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1. Sutton & Barto (SB) §16.6

Readings

http://incompleteideas.net/book/the-book-2nd.html
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Outline
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1. Online planning

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS
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Outline
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1. Online planning
a. The game of Go
b. Online planning vs offline planning
c. Exhaustive search
d. Lookahead + rollout as policy iteration
e. Reducing depth with offline value function
f. TD-Gammon

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS
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Why the fascination in AI for the game of Go?
7

Brute force search intractable:
§ Search space is huge

Game tree complexity = 𝑏!

§ 𝑏 = Branching factor
§ 𝑑 = Depth

3000 year old game

19 x 19 Board 361 Actions
Average length of game: 211 moves
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Why the fascination in AI for the game of Go?
8

Brute force search intractable:
§ Search space is huge
§ Impossible to evaluate who is 

winning (position evaluation)

Approaches taken:
§ Designed by hand / experts
§ Supervised learning
§ Search
§ Reinforcement learning
§ AlphaGo: all of the above

3000 year old game

10!"#  board positions 10!"  atoms in universe
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AlphaGo
9

First computer program to defeat a 
world champion (2016)
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AlphaGo vs Lee Sedol
10

§ Lee Sedol (9p): winner of 18 
world titles 

§ Match was played in Seoul, 
March 2016

§ AlphaGo won the match 4-1 
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The game of Go
11

Sutton & Barto. Reinforcement Learning: An Introduction, 2018.
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Sequential decision making
13

Adapted from Katerina Fragkiadaki (CMU)
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Today
14

Adapted from Katerina Fragkiadaki (CMU)
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Setting
15

§ An MDP with known 𝑠’~𝑃(𝑠, 𝑎) – model-based method possible
§ Terminal States (Finite Horizon Problem). 
§ Discrete State, Action spaces with fully observed (perfect 

information) states 
§ Challenges:
• High branching factor
• Inability to evaluate a state
• Long term time dependencies
• Long horizon

Adapted from Kendall Lowrey (UW)
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Exhaustive search
16

𝑠!

𝑎!

𝑠"

𝑤!
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Exhaustive search policy evaluation / improvement
17

Fixed policy 𝜋
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Online vs offline planning
18

§ Offline planning: solve the full problem with DP
• A full policy evaluation (and improvement) is intractable

§ Online planning: only need local policy evaluation at current state 𝑠
§ 1-step lookahead: Policy evaluation +𝑉"  with MC rollouts
• Policy improvement with greedy action selection, 𝑇 &𝑉 =: 𝑇#! &𝑉

Current state s

x 100x 100

Current policy 𝜋
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Online vs offline planning
19

§ 2-step lookahead: Policy evaluation +𝑉"  with MC rollouts
• Policy improvement with greedy action selection
• 𝑇$ &𝑉 =: 𝑇#!𝑇#" &𝑉

Current state s

x 100x 100x 100 x 100

Current policy 𝜋

Current policy 𝜋
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Lookahead
20

§ k-step lookahead: Policy evaluation +𝑉"  with MC rollouts
§ If k is very large, we solve the problem to optimality
§ If +𝑉 − 𝑉∗

$
≤ 𝜖, then 𝑇%&' +𝑉 − 𝑉∗

$
≤ 𝛾%&'𝜖

• So, we are taking greedy wrt a better &𝑉

Current state s
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Lookahead
21

§ Intuition: If +𝑉 is decent, then a few steps of policy iteration can give 
big improvements
• Base policy 𝜋 → local value function &𝑉# → greedy improvement 𝜋′
• This is essentially one step of policy iteration!
• Base policy can be from offline training

§ Issues: large branching factor, deep tree
• Exact if small k
• Approximately if large k

§ Approx. solution to exact problem, e.g., value function approximation. Too general.
§ Exact solution to easier version: Focused learning
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General structure
22

Current state s

x 100x 100

Current policy 𝜋

&𝑉&𝑉

§ k-step lookahead: Policy evaluation +𝑉"  with MC rollouts
• Policy improvement with greedy action selection

§ If horizon long (or infinite), can truncate MC rollout with offline 
trained +𝑉

§ Application matters (online planning)
• Inventory: overnight
• Chess: 5 seconds
• Car: 0.1 seconds
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Reducing depth with value network
23
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TD-Gammon
24

§ Game Backgammon
§ +𝑉: Offline training using 𝑇𝐷 𝜆
§ World-class player
• Use greedy + rollouts
• 2-step lookahead

§ Similarly for Tetris



Wu

Reducing breadth with policy network – How?
25
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Intuition
26

§ So far: Knowing 𝑠’~𝑃(𝑠, 𝑎) can let us 
build a tree structure for mapping how 
states branch into next states through 
actions. 

§ If the branching factor is too high, we 
can never fully build out the tree. 

§ If we do not build out the whole tree, 
we cannot follow the branches that 
lead us to high reward (aka winning). 

§ How do we know which branches to 
take? 

Adapted from Kendall Lowrey (UW)
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Outline
27

1. Online planning

2. Monte Carlo Tree Search (MCTS)
a. Selection, Expansion, Simulation, Backpropagation
b. Upper Confidence Bound (UCB)
c. Upper Confidence Tree (UCT)

3. AlphaGo: Learning-guided MCTS
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Monte-Carlo Tree Search
28

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012. 
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Selection step: Tree traversal
29

§ In contrast to lookahead 
(exhaustive action selection), we 
will now be deliberate about 
selecting actions and thus 
traversing (and expanding) the 
tree.

§ We will discuss how.

Adapted from Kendall Lowrey (UW)
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Simulation step: rollout
30

§ Similarly to lookahead 
approach, we will use 
MC rollouts to estimate 
the local policy 
evaluation

Adapted from Kendall Lowrey (UW)
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Monte-Carlo Tree Search Algorithm
31

§ MCTSEARCH(S):
• create new tree T with state S as root
• LOOP: 

§ L ← TRAVERSE T until leaf node
§ V ← SIMULATE MDP from L
§ BACKUP value V through T 

• return BESTCHILD(S)
Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012. 
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Monte-Carlo Tree Search Algorithm
32

§ No heuristics needed: we can default to random search
§ No minimum computation: we can query for action at anytime
§ No symmetries: the tree growth has no rules, and depends on how 

you traverse 
Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012. 
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How do we traverse our tree?
34

§ Each node of the tree is like a multi-armed bandits (MAB) problem.... 
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Upper-Confidence Bound (UCB) 
35

§ Principle: optimism in the face of uncertainty
§ Sample actions according to the following score: 

• score is decreasing in the number of visits (explore)
• score is increasing in a node’s value (exploit)
• always tries every option once 

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi, Fischer, 2002 

Bonus
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Upper confidence tree (UCT)
36

§ UCT = MCTS + UCB
• Treat each internal node in 

MCTS as a K-armed bandit
• Use UCB to select action

Levente Kocsis, Csaba Szepesvari, and Jan Willemson. Improved Monte-Carlo Search., 2006 
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Monte-Carlo Tree Search
38

1. Selection (traverse) 
• Used for nodes we have seen before 
• Pick according to UCB (i.e., UCT)

2. Expansion 
• Used when we reach the frontier 
• Add one node per playout 

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and AI in Games, 2012. 

3. Simulation (rollout) 
• Used beyond the search frontier 
• Don’t bother with UCB, just play randomly 

4. Backpropagation (backup) 
• After reaching a terminal node
• Update value and visits for states expanded 

in selection and expansion 
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UCT MCTS Algorithm
39

§ MCTSEARCH(S):
• create new tree T with state S as root
• LOOP: 

§ L ← TRAVERSE T until leaf node w/ UCT
§ V ← SIMULATE MDP from L
§ BACKUP value V through T 

• return BESTCHILD(S)

§ If we run this for some set time / computational limit, the hope is 
that the most explored branches are the same as the highest reward 
branches.

Adapted from Kendall Lowrey (UW)

§ BESTCHILD(S):
• return argmax UCT(Sj,S) 

§ BACKUP(S,V):
• N(S) += 1
• Q(S) += V 
• BACKUP(parent(S),V) 
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Can we do better?
40

§ Can we inject prior knowledge into value functions to be estimated 
and actions to be tried, instead of initializing uniformly? 
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Outline
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1. Online planning

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS
a. AlphaGo
b. AlphaGoZero
c. AlphaZero, MuZero
d. Learning-guided optimization
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AlphaGo: Learning-guided MCTS
42

§ Value neural net to evaluate board positions
§ Policy neural net to select moves
§ Combine those networks with MCTS 

Policy network Value network
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13-layer CNN

30M Game States ~57% accuracy
3 weeks of training, 50 processors

Training the policy network
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Improving the policy network with policy gradient

±1 (win/loss)

Fast rollout 
policy 𝑝! 

(trained using SL)

Backup, then 
update 𝑝" with 
policy gradient

Self-play: 
current 𝑝" vs 

current 𝑝"

RL policy wins 80% games against SL policy

1 day of training, 50 GPUs
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Performance
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Supervised 
learning 
network

MC
Self-play

Performance



Wu

Improving selection with value function estimation
§ As 𝑝( improves, can use win/loss to inform selection & expansion
§ Train value network 𝑣)  via regression on outcome 𝑧 of playing with 𝑝(.

Value network

±1 (win/loss)

1 weeks of training, 50 GPUs

50M mini-batches (of size 32) from 30M game positions from unique self-play games
13-layer CNN
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AlphaGo Lee: Overall MCTS pipeline
50

§ Policy Network 𝑝*  augments UCT during Selection (traverse) step
𝑎+ = argmax, 𝑄 𝑠+ , 𝑎 + 𝑢(𝑠+ , 𝑎)

𝑢 𝑠, 𝑎 ∝
𝑝*(𝑎|𝑠)

1 + 𝑁(𝑠, 𝑎)
§ Value Network 𝑣)  is combined with fast rollouts (z, using 𝑝") for 

Simulation step 
𝑉 𝑠- = 1 − 𝜆 𝑣) 𝑠- + 𝜆𝑧-
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Performance
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Performance
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Wuhttps://www.youtube.com/watch?v=WXuK6gekU1Y

56§ Fan Hui, the reigning 
three-time European 
Champion
• 2015: 5-0 AlphaGo win

§ Lee Sedol, the winner of 
18 world titles. Widely 
considered the greatest 
player of the past decade.
• 2016: 4-1 AlphaGo win

AlphaGo is the first computer program 
to defeat a professional human Go 

player, the first to defeat a Go world 
champion, and is arguably the strongest 

Go player in history.

https://www.youtube.com/watch?v=WXuK6gekU1Y
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AlphaGo Zero (2017)
57

§ Simpler method!
§ No more supervised learning step: 

straight to RL Policy network 
starting from random play.

§ Policy Network and Value network 
are combined: more efficient 
training.
• A single 44-layer DNN (ConvNet)
• 2 heads: Value, Action probabilities 

(19x19 + 1)

§ No ‘Simulation’ step: direct board 
evaluation with value function. 4.9-29M self-play games

3-40 days of training
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AlphaGoZero: Lookahead search during training!
64

§ Given any policy, a MCTS guided by 
this policy will produce an 
improved policy (policy 
improvement operator)

§ Train so that the policy network 
mimics this improved policy
• Maximum likelihood

§ Train so that the position 
evaluation network output 
matches the outcome (same as in 
AlphaGo)
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AlphaGoZero: no MC rollouts till termination 
65

§ MCTS uses always value net evaluations of leaf nodes, no rollouts! 
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AlphaGo Zero (2017)
66

No supervised learning!
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Architectures
67
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RL vs SL
69
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AlphaZero (Science, 2018)
70

§ Removes some 
Go-specific 
features and 
heuristics 
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MuZero (2020)
73

§ Tree search on a learned model
• Learned model g = compressed 

environment à faster rollouts
• Learned model predicts next state 

& reward

J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

MCTS on learned model



Wu

MuZero
74

§ State embedding h enables tree 
search beyond board games 
(e.g., Atari)

§ Prediction function f predicts 
policy and value function

§ Details:
• g,h,f are jointly trained

J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

MCTS on learned model

hidden states s
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A note on computation cost
75

§ 1 TPU ≈ 5-30 GPUs
§ AlphaGo computation for real-time game play
• 50 TPUs on Google Cloud
• Searches ~50 moves deep
• ~100,000 positions per second

§ MuZero training cost: ≈220 GPU-years
• (3.8 GPU-years per Atari game) x (57 games)
• “For each board game, we used 16 TPUs for training and 1,000 TPUs for self-

play. For each game in Atari, in the 20 billion frame setting we used 8 TPUs 
for training and 32 TPUs for self-play.”
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Learning-guided MCTS
76

Adapted from Katerina Fragkiadaki (CMU)
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Upcoming lecture: learning-guided optimization
81

Figure courtesy Li, et al. arXiv 2107.07076, 2021.

Vehicle routing problems (VRP) [1]

60 years of study! [2]
Salt Lake City, Utah

164 scenarios

[1] Li, et al. An overview and experimental study of learning-based optimization algorithms for the vehicle routing problem. IEEE/CAA Journal of Automatica Sinica, 2022.
[2] Laporte. Fifty Years of Vehicle Routing. Transportation Science, 2009.
[3] Qu*, Valiveru*, Tang, Jayawardana, Freydt, Wu. What is a Typical Signalized Intersection in a City? A Pipeline for Intersection Data Imputation from OpenStreetMap. TRB, 2023.

Intuition: leverage known structure for aspects of problems that are well-modeled, 
and leverage learning to guide aspects that are not.

Signalized intersections [3]

Examples:
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Learning-guided MCTS

Learning only MCTS only

Example: AlphaGo Zero = Learning-guided MCTS
82

D. Silver et al., Mastering the game of go without human knowledge, Nature, 2017.

Monte Carlo Tree Search (MCTS)

Learning-guided
(trained w/ regression)

Superhuman

à
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Learning-guided optimization
84

§ Tailor the optimization method to YOUR problem.
• Example: Learning-guided MCTS (AlphaGo)

§ Intuition: leverage known solvers for aspects of 
problems that are well-modeled, and leverage 
learning to guide aspects that are not.

Vehicle routing problems Warehouse automation

Mixed integer programming (MIP)

NeurIPS 2021 Spotlight In review NeurIPS 2023


