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Policy Gradient as Policy Update

Approximate Policy Iteration Policy Gradient
Mhjrs — ATE X Q™ (5,1(s)) Or+1 = Ok + @, VoV (6)
Unstable (fast) (slow)

How do we compute Vo,V (0)?
How quickly do we update (i.e. ay)?

A variety of approaches help to reduce variance:
temporal structure, baselines, actor-critic methods.



Policy-based vs value-based methods

max
. | _
—— Policy =P wp.1-€ Action-value  update

update: (- |s) function

Increase
probability Q (S
of selecting random
actions w/ Action W.p. €

higher Bootstrap target

returns, eg.r+y max Q(s',ah

ie. X n I
Value-based methods

Policy-based methods state,
= Sensible & simple © reward

= Local convergence [

guarantees only

= Also “works” for
partial observation,
nonstationary
settings

= Doesn’t work that
well (on its own) ®

State'd = Conceptually more
rewar complicated
= Global convergence
guarantees for
tabular discounted

Environment

infinite horizon
MDPs ©

= Doesn’t work that
well outside of its.
comfort zone (on its

own) ® W



Actor-critic methods

. update .
— Policy <« Action-value  update
update: (- |s) function
Increase
probability Q (S,')
of selecting sample
actions w/ Action L
higher Bootstrap target
returns, eg.r+y max Q(s',ah
ie. X n I
state, state,
reward reward

|

Environment



Policy Gradient as Policy Update

Approximate Policy Iteration Policy Gradient
Mhjrs — ATE X Q™ (5,1(s)) Or+1 = Ok + @, VoV (6)
Unstable (fast) (slow)

How do we compute V4,V (6)?
How quickly do we update (i.e. a;)?



Exploration-exploitation trade-off

Conservative

L BT B
] 1 e 4 —

step-size about right ® moderate exploration = fast convergence

Moderate

T BT B BT BT

=1
large step-size = exploration vanishes = premature convergence

Greedy Update

N

Source: Policy Search: Methods and Applications, Peters and Neumann



Policy gradient

. . . . ".\ r
Difficult to pick the right a; K\‘d So, let’s avoid having this
without more information . hyperparameter
(or at least find an “easier”
hyperparameter)

Local approximation to
performance of the

policy

True objective
(the performance of
the policy)

V(6)

- A slew of algorithms

Adapted from Matteo Pirotta



Desired Properties for the Policy Update

= |nvariance to parameter or reward transformations

= Regularized policy update

* Update is computed based on data

— stay close to data!
* Smooth learning progress

= Controllable exploration-exploitation trade-off

[Jold policy
[ new policy

o samples

Conservative Update
Small “step size”

=N

Moderate Update,
Moderate “step size”

Greedy update
Large “step size”

Wu
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Relative Performance

Issues:
We would like to exploit past samples (collected by m)
We do not know how much to trust them (since 7" # m)
Depends on distribution over trajectories induced by different policies.

Performance Difference Lemma

For any policies T, 7" €

V() — V() = Z A™(s, @)

Proof: See Recitation.



Optimization Step
Let 7= be current policy, T’ be a candidate next policy.

max V(n') = maxV(n') — V(n)
" = rr71tax E |A™ (s, a)]

. (sa)~

~&: Can maintain an estimate of A™ (s, a).

Issue: Still cannot be directly estimated using data collected
from m.

Kakade and Langford. Approximately Optimal Approximate Reinforcement Learning, ICML 2002. Wu



Optimization Step

V() = V(i) = Eg.yn [z ' (s, ) A™ (s, a)

a

+ z (d” (s) — d"(s)} Z m'(s,a)A"™ (s, a)

s \ y a

= Eg gm [Z (s,a)A™(s,a) — Dy (r'||m)[s]

where ¢ = max|E, _./[A™(s,a)]| and
S

Dry (' |Im)s] = ) |'(s, @) = (s, )|

*Kakade and Langford. Approximately Optimal Approximate Reinforcement Learning, ICML 2002. Wu
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Surrogate Loss

2Y€ ,
1— yDTV(ﬂ 17 [s]

L.(1) = V() + Z 47 (s) z (s, )A™(s,a) — 2 dm(s)

S

* Lp(m) =V (m)

= If parametric policies T = g, Vg Ly, () = VoV (11g) also with this

I'In an interval close to i, L, is a good surrogate for VV
—> Conservative Policy Iteration [Kakade and Langford, 2002]

Kakade and Langford. Approximately Optimal Approximate Reinforcement Learning, ICML 2002. Wu
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Surrogate Loss (Continued) * Key idea: if @ and & close,

can guarantee how close
V() and V(0’) are

= Formally: performance-
difference lemma
(Burnetas and Katehakis,
1997)

L(6)
True Objective

(the performance V(6)
of the policy)

Local approximation
to performance of
the policy

L(H) - C ° DTV
Pessimistic approximation

to true objective (a lower

L (Total variation (TV) distance)
bound we can maximize)



Conservative Policy Iteration

New policy improvement schema
Given current policy T, solve:

V(') = V() = max{Le, (1) = € By gme[Dry ('m0 [s11} = 0

— Monotonic performance improvement

Several approaches have been proposed, e.g.

Kakade and Langford, 2002 Pirotta et al., 2013b,
Perkins and Precup, 2002 Scherrer et al., 2015
Gabillon et al., 2011 Schulman et al., 2015

Wagner, 2011, 2013



ldea

0* 0*

Oi | M; Bi+1 6;

V(0) = E[X{Lo1:|mg] and M is the lower bound.

Source: Jonathan Hui: RL-The Math behind TRPO & PPO
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https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33

|dea: Conservative policy iteration

Problem 1: too conservative Problem 2: total variance (TV)
distance is hard to optimize

- Kullback—Leibler (KL) divergence
a.k.a. relative entropy

Kakade and Langford, 2002 Source: Jonathan Hui: RL-The Math behind TRPO & PPO Adapted from Matteo Pirotta



https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33
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Kullback-Leibler divergence (relative entropy)
Optimizing the total variation D, (t'||m) may be difficult

Relax the problem using Pinsker’s inequality [Csiszar and Korner,

2011]

Dy (t'||m) < /2Dy, (' ||)
Given two probability distributions P and Q)

P(z)

Dk1(P|Q) = ZP )log 53

Properties:
= Dgr(PlQ) =0
®» Dr(QQ) =0
» Dgr(P|Q) # Dir(Q|P) (non-symmetric)
= No triangle inequality
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Toward Practical Algorithm
C provided by theory is quite high (too conservative)

Replace regularization with constraint (trust region) (e.g. REPS
[Peters et al., 2010])
M1 = argmax Lo (')

T
s.t. Egogn[Dg, ('||m)] < 6

Also: not a gradient method
anymore?
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Further Steps Towards Practical Algorithms

Importance weighting
T — T[’( T
Es~qrliyr/ [A" (s, a)] = Es qnEq.r (s, a) A (s,a)

= Natural Policy Gradient (NPG) [Kakade, 2002]

= Trust-Region Policy Optimization (TRPO) [Schulman et al.,
2015]
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Parameter space vs distribution space
of a function h(6) —» —Vh(6)

It yields the in h per unit of change in @ (
)

Change is measured using the standard I’

—Vh 1
—— = lim—arg min {h(6 +d
IVR|| €30 € 54 ||dl||SE{ ( )}
Is the Euclidean norm the best metric?
Recall: 6 induces stochastic policy

- we are interested in optimizing in



Example

Consider a Gaussian parameterized by only its mean and keep the variance fixed to 2
and 0.5 for the first and second image respectively

0200 { T~ . 08 { P :
d ' / '
P B : -
017 4 / H N : 07 4 :
/ ' \ '
H \
0150 ! 06
' \
] |
. 1
0125 4 H 0s J
: \
/ ' .
0100 { / i i 044 [ |
,‘/ '
/ ' \ '
007 4 / H \‘\ H 034
i H  ? : '
' N\ ' f \
0050 s L, O 024 / i n
' \n | ' \
H :
0025 4 : N 011
' B Y
0000 4 ' ' e — Z ' . ;
oo 4d — A S — o A -
. : : i ‘ . 3 " ; :

The distance of those Gaussians are the same, i.e. 4, according to Euclidean metric
(red line)

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
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Natural gradient

Can we use an alternative definition of (local) distance?

As suggested by [Amari, 1998] it is better to define a metric based
not on the choice of the coordinates but rather on the manifold
these coordinates parametrize! Distribution space!

Choose: KL divergence as the “metric”



Natural gradient

A generalizes Euclidean space to curved spaces. In
Riemannian space, the distance is defined as
d?(v,v + 8v) = SvI G (v)év

150° 30°

where (7 is the metric tensor

180° 0°

Example: consider the Euclidean space (R?)

210° 330°

Cartesian coordinate, the metric tensor is the identity 2400 300°

270°

Pelar Eoerdinate r=rcos) = dx = drcosf —rofsinb

y=rsinf = Jdy = drsinf + rdéf cos
d*(v,v + 6v) = dz° + oy*

e = 6r? 4+ 1256
(8x 3y) (O 1)( ) (r 89)( )( = (0r,60) "diag(1,r%) (67, 56)




Natural Gradient

In Riemannian space, the distance is defined as
d?(v,v + 6v) = svIG(v)SvT
where G is the

Natural Gradient [Amari, 1998]

The steepest descent irLa Riemannian space is given by
Vh(0) = G(8)~1Vh(0)

What is the metric tensor? Known for many objectives!
Example: KL divergence (metric) = Fisher information (metric tensor)
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KL Divergences and the Fisher Information Matrix

The Kullback Leibler divergence can be approximated by the Fisher
information matrix (2" order Taylor approximation)
Dy (p(x10)|lp(x|6 + A8)) = AOTF(6)A0 + 0(A6°)
where F(0) is the Fisher Information Matrix (FIM)
F(@)= E [Vlegp(x|0)Vlogp(x|6)']
x~p(:|0)
Captures information on how a parameter influences the
distribution



Natural Policy Gradient

n'(s,a)
0G|

\ J

= L, (1)
s.L. {Es~d”[DKL(7T,”7T)] <0

J

Mgy = al'g H}TE}X Eg grlq n [

Y
i= Dy ('||7r)
How to solve it? Do it approximately:
Lg, (0) = 1:19,((91{) +g"(6 — 6)
Di1.(6]|6) ~ > (60— 6,)"F(6)(6 — 6)
where g = Vg Ly, (6) and F(0) := V%EKL(HHH,{) is the FIM.



Natural Policy Gradient

The approximate problem is thus:
Ok+1 = argmax g' (6 — 6;)

1

whose solution is given by:

Ors1 = Oy + 20 F1
k+1 = Uk gTF-1g g
\ Y ’ Natural
Step size gradient

Algorithms [Kakade, 2002; Peters and Schaal, 2008a]




Natural policy gradient

max Vp(0')
_ﬁ_____________.\ Also: not a gradient method
5.t -EMW (D (6]]6)) <61 anymore?
\————————————---l -—e

Still hard to optimize

Can approximate KL with Fisher information matrix

FO)= E [V log p(z|0) V logp(ac|0)T]
z~p(-|6)
Captures how much a parameter

influences the distribution How much policy changes

20
Opy1 =0k +4| = F
. g QTF_lg \v-g/ vs vanilla policy gradient:
At ciont lgnores how much parameters  How much parameters change
N influence the distribution

Kakade, 2002; Peters and Schaal, 2008 Adapted from Matteo Pirotta Wu



Natural Policy Gradient

Initialize policy parameter 6,
fork=1,2,...do
Collect trajectories D, using policy m;, = m(6)
Estimate advantage function using any algorithm
Compute
Policy gradient g, (using advantage estimate)
KL-divergence Hessian / Fisher information matrix F),

Compute new policy using natural gradient

0 9, + 20 F-lg
k+1 = Uk ~TAa1~ 'k Yk
* GrE gy

end




. . (a) LQR policy gradient (b) LQR natural gradien
Linear Quadratic %7/~ 1 i (TR R E TR
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Parameter 81

[Peters et al. 2003, 2005]

The standard gradient reduces the exploration too quickly!

Source: Policy Search: Methods and Applications, Peters and Neumann
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Natural actor-critic (2008)

* NPG + refinements + compatible function approximation + imitation
learning initialization

Real-time online learning for robot control

40


https://www.youtube.com/watch?v=Fhb26WdqVuE
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\/\/hat's the prob|em NOW 7 d could be in the millions

Problem: /

25 A +—  Matrixinversion is O(d?’)
Tp-1 g
g g : . :
i , natural gradient Use iterative solution approach
step size (conjugate gradient method)

Or+1 = O +

Called

Pascanu, Razvan, and Yoshua Bengio. "Revisiting natural gradient for deep networks." ICLR, 2014.

Problem: Might not improve V(6) due to KL approximation (of TV distance)

Problem: Due to approximation, KL-constraint might be violated

Solution: enforce KL constraint using an adaptive step size How much to

. . . o change?

i.e. Try several step sizes and pick one that gives improvement & not too far

¢ Can always select a smaller step size to get improvement How to control how
* Don’t want to update too slowly much of a change?

Called

Schulman, John, et al. "Trust region policy optimization." ICML, 2015.



Trust Region Policy Optimization

How?

with exponential decay (decay coeff. « € (0,1), budget L)

Compute NPG step Ag

forj=20,..,Ldo

Compute update 8 = 0, + a’/A,,

if L5, (6) > 0and Dk, (6]|6)) < & then
Accept update and 0,1 = 0y + a’ A
break

end

endfor

, TRPO is implemented as (T)NPG plus line search.
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Example: Continuous control [Duan et al., 2016]

2000 |

500 |

’]I LI

Walker-2D

100

95 |

85|

80 L

75

-. .', Q—‘o~:

Remark: Choosing KL
constraint § is preferable to |
choosing learning rate «.

—— TNPG MeanKL=0.05
—— TRPO MeanKL=0.1

70 80 80 T00

Swimmer
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One more method:

proximal policy optimization [schulman et al., 2017]

20 14 + iterative approach to computing Flg
gTF_lg N——
——— — natural gradient

step size

Oky1 = O +
+ adaptive step sizes

Still pretty expensive to compute -
Involves computing a Hessian O (n?) Y

Adaptive step sizes worked well. Let’s lean into it.

Regularize on KL term
Use adaptive step sizes to stay within &

46
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proximal policy optimization [schulman et al., 2017]

Problem: Too many approximations going on. Still have high variance issues. What'’s a big change?
Key idea: Extra safety measure. Modify objective to ignore big changes. T’ (S, a) + 7T(S, a)
Surrogate objective  mportance weighting Note: r is ratio, not reward One way: look at
L7 (") = EgwqrEqr [7‘[((; Z)) A" (s, a)] EsqnBEqr[rsq (") A™ (s, a)] ' (s,a)
peup A>0 A<0 (s, a)

=€l T
Data is noisy = /\v F\Data is noisy =2

’ i / E .
Don’t over-index on . Don’t under-index on

advantageous actions disadvantageous when
when the new policy is v. the new policy is v.

different from old polic — r : :
policy ! e Louir different from old policy

Clipped objective: LEHP (') = Egmar Eamr [min {rsa(n') A (s, a), clip(rsa(n’),1 — €,1 + €) A" (s, 0)}]

Tty = Argmax LEMP (1) -



PPO with Clipping

Input: policy 8, clipping €
fork=1,..do

Collect trajectories Dy, using policy m;, = m(6y)
Estimate advantage or Q-function using any algorithm
Compute:

Or41 = argmax Ly," (9)
where:

T
LEHP (") = Epon, [Z min{r;(6)A¢*, clip(r:(6), 1 — €, 1 + €)A;*}
t=1

end




PPO with Adaptive KL Penalty

Input: policy 6, KL penalty ,, KL-divergence &
fork=1,..do

Collect trajectories Dy, using policy m;, = m(6y)
Estimate advantage or g-function using any algorithm
Compute by gradient descent: _
Or+1 = arg mgXLek (6) — BrDky (9||9k)

if Dy, (0+1]|0x) = 1.56 then

Br+1 = 2Pk
end

if Dy (G4 |6kc) < = then

=k
B =5

end

end

Initial 5, not important. Some iteration may violate KL constraint, mostly not!

Wu



HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
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Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.



Solving a Rubik’s cube with robot hand

Policy and value networks: 13 million parameters
Action space: 20 actuated joints (discretized with 11 bins) 2 |A| = 1120

PPO + automatic domain randomization

OpenAl. Solving Rubik's Cube with a Robot Hand. (2019).



Implementation matters. What really makes PPO work?
See careful empirical studies:

*  Engstrom, Logan, et al. "Implementation matters in deep policy gradients: A case study

on PPO and TRPO." arXiv preprint arXiv:2005.12729 (20260)

Andrychowicz, Marcin, et al. "What matters in on-policy reinforcement learning? a large-
scale empirical study." arXiv preprint arXiv:2006.05990 (2020).

1200 — TRPO

— PPO
— PPO-M

-
o
o
o

Mean Reward

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
# Iterations # Iterations # Iterations
Humanoid

PPO vs PPO-M: value function clipping, reward scaling, orthogonal
initialization & layer scaling, Adam learning rate annealing


https://arxiv.org/abs/2005.12729
https://arxiv.org/abs/2006.05990

Summary

Policy gradient methods are an alternative and powerful class of _
reinforcement learning methods, based on directly optimizing the policy,
rather than the value tfunction.

Due to the on-policy nature, data from m(6) only says something about t(6’)
if 8 and B’ are close (performance difference lemma) 2 Need to be careful
about the learning rate.

A series of techniques to alleviate the burden of learning rate selection:
relaxation to KL divergence, trust regions, natural gradients, iterative matrix
inversion, adaptive step sizes, advantage clipping.

Core practical policy gradient methods: REINFORCE, TRPO, PPO, SAC.

Ultimately, computational efficiency is important when handling millions (or
billions) of parameters.
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