
Wu

Monte Carlo Tree Search and Go

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

Fall 2023

Wu

2

1. Sutton & Barto (SB) §16.6

Readings

http://incompleteideas.net/book/the-book-2nd.html

Wu

Outline
3

1. Online planning

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS

Wu

Outline
4

1. Online planning
a. The game of Go
b. Online planning vs offline planning
c. Exhaustive search
d. Lookahead + rollout as policy iteration
e. Reducing depth with offline value function
f. TD-Gammon

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS

Wu

Why the fascination in AI for the game of Go?
7

Brute force search intractable:
§ Search space is huge

Game tree complexity = 𝑏!

§ 𝑏 = Branching factor
§ 𝑑 = Depth

3000 year old game

19 x 19 Board 361 Actions
Average length of game: 211 moves

Wu

Why the fascination in AI for the game of Go?
8

Brute force search intractable:
§ Search space is huge
§ Impossible to evaluate who is

winning (position evaluation)

Approaches taken:
§ Designed by hand / experts
§ Supervised learning
§ Search
§ Reinforcement learning
§ AlphaGo: all of the above

3000 year old game

10!"# board positions 10!" atoms in universe

Wu

AlphaGo
9

First computer program to defeat a
world champion (2016)

Wu

AlphaGo vs Lee Sedol
10

§ Lee Sedol (9p): winner of 18
world titles

§ Match was played in Seoul,
March 2016

§ AlphaGo won the match 4-1

Wu

The game of Go
11

Sutton & Barto. Reinforcement Learning: An Introduction, 2018.

Wu

Sequential decision making
13

Adapted from Katerina Fragkiadaki (CMU)

Experience

Model

Value
function

Policy

Greedy

Planning

Simulation

Model
learning

Interaction with
Environment

Value-based RL

Policy optimization

Wu

Today
14

Adapted from Katerina Fragkiadaki (CMU)

Experience

Model

Value
function

Policy

Greedy

Planning

Simulation

Model
learning

Interaction with
Environment

Value-based RL

Policy optimization

Lookahead + rollout

Self-play training

Offline training

Wu

Setting
15

§ An MDP with known 𝑠’~𝑃(𝑠, 𝑎) – model-based method possible
§ Terminal States (Finite Horizon Problem).
§ Discrete State, Action spaces with fully observed (perfect

information) states
§ Challenges:
• High branching factor
• Inability to evaluate a state
• Long term time dependencies
• Long horizon

Adapted from Kendall Lowrey (UW)

Wu

Exhaustive search
16

𝑠!

𝑎!

𝑠"

𝑤!

Wu

Exhaustive search policy evaluation / improvement
17

Fixed policy 𝜋

Wu

Online vs offline planning
18

§ Offline planning: solve the full problem with DP
• A full policy evaluation (and improvement) is intractable

§ Online planning: only need local policy evaluation at current state 𝑠
§ 1-step lookahead: Policy evaluation +𝑉" with MC rollouts
• Policy improvement with greedy action selection, 𝑇 &𝑉 =: 𝑇#! &𝑉

Current state s

x 100x 100

Current policy 𝜋

Wu

Online vs offline planning
19

§ 2-step lookahead: Policy evaluation +𝑉" with MC rollouts
• Policy improvement with greedy action selection
• 𝑇$ &𝑉 =: 𝑇#!𝑇#" &𝑉

Current state s

x 100x 100x 100 x 100

Current policy 𝜋

Current policy 𝜋

Wu

Lookahead
20

§ k-step lookahead: Policy evaluation +𝑉" with MC rollouts
§ If k is very large, we solve the problem to optimality
§ If +𝑉 − 𝑉∗

$
≤ 𝜖, then 𝑇%&' +𝑉 − 𝑉∗

$
≤ 𝛾%&'𝜖

• So, we are taking greedy wrt a better &𝑉

Current state s

Wu

Lookahead
21

§ Intuition: If +𝑉 is decent, then a few steps of policy iteration can give
big improvements
• Base policy 𝜋 → local value function &𝑉# → greedy improvement 𝜋′
• This is essentially one step of policy iteration!
• Base policy can be from offline training

§ Issues: large branching factor, deep tree
• Exact if small k
• Approximately if large k

§ Approx. solution to exact problem, e.g., value function approximation. Too general.
§ Exact solution to easier version: Focused learning

Wu

General structure
22

Current state s

x 100x 100

Current policy 𝜋

&𝑉&𝑉

§ k-step lookahead: Policy evaluation +𝑉" with MC rollouts
• Policy improvement with greedy action selection

§ If horizon long (or infinite), can truncate MC rollout with offline
trained +𝑉

§ Application matters (online planning)
• Inventory: overnight
• Chess: 5 seconds
• Car: 0.1 seconds

Wu

Reducing depth with value network
23

Wu

TD-Gammon
24

§ Game Backgammon
§ +𝑉: Offline training using 𝑇𝐷 𝜆
§ World-class player
• Use greedy + rollouts
• 2-step lookahead

§ Similarly for Tetris

Wu

Reducing breadth with policy network – How?
25

Wu

Intuition
26

§ So far: Knowing 𝑠’~𝑃(𝑠, 𝑎) can let us
build a tree structure for mapping how
states branch into next states through
actions.

§ If the branching factor is too high, we
can never fully build out the tree.

§ If we do not build out the whole tree,
we cannot follow the branches that
lead us to high reward (aka winning).

§ How do we know which branches to
take?

Adapted from Kendall Lowrey (UW)

Wu

Outline
27

1. Online planning

2. Monte Carlo Tree Search (MCTS)
a. Selection, Expansion, Simulation, Backpropagation
b. Upper Confidence Bound (UCB)
c. Upper Confidence Tree (UCT)

3. AlphaGo: Learning-guided MCTS

Wu

Monte-Carlo Tree Search
28

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012.

Wu

Selection step: Tree traversal
29

§ In contrast to lookahead
(exhaustive action selection), we
will now be deliberate about
selecting actions and thus
traversing (and expanding) the
tree.

§ We will discuss how.

Adapted from Kendall Lowrey (UW)

Wu

Simulation step: rollout
30

§ Similarly to lookahead
approach, we will use
MC rollouts to estimate
the local policy
evaluation

Adapted from Kendall Lowrey (UW)

Wu

Monte-Carlo Tree Search Algorithm
31

§ MCTSEARCH(S):
• create new tree T with state S as root
• LOOP:

§ L ← TRAVERSE T until leaf node
§ V ← SIMULATE MDP from L
§ BACKUP value V through T

• return BESTCHILD(S)
Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012.

Wu

Monte-Carlo Tree Search Algorithm
32

§ No heuristics needed: we can default to random search
§ No minimum computation: we can query for action at anytime
§ No symmetries: the tree growth has no rules, and depends on how

you traverse
Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012.

Wu

How do we traverse our tree?
34

§ Each node of the tree is like a multi-armed bandits (MAB) problem....

Wu

Upper-Confidence Bound (UCB)
35

§ Principle: optimism in the face of uncertainty
§ Sample actions according to the following score:

• score is decreasing in the number of visits (explore)
• score is increasing in a node’s value (exploit)
• always tries every option once

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi, Fischer, 2002

Bonus

Wu

Upper confidence tree (UCT)
36

§ UCT = MCTS + UCB
• Treat each internal node in

MCTS as a K-armed bandit
• Use UCB to select action

Levente Kocsis, Csaba Szepesvari, and Jan Willemson. Improved Monte-Carlo Search., 2006

Wu

Monte-Carlo Tree Search
38

1. Selection (traverse)
• Used for nodes we have seen before
• Pick according to UCB (i.e., UCT)

2. Expansion
• Used when we reach the frontier
• Add one node per playout

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012.

3. Simulation (rollout)
• Used beyond the search frontier
• Don’t bother with UCB, just play randomly

4. Backpropagation (backup)
• After reaching a terminal node
• Update value and visits for states expanded

in selection and expansion

Wu

UCT MCTS Algorithm
39

§ MCTSEARCH(S):
• create new tree T with state S as root
• LOOP:

§ L ← TRAVERSE T until leaf node w/ UCT
§ V ← SIMULATE MDP from L
§ BACKUP value V through T

• return BESTCHILD(S)

§ If we run this for some set time / computational limit, the hope is
that the most explored branches are the same as the highest reward
branches.

Adapted from Kendall Lowrey (UW)

§ BESTCHILD(S):
• return argmax UCT(Sj,S)

§ BACKUP(S,V):
• N(S) += 1
• Q(S) += V
• BACKUP(parent(S),V)

Wu

Can we do better?
40

§ Can we inject prior knowledge into value functions to be estimated
and actions to be tried, instead of initializing uniformly?

Wu

Outline
41

1. Online planning

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS
a. AlphaGo
b. AlphaGoZero
c. AlphaZero, MuZero
d. Learning-guided optimization

Wu

AlphaGo: Learning-guided MCTS
42

§ Value neural net to evaluate board positions
§ Policy neural net to select moves
§ Combine those networks with MCTS

Policy network Value network

Wu

13-layer CNN

30M Game States ~57% accuracy
3 weeks of training, 50 processors

Training the policy network

Wu

Improving the policy network with policy gradient

±1 (win/loss)

Fast rollout
policy 𝑝!

(trained using SL)

Backup, then
update 𝑝" with
policy gradient

Self-play:
current 𝑝" vs

current 𝑝"

RL policy wins 80% games against SL policy

1 day of training, 50 GPUs

Wu

Performance

Wu

Supervised
learning
network

MC
Self-play

Performance

Wu

Improving selection with value function estimation
§ As 𝑝(improves, can use win/loss to inform selection & expansion
§ Train value network 𝑣) via regression on outcome 𝑧 of playing with 𝑝(.

Value network

±1 (win/loss)

1 weeks of training, 50 GPUs

50M mini-batches (of size 32) from 30M game positions from unique self-play games
13-layer CNN

Wu

AlphaGo Lee: Overall MCTS pipeline
50

§ Policy Network 𝑝* augments UCT during Selection (traverse) step
𝑎+ = argmax, 𝑄 𝑠+ , 𝑎 + 𝑢(𝑠+ , 𝑎)

𝑢 𝑠, 𝑎 ∝
𝑝*(𝑎|𝑠)

1 + 𝑁(𝑠, 𝑎)
§ Value Network 𝑣) is combined with fast rollouts (z, using 𝑝") for

Simulation step
𝑉 𝑠- = 1 − 𝜆 𝑣) 𝑠- + 𝜆𝑧-

Wu

Performance

Wu

Performance

Wu

Performance

Wuhttps://www.youtube.com/watch?v=WXuK6gekU1Y

56§ Fan Hui, the reigning
three-time European
Champion
• 2015: 5-0 AlphaGo win

§ Lee Sedol, the winner of
18 world titles. Widely
considered the greatest
player of the past decade.
• 2016: 4-1 AlphaGo win

AlphaGo is the first computer program
to defeat a professional human Go

player, the first to defeat a Go world
champion, and is arguably the strongest

Go player in history.

https://www.youtube.com/watch?v=WXuK6gekU1Y

Wu

AlphaGo Zero (2017)
57

§ Simpler method!
§ No more supervised learning step:

straight to RL Policy network
starting from random play.

§ Policy Network and Value network
are combined: more efficient
training.
• A single 44-layer DNN (ConvNet)
• 2 heads: Value, Action probabilities

(19x19 + 1)

§ No ‘Simulation’ step: direct board
evaluation with value function. 4.9-29M self-play games

3-40 days of training

Wu

AlphaGoZero: Lookahead search during training!
64

§ Given any policy, a MCTS guided by
this policy will produce an
improved policy (policy
improvement operator)

§ Train so that the policy network
mimics this improved policy
• Maximum likelihood

§ Train so that the position
evaluation network output
matches the outcome (same as in
AlphaGo)

Wu

AlphaGoZero: no MC rollouts till termination
65

§ MCTS uses always value net evaluations of leaf nodes, no rollouts!

Wu

AlphaGo Zero (2017)
66

No supervised learning!

Wu

Architectures
67

Wu

RL vs SL
69

Wu

AlphaZero (Science, 2018)
70

§ Removes some
Go-specific
features and
heuristics

Wu

MuZero (2020)
73

§ Tree search on a learned model
• Learned model g = compressed

environment à faster rollouts
• Learned model predicts next state

& reward

J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

MCTS on learned model

Wu

MuZero
74

§ State embedding h enables tree
search beyond board games
(e.g., Atari)

§ Prediction function f predicts
policy and value function

§ Details:
• g,h,f are jointly trained

J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

MCTS on learned model

hidden states s

Wu

A note on computation cost
75

§ 1 TPU ≈ 5-30 GPUs
§ AlphaGo computation for real-time game play
• 50 TPUs on Google Cloud
• Searches ~50 moves deep
• ~100,000 positions per second

§ MuZero training cost: ≈220 GPU-years
• (3.8 GPU-years per Atari game) x (57 games)
• “For each board game, we used 16 TPUs for training and 1,000 TPUs for self-

play. For each game in Atari, in the 20 billion frame setting we used 8 TPUs
for training and 32 TPUs for self-play.”

Wu

Learning-guided MCTS
76

Adapted from Katerina Fragkiadaki (CMU)

Experience

Model

Value
function

Policy

Greedy

Planning

Simulation

Model
learning

Interaction with
Environment

Value-based RL

Policy optimization

Lookahead + rollout

Self-play training

Offline training

Wu

Upcoming lecture: learning-guided optimization
81

Figure courtesy Li, et al. arXiv 2107.07076, 2021.

Vehicle routing problems (VRP) [1]

60 years of study! [2]
Salt Lake City, Utah

164 scenarios

[1] Li, et al. An overview and experimental study of learning-based optimization algorithms for the vehicle routing problem. IEEE/CAA Journal of Automatica Sinica, 2022.
[2] Laporte. Fifty Years of Vehicle Routing. Transportation Science, 2009.
[3] Qu*, Valiveru*, Tang, Jayawardana, Freydt, Wu. What is a Typical Signalized Intersection in a City? A Pipeline for Intersection Data Imputation from OpenStreetMap. TRB, 2023.

Intuition: leverage known structure for aspects of problems that are well-modeled,
and leverage learning to guide aspects that are not.

Signalized intersections [3]

Examples:

Wu

Learning-guided MCTS

Learning only MCTS only

Example: AlphaGo Zero = Learning-guided MCTS
82

D. Silver et al., Mastering the game of go without human knowledge, Nature, 2017.

Monte Carlo Tree Search (MCTS)

Learning-guided
(trained w/ regression)

Superhuman

à

Wu

Learning-guided optimization
84

§ Tailor the optimization method to YOUR problem.
• Example: Learning-guided MCTS (AlphaGo)

§ Intuition: leverage known solvers for aspects of
problems that are well-modeled, and leverage
learning to guide aspects that are not.

Vehicle routing problems Warehouse automation

Mixed integer programming (MIP)

NeurIPS 2021 Spotlight In review NeurIPS 2023

