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Outline

1. Online planning
2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS



Outline

1. Online planning

The game of Go

Online planning vs offline planning
Exhaustive search

Lookahead + rollout as policy iteration
Reducing depth with offline value function

S o o o0 T w

TD-Gammon

2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS



Why the fascination in Al for the game of Go?

Brute force search intractable: 3000 year old game

= Search space is huge

Game tree complexity = b

= b = Branching factor WWL::,X.--;%;
= d = Depth 3 Fupeet

-2

19 x 19 Board 361 Actions
Average length of game: 211 moves

Wu



Why the fascination in Al for the game of Go?

Brute force search intractable:

Approaches taken:

3000 year old game

Search space is huge

Impossible to evaluate who is
winning (position evaluation)

Designed by hand / experts
Supervised learning

Search

Reinforcement learning 170 30
1 O board positions 1 0 atoms in universe

Wu

AlphaGo: all of the above



AlphaGo

First computer program to defeat a
world champion (2016)

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

At last — a compufer program that
can beat a champion Go player PAGE484

ALL SYSTEMS GO

CONSERVATION RESEARCH ETHICS POPULAR SCIENCE O NATUREASIA.COM
6

SONGBIRDS SAFEGUARD WHEN GENES
ALACARTE TRANSPARENCY GOT ‘SELFISH’
Illegal harvest of millions Don’t let openness backfire Dawkins’s calling
of Mediterranean birds onindividuals card 40 yearson
PAGE 452 PAGE 459 PAGE 462




AlphaGo vs Lee Sedol

" Lee Sedol (9p): winner of 18
world titles

= Match was played in Seoul,
March 2016

= AlphaGo won the match 4-1

10
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The game of Go

®
._
AodB

Sutton & Barto. Reinforcement Learning: An Introduction, 2018.




Sequential decision making

Model
learning
. , Planning
Interaction with

Environment Simulation

Experience Value
Value-based RL function

Policy optimization

Adapted from Katerina Fragkiadaki (CMU)

13
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Today

Model
learning
Lookahead + rollout
Interaction with

Environment
s D

Experience

Offline training
Policy optimization

Self-play training

Adapted from Katerina Fragkiadaki (CMU) Wu



Setting

An MDP with known s’~P(s, a) — model-based method possible
Terminal States (Finite Horizon Problem).

Discrete State, Action spaces with fully observed (perfect
information) states

Challenges:
High branching factor
Inability to evaluate a state

Long term time dependencies
Long horizon

Adapted from Kendall Lowrey (UW)
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Exhaustive search
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Exhaustive seareh policy evaluation / improvement

Fixed policy ™

i

Wu



Online vs offline planning

: solve the full problem with DP
A full policy evaluation (and improvement) is intractable

: only need local policy evaluation at current state s

~

1-step lookahead: Policy evaluation I/, with MC rollouts
Policy improvement with greedy action selection, TV =: T, V

g

Defhult Defhult

Po{icy Po{icy
y %100 y x100

A A



Online vs offline planning

2-step lookahead: Policy evaluation V; with MC rollouts
Policy improvement with greedy action selection

T2V =Ty, T,V

- S~

~

Default Default Default Default

Po{icy Policy Po{icy Po{icy
v x100 y x100 y x100 y x100
FaY A A A



Lookahead

k-step lookahead: Policy evaluation I/, with MC rollouts
If k is very large, we solve the problem to optimality

||V = V¥ <e then| Tk 1V —v*

So, we are taking greedy wrt a better V

g

< k-1
oo_y €



Lookahead

Intuition: If V is decent, then a few steps of policy iteration can give
big improvements

Base policy T — local value function V™ — greedy improvement 7’

This is essentially one step of policy iteration!

Base policy can be from offline training

Issues: large branching factor, deep tree
Exact if small k

Approximately if large k
Approx. solution to exact problem, e.g., value function approximation. Too general.
Exact solution to easier version: Focused learning



General structure

k-step lookahead: Policy evaluation I/, with MC rollouts
Policy improvement with greedy action selection

If horizon long (or infinite), can truncate MC rollout with offline
trained

Application matters (online planning) %

Inventory: overnight
Chess: 5 seconds

Car: 0.1 seconds }ﬂ y ]ﬂ

Default Default

Po{icy Po{icy
y x100 v x100

A A
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Reducing depth with value network

Wu



TD-Gammon

Game Backgammon
V: Offline training using TD (1)

World-class player
Use greedy + rollouts
2-step lookahead

Similarly for Tetris



Reducing breadth with policy network — How?

]
[+ R



Intuition

So far: Knowing s’~P (s, a) can let us
build a tree structure for mapping how

states branch into next states through
actions.

If the branching factor is too high, we
can never fully build out the tree.

If we do not build out the whole tree,
we cannot follow the branches that
lead us to high reward (aka winning).

How do we know which branches to
take?

Adapted from Kendall Lowrey (UW)



Outline

1. Online planning

2. Monte Carlo Tree Search (MCTS)

a.
b.
C.

Selection, Expansion, Simulation, Backpropagation
Upper Confidence Bound (UCB)
Upper Confidence Tree (UCT)

3. AlphaGo: Learning-guided MCTS

27
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Vlionte-Carlo Tree Search

Selection —> Expansion —> Simulation —> Backpropagation \

Tree Default

Policy Policy
\

A - A

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and Al in Games, 2012. Wu



Selection step: Tree traversal

In contrast to lookahead
(exhaustive action selection), we
will now be deliberate about
selecting actions and thus
traversing (and expanding) the
tree.

We will discuss how.

Adapted from Kendall Lowrey (UW)



Simulation step: rollout

Similarly to lookahead
approach, we will use
MC rollouts to estimate
the local policy
evaluation

Default
Policy

y
A

WIN

Adapted from Kendall Lowrey (UW) Wu




Monte-Carlo Tree Search Algorithm

Tree Default

Policy Policy
\

31

Selection —> Expansion —> Simulation —> Backpropagation \

\_ A
MCTSEARCH(S):
create new tree T with state S as root

LOOP:
L ¢ TRAVERSE T until leaf node
V & SIMULATE MDP from L
BACKUP value V through T
return BESTCHILD(S)

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and Al in Games, 2012.



Monte-Carlo Tree Search Algorithm

y A Selection —> Expansion ——> Simulation —> Backpropagation \

Tree Defaul t

Policy Policy
Y
\ a _/

No heuristics needed: we can default to random search
No minimum computation: we can query for action at anytime

No symmetries: the tree growth has no rules, and depends on how
you traverse

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and Al in Games, 2012. Wu



How do we traverse our tree?

= Each node of the tree is like a multi-armed bandits (MAB) problem....

Wu
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Upper-Confidence Bound (UCB)

Principle:

Sample actions according to the following score:

value estimate

tunable parameter

In( N,

parent node visits

TV

number of visits

score is decreasing in the number of visits (explore)
score is increasing in a node’s value (exploit)
always tries every option once

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi, Fischer, 2002



Upper confidence tree (UCT)

UCT = MCTS + UCB

Treat each internal node in
MCTS as a K-armed bandit

Use UCB to select action

Levente Kocsis, Csaba Szepesvari, and Jan Willemson. Improved Monte-Carlo Search., 2006



Monte-Carlo Tree Search

Y Selection —> Expansion ——> Simulation —> Backpropagation \

Tree Defaul t

Policy Policy
Y
\ A )
Selection (traverse) Simulation (rollout)
Used for nodes we have seen before Used beyond the search frontier
Pick according to UCB (i.e., UCT) Don’t bother with UCB, just play randomly
Expansion Backpropagation (backup)

After reaching a terminal node

Update value and visits for states expanded
in selection and expansion

Used when we reach the frontier
Add one node per playout

Kocsis and Szepesvari, “Bandit based Monte-Carlo Planning,” 2006.
Browne, et al. “A survey of Monte Carlo Tree Search Methods.” IEEE Transactions on Computational Intelligence and Al in Games, 2012. Wu



UCT MCTS Algorithm

MCTSEARCH(S): BESTCHILD(S):
create new tree T with state S as root return argmax UCT(S;,S)
LOOP: BACKUP(S,V):

L < TRAVERSE T until leaf node w/ UCT N(S) +=1
V & SIMULATE MDP from L Q(S) +=V
BACKUP value V through T BACKUP(parent(S),V)

return BESTCHILD(S)

If we run this for some set time / computational limit, the hope is
that the most explored branches are the same as the highest reward
branches.

Adapted from Kendall Lowrey (UW) Wu



Can we do better?

Can we inject prior knowledge into value functions to be estimated
and actions to be tried, instead of initializing uniformly?



Outline

1. Online planning
2. Monte Carlo Tree Search (MCTS)

3. AlphaGo: Learning-guided MCTS

AlphaGo

AlphaGoZero

AlphaZero, MuZero
Learning-guided optimization

Q0 T o

41



AlphaGo: Learning-guided MCTS

= Value neural net to evaluate board positions
= Policy neural net to select moves
* Combine those networks with MCTS

L ‘ Move probabilities V

Position

Policy network

Evaluation

P Position

42



Training the policy network

P B

13-layer CNN

Human expert positions
30M Game States

p, (@ls)

3 weeks of training, 50 processors
~57% accuracy



Improving the policy network with policy gradient

SL policy network

P, P,

B% Policy gradient B&

Human expert positions

RL policy network

— Simulation —> Backpropagation
Self-play:
current p, vs
current p,

Fast rollout DefEauIt Backup, then
policy p,,  Policy update p, with
(trained using SL) Y policy gradient
A
+1 (win/loss)

Self-play positions

RL policy wins 80% games against SL policy

1 day of training, 50 GPUs




Professional Amateur

dan (d)

GnuGo
Fuego
Pachi

Zen

Crazy Stone

Fan Hui

© o © o o o o o
3 8 3 38 3 &8 3
(e} (2] N [aY] ~— ~—

© Buirey o3

Performance

Wu



Performance

a b MC SlIJper\{lsed
3,500 = 3500 Self-play earning
a S network
3,000 g g 3,000
28
B
2,500 2,500
£ 2,000 o X 2,000
S -
1,500+ 1,500
1 ,000' 1,000-
500 500
0- ~ 0
Ry Q o o W
8 g 3 § é 3 Rollouts ° °
5 = o 9 Value network
% Policy network ° °



Improving selection with value function estimation

= Asp, improves, can use win/loss to inform selection & expansion

= Train via regression on outcome z of playing with p,,.

od —> Selection — Expansion ——> Simulation —

V Evaluation

Tree Default
Policy Policy
» Position

Y
+1 (win/loss) A

Value network 13-layer CNN 1 weeks of training, 50 GPUs

50M mini-batches (of size 32) from 30M game positions from unique self-play games



AlphaGo Lee: Overall MCTS pipeline

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network

Self Play Self Play

augments UCT during Selection (traverse) step
a, = argmax,| + u(s;, a)]

u(s,a) «
(s,a) 1+ N(s,a)
is combined with fast rollouts (z, using p,;) for
Simulation step

V(s) = (1—2) + 1z,



Performance

Elo Rating
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Performance
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Elo Rating

Performance
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3,500 = 3,500 3,500
a 8
E g 3,000 3,000
g3
[
2,500 2,500
§3 2,000 2,000
s @
S 1,500 1,500
1,000 1,000
500 500 -
0- 0-
8:-::2-:2; én é) g" g § i:D Rollouts @ @ [ ® Threads 1 2 4 8 16 32 40 }— 49— 12 24 40 64
O T
§-“§) § I ‘3’ = % % Value network @ e o o GPUs b———8— 1 2 4 8 64112176280
§. § Policynetwork ® e @ ) L Il ]
@ Single machine Distributed



= Fan Hui, the reigning
three-time European
Champion
» 2015: 5-0 AlphaGo win

1 = Lee Sedol, the winner of

AlphaGaiis the first computefpfogram

Y{, 18 world titles. Widely
"t considered the greatest
au
to defeat’a professional human Go
player, the first to defeat a Go world

player of the past decade.
champion, and is arguably the strongest ‘ :

* 2016: 4-1 AlphaGo win
Go player in history. ) .-

= AlphaGo: The Movie

(© 130 MINS



https://www.youtube.com/watch?v=WXuK6gekU1Y
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AlphaGo Zero (2017) . o N o

a.Self-Play T e [ s [§] s 000 s $33

a; ~ M Qg ~ T ay ~ Ty

Simpler method!

|
A 4
=
3
(V)
3
w

No more supervised learning step:
straight to RL Policy network
starting from random play.

Policy Network and Value network
are combined: more efficient
training.
A single 44-layer DNN (ConvNet) ,
2 heads: Value, Action probabilities i
(19x19 + 1) :
(c: . ) . |
No ‘Simulation’ step: direct board !
evaluation with value function.

’------

4.9-29M self-play games
3-40 days of training
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AlphaGoZero: Lookahead search during training!

Given any policy, a MCTS guided by  a serpey . . .
this policy will produce an — ] — e et
improved policy (policy

improvement operator) l

Train so that the policy network
mimics this improved policy
Maximum likelihood

Train so that the position
evaluation network output
matches the outcome (same as in
AlphaGo)




AlphaGoZero: no MC rollouts till termination

MCTS uses always value net evaluations of leaf nodes, no rollouts!

a Select b Expand and evaluate € Backup d Pplay
8 Repeat )
4o+ J404+ 45 454
f & # ¥
T \ / g\
115t 55,13 ’ 5 ah
T T | T + ' o
Q+U fhax o/ O X l
B ()
o g Re SRS I
;PP \P

65
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AlphaGO ZerO (2017) No supervised learning!

5,000 -
4,000 -
3,000 -
2,000 -
1,000 A
04 — AlphaGo Zero 40 blocks

-1,000 4 --- AlphaGo Master
2,000 --- AlphaGo Lee

Elo rating
Elo rating

0 5 10 15 20 25 30 35 40
Days

Wu



Architectures

a. 4o

2500

5000

2000 -

Elu Raling
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3 g
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iction accuracy on professional moves (%) T
2 o
2 5

EOIO

dud-res sep-res  dual-conv -rww

SR

gar

enror on

wmmwww

Resnets help

- Jointly training the
policy and value
function using the
same main feature
extractor helps

Lookahead
tremendously
improves the basic

policy
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RL vs SL

Elo rating

5,000 4
4,000 4
3,000 1
2,000 4
1,000 A
0
-1,000
-2,000 4

-3,000 1

-4,000

== Reinforcement learning
== Supervised learning
=== AlphaGo Lee

30 40 50 60 70
Training time (h)

Prediction accuracy
on professional moves (%)

== Reinforcement learning
== Supervised learning

20

30 40 50 60
Training time (h)

70

MSE of professional
game outcomes

69

0.35 -

0.30 4

0.25 4

0.20 4
| - Reinforcement learning
- Supervised learning

0-15" T T T T T T T
0 10 20 30 40 50 60 70

Training time (h)
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AlphaZero (Science, 2018)

Removes some
Go-specific
features and
heuristics

RESEARCH

COMPUTER SCIENCE

A general reinforcement learning
algorithm that masters chess, shogi,
and Go through self-play

David Silver”?*+, Thomas Hubert'*, Julian Schrittwieser'*, Ioannis Antonoglou’,
Matthew Lai’, Arthur Guez!, Marc Lanctot!, Laurent Sifre', Dharshan Kumaran?,
Thore Graepel’, Timothy Lillicrap’, Karen Simonyan’, Demis Hassabis't

The game of chess is the longest-studied domain in the history of artificial intelligence.

The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined

by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-play.
In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve
superhuman performance in many challenging games. Starting from random play and given
no domain knowledge except the game rules, AlphaZero convincingly defeated a world
champion program in the games of chess and shogi (Japanese chess), as well as Go.

Wu
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MuZero (2020)

Tree search on a learned model a .

Learned model g = compressed |
environment = faster rollouts

Learned model predicts next state
& reward

Y

MCTS on learned model

J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604—609, 2020. Wu
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MuZero

State embedding h enables tree 2
search beyond board games ,l
(e.g., Atari)

Prediction function f predicts
policy and value function

I
I
I
I
I
I
I
I
!
I

\/

Y

Details:
g,h,f are jointly trained

MCTS on learned model

J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604—609, 2020. Wu



A note on computation cost
1 TPU = 5-30 GPUs

AlphaGo computation for real-time game play
50 TPUs on Google Cloud
Searches ~50 moves deep
~100,000 positions per second

MuZero training cost: =220 GPU-years
(3.8 GPU-years per Atari game) x (57 games)

“For each board game, we used 16 TPUs for training and 1,000 TPUs for self-
play. For each game in Atari, in the 20 billion frame setting we used 8 TPUs
for training and 32 TPUs for self-play.”
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Learning-guided MCTS

Model
learning
Lookahead + rollout
Interaction with

Environment
s D

Experience

Offline training
Policy optimization

Self-play training

Adapted from Katerina Fragkiadaki (CMU) Wu
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Upcoming lecture: learning-guided optimization

Intuition: leverage known structure for aspects of problems that are well-modeled,
and leverage learning to guide aspects that are not.

Examples:

i i [1] . . . .
Vehicle routing problems (VRP) Signalized intersections °!

o\ no need to back the deport ‘-RP | static environment E |

\ i B Keeping Utah Movi
\3(\\\\“?:* >\_/< dyl . 164 Scena rIOS ol .". eeping Utah Moving
ah P Vi N @ "amye d ; | P
R /o) en,. T
n\\\u / ; \ o(,/,._ h‘ll) d
NV B
{\C)' / E
&/ 5 CVRP DVRP

:}0 ///
e -
DCVRP

= |t i 'S
o |time windows
d
|
g

energy time
minimize windows
EMRP ‘ ERPTW it
s

Figure courtesy Li, et al. arXiv 2107.07076, 2021.

Salt Lake City, Utah

60 years of study! %!

[1] Li, et al. An overview and experimental study of learning-based optimization algorithms for the vehicle routing problem. IEEE/CAA Journal of Automatica Sinica, 2022.
[2] Laporte. Fifty Years of Vehicle Routing. Transportation Science, 2009.

[3] Qu*, Valiveru*, Tang, Jayawardana, Freydt, Wu. What is a Typical Signalized Intersection in a City? A Pipeline for Intersection Data Imputation from OpenStreetMap. TRB, 2023.
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Example: AlphaGo Zero = Learning-guided MCTS

5,0001

Learning-guided MCTS Monte Carlo Tree Search (MCTS)
e e e =
. : $2 s3 sr 1
Learning only MCTS only | a. Self-Play ﬁ_;g_;g_, o 583 |
: ap ~ T az ~ T2 ag ~ T I
1
) |l
I -y T 72 73 i
: I
L

Superhuman

4,000

I i I

o 0 : T z I
__g 3,000+ | I ’ b. Neural Network Training ” :
9 i i 1 |
2 2,000 | | .. LT
1 | I I

i ! I

1,000 i : .

0- I

: I

&$ . . 1 :

o Learning-guided ! I

& & ) - 1
TR (trained w/ regression) ! B s I

L I :

D. Silver et al., Mastering the game of go without human knowledge, Nature, 2017.



Learning-guided optimization

= Tailor the optimization method to YOUR problem.

* Example: Learning-guided MCTS (AlphaGo)

= Intuition: leverage known solvers for aspects of
problems that are well-modeled, and leverage
learning to guide aspects that are not.

5™ =g
s L 'I-l% r
Er

' You've got mai

y i

i

Vehicle routing problems

Warehouse automation

In review
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