

𝜋 𝑎 𝑠 =
1

𝜎& 𝑠 2𝜋
𝑒
'
(')0 * 1

+,21 (*)

Gibbs (softmax) Policy

𝜋 𝑎 𝑠 =
𝑒𝒦00 *,(

∑(3∈𝒜 𝑒𝒦00 *,(3

Continuous actions Discrete actions

Differentiable! à autodiff via PyTorch

Wu

12

How do we represent a policy?
Example: Parameterized Policy

Normal Policy

𝜋 𝑎 𝑠 =
1

𝜎& 𝑠 2𝜋
𝑒
'
(')0 * 1

+,21 (*)

Then:

∇4 log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇4 𝑠
𝜎&+ 𝑠

∇4𝜇4 𝑠

∇& log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇4 𝑠

+ − 𝜎&+ 𝑠
𝜎&5 𝑠

∇&𝜇& 𝑠

Gibbs (softmax) Policy

𝜋 𝑎 𝑠 =
𝑒𝒦00 *,(

∑(3∈𝒜 𝑒𝒦00 *,(3

Then:
∇4 log 𝜋 𝑎 𝑠 = 𝒦∇4𝑄4 𝑠, 𝑎

	 −𝒦 4
(3∈𝒜

𝜋 𝑎6 𝑠 ∇4𝑄4 𝑠, 𝑎6

Continuous actions Discrete actions

Wu

Policy gradient = gradient ascent for MDPs

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approximation to
performance of the
policy

😀

😇
True objective
(the performance of
the policy)

V(θ)

αg

Consider a parameterized policy 𝜋!(⋅ |𝑠)

13

Wu

Policy Gradient = gradient ascent for MDPs
14

1. How do we compute 𝛁𝜽𝑽 𝜽 ?
2. How quickly do we update (i.e. 𝛼")?

Policy Gradient
𝜃"#$ = 𝜃" + 𝛼"∇%𝑉 𝜃"

REINFORCE, variance reducNon,
baselines, generalized advantage

esNmaNon (GAE)
NPG, TRPO, PPO

𝑉 𝜋!# = 𝔼 ,
"#$

%&'

𝑟"|𝜋!# , 𝑀 = 𝔼(~	ℙ 𝜏 𝜋!# , 𝑀
ℛ 𝜏

Wu

Function approximation

15

Last time: Add function approximation to value iteration
This time: Add function approximation to policy iteration. Sorta.

Wu

Policy Iteration: Recap
16

Let 𝜋! be an arbitrary sta9onary policy.
while 𝑘 = 1,… , 𝐾 do
 Policy Evalua9on: given 𝜋" compute 𝑉" = 𝑉##
 Policy Improvement: find 𝜋"$% that is beFer than 𝜋"
 - e.g. compute the greedy policy:

𝜋"$% 𝑠 ∈ argmax
&∈𝒜

𝑟 𝑠, 𝑎 + 𝛾4
)

𝑝 𝑦 𝑠, 𝑎	 𝑉##(𝑦)

 return the last policy 𝜋*
end
§ Convergence is finite and monotonic [Bertsekas, 2007] (in exact sePngs)

Issues: Func9on approxima9on for 𝑉## ⟹ Does it s9ll converge?
 Con9nuous Ac9ons?
?

Wu

Approximate Policy Iteration with 𝑄 Functions
17

Recall the state-action cost-to-go function: 𝑄7 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑*3 𝑝(𝑠′|𝑠, 𝑎)𝑄7 𝑠6, 𝜋 𝑠6

Approximate PI:
§ For 𝑘 = 0, 1, 2, …

1. Approximate the value under 𝜋,: 𝑄!# ≈ 𝑄-#
2. Solve for an improved policy

𝜋,.' 𝑠 ∈ argmin
/∈1 2

𝑄!# 𝑠, 𝑎 	 ∀𝑠 ∈ 𝒮

𝑄>3 can be approximated by either TD or Monte Carlo methods.
Same story as fitted Q-iteration. No longer guaranteed to converge.

Wu

From Policy Iteration to Policy Search
18

§ Approximate a stochas9c policy directly using func9on approxima9on
𝜋+: 𝑆 → 𝒫 𝒜 	with	𝜃 ∈ ℝ,

§ Let 𝑉 𝜋+ denote the policy performance of policy 𝜋+
Ø Policy op9miza9on problem

max
#$

𝑉 𝜋+

Solu9on 1: Policy Search/Blackbox op8miza8on:
 Use global op9mizers or gradient by finite-difference methods
 Policy 𝜋+ can also be not differen9able w.r.t. 𝜃
Solu9on 2: Policy gradient op8miza8on:
 Compute the gradient ∇+𝑉 𝜃 and follow the ascent direc9on
 ∇+𝜋+ 𝑠, 𝑎 should exist

Wu

Policy Gradient as Policy Update
19

1. How do we compute 𝛁𝜽𝑽 𝜽 ?
2. How quickly do we update (i.e. 𝛼")?

Approximate Policy Iteration
𝜋%345 = argmax

&6
𝑄&6 𝑠, 𝜋% 𝑠

Unstable (fast)
No convergence

Policy Gradient
𝜃"#$ = 𝜃" + 𝛼"∇%𝑉 𝜃"

Smooth, fine control (slow)
Convergence to local optima

Wu

Outline
20

1. From Policy Iteration to Policy Search

2. Policy gradient methods
a. REINFORCE
b. Representing a policy (discrete and continuous!)
c. Variance reduction (temporal structure and baselines)

3. Actor-critic

Wu

Assume: finite-horizon setting

21

Discount 𝛾 excluded to simplify notation.

Wu

Policy Gradient (Finite-Horizon)
22

Given an MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and a policy 𝜋%7. For k = 1,2,…
1. Use 𝜋%3 to collect data 𝜏.
2. Use 𝜏 to approximate gradient of:

𝑉 𝜋%3 = 𝔼 B
'()

*+$

𝑟'|𝜋%3, 𝑀 = 𝔼,~	ℙ 𝜏 𝜋%3, 𝑀
ℛ 𝜏

where
• 𝜇 is an iniNal state distribuNon
• 𝜏 = 𝑠$, 𝑎$, 𝑟$, 𝑠', 𝑎', 𝑟', … , 𝑠*+$, 𝑎*+$, 𝑟*+$, 𝑠*

(includes terminal reward) is a trajectory
• ℛ 𝜏 its return (sum of rewards).

3. Update 𝜃"#$ = 𝜃" + 𝛼" E∇%𝑉 𝜋%3

Maximizing this is ultimately
what we desire

How?

Main issue: MDP is a complex object to
differentiate through, i.e. ∇!ℙ 𝜏 𝜋! , 𝑀 .

(Example: Frozen Lake)

https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/toy_text/frozen_lake.py

Wu

Policy Gradient (Finite-Horizon)
23

Policy Gradient Theorem [Williams, 1992; Sutton et al., 2000]
For any finite-horizon MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and differen2able
policy 𝜋%

∇%𝑉 𝜋% = 𝔼,~ℙ ⋅ 𝜋,𝑀 𝑅 𝜏 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎'

§ Model-free! Why?
§ Compare: taking gradient through trajectory-space is difficult

∇%𝑉 𝜋% = ∇%𝔼, 𝑅 𝜏 = ∇%Kℙ 𝜏 𝜋% , 𝑀 𝑅 𝜏 𝑑𝜏

Gradient is now on the inside! We can
differentiate through (differentiable) policies.

Wu

24

§ The objective is an expectation. Want to compute the gradient w.r.t. 𝜃
(simplify notation from: 𝑉 𝜋+ 	to	𝑉 𝜃). First, bring the gradient to the inside.

∇+𝑉 𝜃 = ∇+𝔼- 𝑅 𝜏 = ∇+Kℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

	 = K∇+ℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

	 = Kℙ 𝜏 𝜋+, 𝑀 ∇+ logℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

	 = 𝔼- 𝑅 𝜏 ∇+ logℙ 𝜏 𝜋+, 𝑀
§ Last expression is an unbiased gradient estimator

Just sample 𝜏.~	ℙ 𝜏 𝜋+, 𝑀 , and compute Q𝑔. = 𝑅 𝜏. ∇+ logℙ 𝜏. 𝜋+, 𝑀
§ Issue: Need to be able to compute & differentiate the density ℙ 𝜏 𝜋+, 𝑀 w.r.t 𝜃

Proof

Log trick
∇! logℙ 𝜏 𝜋! , 𝑀

=
∇!ℙ 𝜏 𝜋! , 𝑀
ℙ 𝜏 𝜋! , 𝑀

Wu

25

Proof
Likelihood (with stochastic policies)

ℙ 𝜏 𝜋! , 𝑀 = 𝜇 𝑠$ E
"#$

%&'

𝜋! 𝑎" 𝑠" 𝑝 𝑠".' 𝑠" , 𝑎"

logℙ 𝜏 𝜋! , 𝑀 = log 𝜇 𝑠$ +,
"#$

%&'

log 𝜋! 𝑎" 𝑠" + log 𝑝 𝑠".' 𝑠" , 𝑎"

∇! logℙ 𝜏 𝜋! , 𝑀 = ∇! log 𝜇 𝑠$ +,
"#$

%&'

∇! log 𝜋! 𝑎" 𝑠" + ∇! log 𝑝 𝑠".' 𝑠" , 𝑎"
0 0

à model free

Wu

26

AlternaMve proof: likelihood rescaling
§ Interested in policy gradient: ∇0	𝑉 𝜃 + Δ |0()
§ Likelihood rescaling

𝑉 𝜃 + Δ = 𝔼,(%) 𝑅 𝜏(𝜃)
∏' 𝜋%#0(𝑎'|𝑠')
∏' 𝜋%(𝑎'|𝑠')

§ Apply chain rule to get

∇0	𝑉 𝜃 + Δ S
0()

= 𝔼,(%) 𝑅 𝜏(𝜃) B
'

∇	𝜋% 𝑎' 𝑠'
𝜋% 𝑎' 𝑠'

	 	 	 	 = 𝔼H 𝑅 𝜏 ∑I ∇J log 𝜋J 𝑎I 𝑠I

Wu

Policy Gradient (Finite-Horizon)
27

Policy Gradient Theorem [Williams, 1992; Sutton et al., 2000]
For any finite-horizon MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and differentiable
policy 𝜋%

∇%𝑉 𝜋% = 𝔼,~ℙ ⋅ 𝜋,𝑀 𝑅 𝜏 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎'

§ Model-free! Why?
§ Compare: taking gradient through trajectory-space is difficult

∇%𝑉 𝜋% = ∇%𝔼, 𝑅 𝜏 = ∇%Kℙ 𝜏 𝜋% , 𝑀 𝑅 𝜏 𝑑𝜏

Gradient is now on the inside! We can
differenNate through (differenNable) policies.

Wu

REINFORCE [Williams, 1992]
28

1. Let 𝜋%5 be an arbitrary policy.
2. At each iteration 𝑘 = 1,… , 𝐾
• Sample 𝑚 trajectories 𝜏8 = 𝑠9, 𝑎9, 𝑟9, 𝑠:, … , 𝑠;':, 𝑎;':, 𝑟;':, 𝑠; following 𝜋,
• Compute unbiased gradient estimate:

L∇!𝑉 𝜋!# =
1
𝑚,

8#'

9

,
"#$

%&'

𝑟"8 ,
"#$

%&'

∇! log 𝜋!# 𝑎"
8 𝑠"8

• Update parameters:
𝜃,.' = 𝜃, + 𝛼, L∇!𝑉 𝜋!#

3. Return last policy 𝜋%:

Monte Carlo approximation
of policy gradient

Wu

REINFORCE [Williams, 1992]
29

1. Let 𝜋%5 be an arbitrary policy.
2. At each itera2on 𝑘 = 1,… , 𝐾
• Sample 𝑚 trajectories 𝜏8 = 𝑠9, 𝑎9, 𝑟9, 𝑠:, … , 𝑠;':, 𝑎;':, 𝑟;':, 𝑠; following 𝜋,
• Compute unbiased gradient esNmate:

L∇!𝑉 𝜋!# =
1
𝑚,

8#'

9

,
"#$

%&'

𝑟"8 ,
"#$

%&'

∇! log 𝜋!# 𝑎"
8 𝑠"8

• Update parameters:
𝜃,.' = 𝜃, + 𝛼, L∇!𝑉 𝜋!#

3. Return last policy 𝜋%:

Monte Carlo approximation
of policy gradient

Wu

30

U𝑔' = 𝑅 𝜏' ∇% logℙ 𝜏' 𝜋% , 𝑀
§ 𝑅 𝜏' measures how good is sample 𝜏'
§ Moving in the direction of U𝑔' pushes up the

log probability of the sample in proportion
to how good it is.

Interpretation: uses good trajectories as
supervised examples
• Like maximum likelihood in supervised learning
• Good stuff are made more likely while bad less
• Trial and Error approach

From “CS 294-112: Deep Reinforcement
Learning” slides by S. Levine

𝑅 𝜏"

𝜏

REINFORCE as Supervised Learning

ℙ 𝜏" 𝜋! , 𝑀

Wu

Dynamic programming vs policy gradient

31

How would policy gradient solve shortest path?

1

2 3

4

6

0.5

1

32

5 52

Destination
5

7 5 Destination is node 5.

Wu

REINFORCE
32

Pros
§ Easy to compute
§ Does not use Markov property!
§ Can be used in partially observable MDPs without modification

Issues
§ Use a MC estimate of 𝑄(𝑠, 𝑎)
§ It has possibly a very large variance
§ Needs many samples to converge

Wu

Policy gradient = gradient ascent for MDPs

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approxima=on to
performance of the
policy

😀

😇
True objective
(the performance of
the policy)

V(θ)

αg

Consider a parameterized policy 𝜋!(⋅ |𝑠)

33

Wu

Policy-based vs value-based methods
34

Value-based methods
§ Conceptually more

complicated
§ Global convergence

guarantees for
tabular discounted
infinite horizon
MDPs J

§ Doesn’t work that
well outside of its
comfort zone (on its
own) LEnvironment

Action-value
function
𝑄(𝑠,⋅)

Ac=on

Policy
𝜋(⋅ |𝑠)

sample
max

w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase

probability
of selecCng
acCons w/

higher
returns,

 i.e. ∑!"#$ 𝑟!

Policy-based methods
§ Sensible & simple J
§ Local convergence

guarantees only
§ Also “works” for

partial observation,
nonstationary
settings

§ Doesn’t work that
well (on its own) L

Wu

Key challenge: Policy gradient has high variance

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approximation to
performance of the
policy

😀

True objective
(the performance of
the policy)

V(θ)

αg

Consider a parameterized policy 𝜋!(⋅ |𝑠)

35

Why?

L∇!𝑉 𝜋!# =
1
𝑚,

8#'

9

,
"#$

%&'

𝑟"8 ,
"#$

%&'

∇! log 𝜋!# 𝑎"
8 𝑠"8

Wu

Policy Gradient: Temporal Structure (Causality)
36

∇+𝑉 𝜋+ = 𝔼 4
./!

01%

∇+ log 𝜋+ 𝑎. 𝑠. 4
.%/.

01%

𝑟.%

Because ∀𝑡	:

𝔼(~70 ∇4 log 𝜋4 𝑎 𝑠=)
=3>9

=':

𝑟8 |𝜏9:=': =)
=3>9

=':

𝑟8 .𝜋4 𝑠= , 𝑎 ∇4 log 𝜋4 𝑎 𝑠= 𝑑𝑎

	 = 4
.%/!

.1%

𝑟2 K∇+𝜋+ 𝑎 𝑠. 𝑑𝑎

	 = 4
.%/!

.1%

𝑟2 ∇+K𝜋+ 𝑎 𝑠. 𝑑𝑎 = 0

In literature known as G(PO)MDP [Peters and Schaal, 2008b].
≔ 1

Discuss: Why
does this help
with variance?

Actions don’t affect past rewards

Wu

Policy Gradient: Baseline
37

§ Further reduce the variance by introducing a baseline 𝑏 𝑠

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎' B
';('

*+$

𝑟'; − 𝑏 𝑠'

§ The gradient es2mate is s2ll unbiased.
§ Proof: State-dependent baselines do not introduce bias (zero mean).

Wu

Solution: Baseline
38

Regular policy gradient
§ ?𝑔8 = 𝑅 𝜏8 ∇4 logℙ 𝜏8 𝜋4, 𝑀

𝑅 𝜏8

𝜏

ℙ 𝜏8 𝜋! , 𝑀

𝑅 𝜏8

𝜏

ℙ 𝜏8 𝜋! , 𝑀

Encourage all trajectories Encourage trajectories that are
better than average

Policy gradient with baseline
§ ?𝑔8 = (𝑅 𝜏8 − 𝑉(𝜏8))∇4 logℙ 𝜏8 𝜋4, 𝑀

Suppose: nonnegative rewards

Wu

Variance reduc+on via baseline?
39

§ Baseline

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑠' , 𝑎' B
';('

*+$

𝑟'; − 𝑏 𝑠'

§ “Near optimal choice” that minimize the variance is the expected
sum of returns:

𝑏⋆ 𝑠 ≈ 𝔼 B
'()

*+$

𝑟'|𝑠) = 𝑠, 𝜋% , 𝑀 = 𝑉&6 𝑠

• Interpretation: increase the log probability of an action 𝑎" proportionally to
how much returns are better than expected (relative values).

§ Intuition: To reduce variance, try to maximize the covariance
between x and y

Var 𝑥 − 𝑦 = Var 𝑥 − 2Cov 𝑥, 𝑦 + Var(𝑦)

Wu

40

Optimal Baseline Derivation
∇%@𝑉 𝜋% = 𝔼, ∇%@ logℙ 𝜏 𝜋% (𝑅 𝜏 − 𝑏)

Var = 𝔼, (𝑔 𝜏 𝑅 𝜏 − 𝑏)4 − 𝔼, 𝑔 𝜏 𝑅 𝜏 − 𝑏 4

⟹ 𝔼, 𝑔 𝜏 𝑅 𝜏 4	
𝜕
𝜕b
Var =

𝜕
𝜕b
𝔼, 𝑔 𝜏 4 𝑅 𝜏 − 𝑏 4

	 =
𝜕
𝜕b𝔼, 𝑔 𝜏 4𝑅 𝜏 4 − 2

𝜕
𝜕b𝔼, 𝑔 𝜏 4𝑅 𝜏 𝑏 +

𝜕
𝜕b𝔼, 𝑏

4𝑔 𝜏 4

⟹ 𝑏⋆ 𝜏 =
𝔼, 𝑔 𝜏 4𝑅 𝜏
𝔼, 𝑔 𝜏 4

Expected return weighted by the magnitude of the gradient.

≔ 𝑔 𝜏

[Baseline is unbiased
in expectaNon]

0

Wu

Outline
41

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic
a. Compatible function approximation
b. Advantages and Advantage Actor-Critic (A2C)
c. Asynchronous A2C (A3C)
d. Deep Deterministic Policy Gradient (DDPG)
e. Soft Actor-Critic (SAC)

Wu

Policy gradients & high variance: the saga continues
42

§ Monte-Carlo policy gradient is unbiased but still has high variance

∇!𝑉 𝜋! = 𝔼 ,
"#$

%&'

∇! log 𝜋! 𝑎" 𝑠" ,
"%#"

%&'

𝑟"%

§ Policy gradient is on-policy (doesn’t re-use data à inefficient!)

𝑠$
𝜏

𝑅

𝜏
𝑅

𝜏 from off-policy data

𝑅

𝑅∗ High variance
unbiased

Biased

Wu

Policy- and value-based methods à actor-critic
43

§ Monte-Carlo policy gradient is unbiased but still has high variance

∇!𝑉 𝜋! = 𝔼 ,
"#$

%&'

∇! log 𝜋! 𝑎" 𝑠" ,
"%#"

%&'

𝑟"%

§ Incorporate an estimate of 𝑄& 𝑠, 𝑎 ⟹ actor-critic
• Critic: estimate the value function
• Actor: update the policy in the direction suggested by the critic

§ Actor-critic

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑎' 𝑠' 𝑄&6(𝑠' , 𝑎')	

§ These are equivalent (see HW).

Wu

Actor-critic methods
44

Environment

AcNon-value
funcNon
𝑄(𝑠,⋅)

Action

Policy
𝜋(⋅ |𝑠)

sample

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase

probability
of selecting
actions w/

higher
returns,

 i.e. ∑!"#$ 𝑟!

update

Wu

Actor-Critic
45

§ Algorithm maintains two sets of parameters: 𝜃 ⟼ 𝜋% , 𝜔 ⟼ 𝑄5
§ Critic can use 𝑇𝐷 0

for 𝑡 = 0,… , 𝑇 − 1 do
𝑎'~𝜋% 𝑠' ,⋅ and observe 𝑟' and 𝑠'#$
Compute temporal difference

𝛿' = 𝑟' + 𝛾𝑄5 𝑠'#$, 𝑎'#$ − 𝑄5 𝑠' , 𝑎'
Update 𝑄 estimate

𝜔 = 𝜔 + β𝛿'∇5𝑄5 𝑠' , 𝑎'
Update policy

𝜃 = 𝜃 + 𝛼∇% log 𝜋% 𝑎' 𝑠' 𝑄5 𝑠' , 𝑎'
end

Wu

Actor-CriMc
46

Issues:
§ 𝑄5 𝑠, 𝑎 is a biased estimate of 𝑄&6 𝑠, 𝑎
§ The update of 𝜃 may not follow the gradient of ∇%𝑉(𝜋%)

Solution:
§ Choose the approximation space 𝑄5(𝑠, 𝑎) carefully
⟹ compatible function approximation between 𝑄5 and 𝜋%

Wu

Compatible Function Approximation
47

§ Actor-critic

∇%𝑉 𝜋% = 𝔼 B
'()

*+$

∇% log 𝜋% 𝑎' 𝑠' 𝑄&6(𝑠' , 𝑎')	

§ Re-write using occupancy measures
∇%𝑉 𝜋% = 𝔼6~7=6𝐸8~&6 ∇% log 𝜋% 𝑎 𝑠 𝑄&6 𝑠, 𝑎

§ Interpretation (inner product): projection of 𝑄&6 𝑠, 𝑎 	onto
subspace spanned by ∇% log 𝜋% 𝑎 𝑠

§ Let 𝑄5 𝑠, 𝑎 = ∑9 𝛼9[∇%log	𝜋% 𝑠, 𝑎]𝑖	
where 𝜔 = 𝛼9 |%|

Wu

Compatible Function Approximation
49

Theorem (Silver, 2014)
An action value function space 𝑄5 is compatible with a policy space
𝜋% if:
1. [Feature Selection] ∇5𝑄5 𝑠, 𝑎 = ∇%log	𝜋% 𝑠, 𝑎
2. [Least Squares Fitting] And if 𝜔 minimizes the squared error

𝜔 = argmin
5
𝔼6~7=6 B

8

𝜋% 𝑎 𝑠 𝑄&6 𝑠, 𝑎 − 𝑄5 𝑠, 𝑎 4

Then:
∇%𝑉 𝜋% = 𝔼6~7=6𝐸8~&6 ∇% log 𝜋% 𝑎 𝑠 𝑄5 𝑠, 𝑎

• Remark 1: conditions for which the policy gradient is exact.
• Remark 2: approximately satisfied by linear function approximation.

Wu

Sample Efficiency in Actor-Critic
51

Issues:
§ Sample efficiency is pretty poor
§ All samples need to be generated by the current policy (on-policy

learning)
§ Samples are discarded after a single update
Solutions:
§ Variance reduction techniques
§ Asynchronous training (A3C)
§ Use samples from other policies via importance sampling (not very

stable) (next time)
§ Conservative approaches (next time)
§ Newton for Quasi-newton methods

Wu

Actor-CriMc with a Baseline
52

∇%𝑉 𝜋% = 𝔼6~7=6 B
8

∇%𝜋% 𝑠, 𝑎 𝑄&6 𝑠, 𝑎 − 𝑏 𝑠

§ 𝑏(𝑠) minimizes the variance
§ 𝑉&(𝑠) is a good choice as baseline
• It minimizes the variance in average reward [Bhatnagar et al., 2009]

§ 𝐴& 𝑠, 𝑎 = 𝑄& 𝑠, 𝑎 − 𝑉& 𝑠 is the advantage function

Wu

Actor-Critic with Advantage Function (A2C)
53

§ It is possible to estimate 𝑉& and 𝑄& independently (e.g. by 𝑇𝐷 0)
§ 𝐴& = 𝑄5 − 𝑉𝒱 is a biased and unstable estimate
Solution:
§ Consider the temporal difference error

𝛿&6 = 𝑟 𝑠, 𝑎 + 𝛾𝑉&6 𝑠< − 𝑉&6 𝑠
§ 𝛿&6 is an unbiased estimate of the advantage

𝔼 𝛿&6 𝑠, 𝑎 = 𝔼 𝑟 𝑠, 𝑎 + 𝛾𝑉&6 𝑠< 𝑠, 𝑎 − 𝑉&6 𝑠
	 = 𝑄&6 𝑠, 𝑎 − 𝑉&6 𝑠

Wu

Actor-Critic with Advantage Function (A2C)
54

§ Es9mate only 𝑉4 ⟼ 𝛿4 = 𝑟 + 𝛾𝑉4 𝑠5 − 𝑉4 𝑠
F Convergence results with compa9ble func9on approxima9on [Bhatnagar et
al., 2009]

for 𝑡 = 0,… , 𝑇 do
𝑎.~𝜋+ 𝑠.,⋅ and observer 𝑟. and 𝑠.$%
Compute temporal difference

𝛿. = 𝑟. + 𝛾𝑉4 𝑠.$% − 𝑉4 𝑠.
Update 𝑉 es9mate

𝑣 = 𝑣 + 𝛽𝛿.∇4𝑉4 𝑠.
Update policy

𝜃 = 𝜃 + 𝛼𝛿6∇+ log 𝜋+ 𝑎. 𝑠.
end

Compare (actor-critic):
𝛿% = 𝑟% + 𝛾𝑄& 𝑠%'#, 𝑎%'# − 𝑄& 𝑠%, 𝑎%
𝜔 = 𝜔 + β𝛿%∇&𝑄& 𝑠%, 𝑎%

𝜃 = 𝜃 + 𝛼∇(log 𝜋(𝑎% 𝑠% 𝑄& 𝑠%, 𝑎%

Wu

Generalized advantage estimation (GAE) (2016)
55

§ A2C: Compute advantages in manner analogous to TD(0)
§ GAE: Compute advantages in manner analogous to TD(𝜆)
§ Can generally be used with actor-critic methods
• Example algorithm: TRPO (next time)

Generalized advantage estimation demo: learning to run and stand up

A Compilation of Robots Falling Down at the DARPA Robotics Challenge

🤕

https://www.youtube.com/watch?v=SHLuf2ZBQSw
https://www.youtube.com/watch?v=g0TaYhjpOfo

Wu

Asynchronous Advantage Actor-CriMc (A3C)
56

§ Multiple independent agents
(networks) with their own weights,
who interact with a different copy of
the environment in parallel.

§ The agents (or workers) train in
parallel using a global network 𝜃.
They periodically update the global
network with their 𝑑𝜃.

§ Remark: In practice, 𝜃 denotes the
shared weights for the value
function and the policy (multi-
headed network)

Figure from Atrisha Sarkar

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.

Wu

Asynchronous Advantage Actor-Critic (A3C)
57

§ Improved training explora2on & stability.

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.

Wu

Outline
58

1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic
a. Compatible function approximation
b. Advantages and Advantage Actor-Critic (A2C)
c. Asynchronous A2C (A3C)
d. Deep Deterministic Policy Gradient (DDPG)
e. Soft Actor-Critic (SAC)

Wu

Bringing policies back to value-based methods
59

§ Recall: value-based methods have trouble handling continuous actions/large action spaces
§ Key idea: simplify Q using deterministic policies

Deep Deterministic Policy Gradient (DDPG) (2014)
§ Recall: 𝑉& 𝜋 = 𝔼'~)) 𝑟 𝑠, 𝜋 𝑠
§ ∇*𝑉& 𝜃 = ∑' 𝑑+ 𝑠 ∇*𝜋* 𝑠 ∇,𝑄+ 𝑠, 𝑎 |,-+* ' = 𝔼'~)) |∇*𝜋* 𝑠 ∇,𝑄+ 𝑠, 𝑎 ,-+* '

Plug it into an actor-critic framework

§ Use 𝑇𝐷 0 to update a parametric representation of 𝑄+
𝛿. = 𝑅. + 𝛾𝑄/ 𝑠.01, 𝑎.01 − 𝑄/ 𝑠. , 𝑎.
𝑤.01 = 𝑤. + 𝛼/𝛿.∇/𝑄/ 𝑠. , 𝑎.
𝜃.01 = 𝜃. + 𝛼*∇,𝑄/ 𝑠. , 𝑎. ∇*𝜋* 𝑠 T

,-+* '

§ Issue: Need to explicitly force exploration, e.g. “behavior policy” 𝛽 ⋅ ~	𝒩 𝜃, 𝜎𝛽2

Q𝑠
𝑄 𝑠, 𝑎'
𝑄 𝑠, 𝑎>
𝑄 𝑠, 𝑎?

Q𝑠 𝑄 𝑠, 𝑎𝜋𝑠 𝑎

; TD error in SARSA

; Deterministic policy
gradient theorem

Wu

Policy Iteration: Recap
60

Let 𝜋! be an arbitrary sta9onary policy.
while 𝑘 = 1,… , 𝐾 do
 Policy Evalua9on: given 𝜋" compute 𝑉" = 𝑉##
 Policy Improvement: find 𝜋"$% that is beFer than 𝜋"
 - e.g. compute the greedy policy:

𝜋"$% 𝑠 ∈ argmax
&∈𝒜

𝑟 𝑠, 𝑎 + 𝛾4
)

𝑝 𝑦 𝑠, 𝑎	 𝑉##(𝑦)

 return the last policy 𝜋*
end
§ Convergence is finite and monotonic [Bertsekas, 2007] (in exact sePngs)

Issues: Func9on approxima9on for 𝑉## ⟹ Does it s9ll converge?
 Con9nuous Ac9ons?
?

Wu

Recap: Approximate Policy Iteration with 𝑄 Functions
61

Recall the state-action cost-to-go function: 𝑄7 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑*3 𝑝(𝑠′|𝑠, 𝑎)𝑄7 𝑠6, 𝜋 𝑠6

Approximate PI:
§ For 𝑘 = 0, 1, 2, …

1. Approximate the value under 𝜋,: 𝑄!# ≈ 𝑄-#
2. Solve for an improved policy

𝜋,.' 𝑠 ∈ argmin
/∈1 2

𝑄!# 𝑠, 𝑎 	 ∀𝑠 ∈ 𝒮

𝑄>3 can be approximated by either TD or Monte Carlo methods.
Same story as fitted Q-iteration. No longer guaranteed to converge.

Wu

Soft policy iteration [Haarnoja, 2018]
62

§ Under standard assump2ons: 𝑄" will converge to the sof Q-value of
𝜋 as 𝑘 → ∞

§ SoG policy evaluaIon:

entropy regularization

Wu

Soft policy iteration [Haarnoja, 2018]
63

Soft policy iteration:
§ Under standard assumptions: The sequence 𝑄&@ is monotonically

increasing and bounded. So, it converges to some 𝜋∗.

§ Soft policy improvement:

Wu

Soa actor-criMc (SAC) [Haarnoja, 2018]
64

Soft policy iteration + function approximation
1. [Soft policy evaluation]

Train the action-value function 𝑄%, minimizing:

argmin
%
𝔼 6,8 ∈[

1
2
𝑄% 𝑠' , 𝑎' − 𝑟 𝑠' , 𝑎' + 𝛾𝔼 𝑉\] 𝑠<

4

! Fix the target network (e.g. DQN) → increase stability / break dependences

2. Train the (soft) value function 𝑉], minimizing:

𝐽 𝜓 = 𝔼6A~_
1
2
𝑉] 𝑠' − 𝔼8A~&B 𝑄% 𝑠' , 𝑎' − log 𝜋` 𝑎' 𝑠'

4

3. [Soft policy improvement]
Fit the new (stochastic) policy 𝜋`:

argmin
`
𝔼6∈[𝐷ab 𝜋`||

exp 𝜂𝑄%
𝑍

[𝑠]	 replace max with
softmax

entropy regularization

Wu

Soft actor-critic (SAC) [Haarnoja, 2018]
65

Wu

Further reading
66

§ Soft policy iteration and soft actor-critic
• T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,”
ICML, 2018.
• Blog post: https://yzhang1918.github.io/posts/sac/

§ Soft Q-learning
• Haarnoja T., Tang H., Abbeel P., Levine S, “Reinforcement Learning with Deep

Energy-Based Policies,” ICML 2017.
• Blog post: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

https://yzhang1918.github.io/posts/sac/
https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Wu

Implementations of RL algorithms
67

§ For research and prototyping:
• CleanRL: https://docs.cleanrl.dev/
• A Deep Reinforcement Learning library

that provides high-quality single-file
implementation with research-friendly
features

§ For scaling up:
• RLlib:

https://docs.ray.io/en/latest/rllib/index.ht
ml
• Industry-grade reinforcement learning
• Built on distributed execution engine Ray

https://docs.cleanrl.dev/
https://docs.ray.io/en/latest/rllib/index.html
https://docs.ray.io/en/latest/rllib/index.html

Wu

Recap
§ Policy gradient methods offer a conceptually simple class of methods

for reinforcement learning.
§ They work by directly op=mizing the policy (rather than the value

func=on) by approxima=ng the gradient of the value func=on.
§ Policy gradient methods aBempt to maximize the likelihood of good

trajectories.
§ The policy gradient theorem enables us to es=mate the gradient through

Monte Carlo trajectory samples (REINFORCE algorithm).
§ Advantages: no Markovian assump=on, oNen effec=ve for con=nuous

ac=on space problems.
§ Disadvantages: high variance and on-policy (limited sample efficiency).
§ A variety of approaches help to reduce variance: temporal structure,

baselines, incorporate a cri=c.
§ Core prac=cal policy gradient / actor-cri=c methods: REINFORCE, SAC,

TRPO, PPO (next lecture).

69

Wu

References
70

1. Matteo Pirotta. FAIR. Reinforcement Learning. 2019, Lecture 5.

2. Matteo Pirotta. Reinforcement Learning Summer School, 2019.
Policy Search: Actor-Critic Methods.

