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Reinforcement Learning: Theory and Algorithms, 2021.
(Ch 11.1-11.2, Ch 12)

Readings

https://rltheorybook.github.io/
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1. Recap: policy gradient and actor-critic

2. Conservative policy iteration (CPI)
a. Performance difference lemma

3. Natural policy gradient (NPG)

4. Trust region policy optimization (TRPO)

5. Proximal policy optimization (PPO)
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Policy Gradient as Policy Update
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1. How do we compute 𝛁𝜽𝑽 𝜽 ?
2. How quickly do we update (i.e. 𝛼")?

Approximate Policy IteraWon
𝜋#!"# = argmax

$$
𝑄$$ 𝑠, 𝜋# 𝑠

Unstable (fast)

Policy Gradient
𝜃"%& = 𝜃" + 𝛼"∇#𝑉 𝜃"

Smooth, fine control (slow)

A variety of approaches help to reduce variance: 
temporal structure, baselines, actor-cri=c methods.
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Policy-based vs value-based methods
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Value-based methods
§ Conceptually more 

complicated
§ Global convergence 

guarantees for 
tabular discounted 
infinite horizon 
MDPs J

§ Doesn’t work that 
well outside of its 
comfort zone (on its 
own) LEnvironment

Ac=on-value 
func=on
𝑄(𝑠,⋅)

Action

Policy
𝜋(⋅ |𝑠)

sample
max

w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase 

probability 
of selec<ng 
ac<ons w/ 

higher 
returns,

 i.e. ∑!"#$ 𝑟!

Policy-based methods
§ Sensible & simple J
§ Local convergence 

guarantees only
§ Also “works” for 

partial observation, 
nonstationary 
settings

§ Doesn’t work that 
well (on its own) L
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Actor-critic methods
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Environment

Action-value 
function
𝑄(𝑠,⋅)

Ac/on

Policy
𝜋(⋅ |𝑠)

sample

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase 

probability 
of selec<ng 
ac<ons w/ 

higher 
returns,

 i.e. ∑!"#$ 𝑟!

update
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Policy Gradient as Policy Update
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1. How do we compute ∇#𝑉 𝜃 ?
2. How quickly do we update (i.e. 𝜶𝒌)?

Approximate Policy IteraWon
𝜋#!"# = argmax

$$
𝑄$$ 𝑠, 𝜋# 𝑠

Unstable (fast)

Policy Gradient
𝜃"%& = 𝜃" + 𝛼"∇#𝑉 𝜃"

Smooth, fine control (slow)
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Explora=on-exploita=on trade-off
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Source: Policy Search: Methods and Applica=ons, Peters and Neumann
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Policy gradient

Adapted from Matteo Pirotta

<latexit sha1_base64="cA9IUlQWnNQ0RJOluDwJjhzSeRc=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1RzDHgxWME84BkCbOTSTJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVqeG8QbTUpt2RC2XQvEGCpS8nRhO40jyVjS+nfmtJ26s0OoBJwkPYzpUYiAYRSc1uzjiSHulsl/x5yCrJMhJGXLUe6Wvbl+zNOYKmaTWdgI/wTCjBgWTfFrsppYnlI3pkHccVTTmNszm107JuVP6ZKCNK4Vkrv6eyGhs7SSOXGdMcWSXvZn4n9dJcVANM6GSFLlii0WDVBLUZPY66QvDGcqJI5QZ4W4lbEQNZegCKroQguWXV0nzshJcV/z7q3KtmsdRgFM4gwsI4AZqcAd1aACDR3iGV3jztPfivXsfi9Y1L585gT/wPn8AokePIg==</latexit>

✓
Local approxima/on to 
performance of the 
policy

☹

😀

😇

Difficult to pick the right 𝛼.
without more informa/on

à A slew of algorithms

True objective 
(the performance of 
the policy)

V(θ)

αg

So, let’s avoid having this 
hyperparameter

(or at least find an “easier” 
hyperparameter)

🤔
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Desired Proper=es for the Policy Update
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§ Invariance to parameter or reward transformations
§ Regularized policy update
• Update is computed based on data
⟹ stay close to data!
• Smooth learning progress

§ Controllable exploration-exploitation trade-off
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1. Recap: policy gradient and actor-criWc

2. ConservaAve policy iteraAon (CPI)
a. Performance difference lemma

3. Natural policy gradient (NPG)

4. Trust region policy opWmizaWon (TRPO)

5. Proximal policy opWmizaWon (PPO)
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Rela=ve Performance
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Performance Difference Lemma
[Burnetas and Katehakis, 1997, Prop. 1], [Kakade and Langford, 2002, Lem. 6.1], [Cao, 2007] 

For any policies 𝜋, 𝜋" ∈ ΠSR

𝑉 𝜋" − 𝑉 𝜋 =*
#,%

𝑑&! 𝑠, 𝑎 𝐴& 𝑠, 𝑎

	 = *
#

𝑑&! 𝑠 *
%

𝜋" 𝑠, 𝑎 𝐴& 𝑠, 𝑎

Issues: 
§ We would like to exploit past samples (collected by 𝜋)
§ We do not know how much to trust them (since 𝜋( ≠ 𝜋)
§ Depends on distribution over trajectories induced by different policies.

Proof: See RecitaCon.
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Op=miza=on Step
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Let 𝜋 be current policy, 𝜋′ be a candidate next policy.

max
*'

𝑉 𝜋+ = max
*'

𝑉 𝜋+ − 𝑉 𝜋
	 = max

*'
𝔼 ,,- ~/(' 𝐴

* 𝑠, 𝑎

👍: Can maintain an es8mate of 𝐴* 𝑠, 𝑎 .
Issue: S8ll cannot be directly es8mated using data collected 
from 𝜋.

Kakade and Langford. Approximately OpGmal Approximate Reinforcement Learning, ICML 2002.



Wu

Optimization Step
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𝑉 𝜋& − 𝑉 𝜋 = 𝔼'~)/ &
*

𝜋& 𝑠, 𝑎 𝐴+ 𝑠, 𝑎 +&
'

𝑑+0 𝑠 − 𝑑+ 𝑠 &
*

𝜋& 𝑠, 𝑎 𝐴+ 𝑠, 𝑎

≥ 𝔼'~)/ &
*

𝜋& 𝑠, 𝑎 𝐴+ 𝑠, 𝑎 −
2𝛾𝜀
1 − 𝛾 𝐷,-(𝜋

&| 𝜋 [𝑠] 	

where 𝜀 = max
'

𝔼*~+0 𝐴+ 𝑠, 𝑎  and

𝐷,-(𝜋&| 𝜋 𝑠 =&
*

𝜋& 𝑠, 𝑎 − 𝜋 𝑠, 𝑎

see*

*Kakade and Langford. Approximately OpGmal Approximate Reinforcement Learning, ICML 2002.
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Surrogate Loss
18

𝐿% 𝜋& = 𝑉 𝜋 +4
'

𝑑%(𝑠)4
(

𝜋& 𝑠, 𝑎 𝐴% 𝑠, 𝑎

§ 𝐿$ 𝜋 = 𝑉 𝜋
§ If parametric policies 𝜋 = 𝜋# , ∇#𝐿$$ 𝜋# = ∇#𝑉 𝜋#

! In an interval close to 𝜋, 𝐿$  is a good surrogate for 𝑉
 ⟹ Conservative Policy Iteration [Kakade and Langford, 2002]

−4
'

𝑑% 𝑠
2𝛾𝜀
1 − 𝛾 𝐷)*(𝜋

&||𝜋)[𝑠]

also with this

Kakade and Langford. Approximately OpGmal Approximate Reinforcement Learning, ICML 2002.



Wu

Surrogate Loss (Con=nued)
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True Objec=ve
(the performance 
of the policy)

Local approximation 
to performance of 
the policy

Pessimistic approximation 
to true objective (a lower 
bound we can maximize)

𝑉 𝜃

𝐿 𝜃 − 𝐶 ⋅ 𝐷)*

𝐿 𝜃

𝜃

(Total variaGon (TV) distance)

§ Key idea: if θ and θ’ close, 
can guarantee how close 
V(θ) and V(θ’) are

§ Formally: performance-
difference lemma 
(Burnetas and Katehakis, 
1997)
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Conservative Policy Iteration
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§ New policy improvement schema
• Given current policy 𝜋+  solve:

𝑽 𝝅& − 𝑽(𝝅𝒌) ≥ max
%!

𝐿%" 𝜋
& − 𝐶	𝔼'~.#"[𝐷)* 𝜋& 𝜋+ 𝑠 ≥ 𝟎

⟹ Monotonic performance improvement

Several approaches have been proposed, e.g. 
• Kakade and Langford, 2002
• Perkins and Precup, 2002
• Gabillon et al., 2011
• Wagner, 2011, 2013

• Pirotta et al., 2013b,
• Scherrer et al., 2015
• Schulman et al., 2015
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Idea
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𝑉 𝜃 = 𝔼 ∑)*+, 𝑟)|𝜋#  and 𝑀 is the lower bound.

Source: Jonathan Hui: RL-The Math behind TRPO & PPO

𝑉 𝜃
𝑀/𝜃/

𝜃∗

𝑀/12

𝜃/12

𝜃∗

𝜃/

𝜃∗

𝜃/12

→→

https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33
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Idea: Conserva=ve policy itera=on

Adapted from MaSeo PiroSaKakade and Langford, 2002 

Problem 1: too conservative Problem 2: total variance (TV) 
distance is hard to opEmize

àKullback–Leibler (KL) divergence
a.k.a. relaEve entropy

Source: Jonathan Hui: RL-The Math behind TRPO & PPO

https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33
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Kullback-Leibler divergence (rela=ve entropy)
23

§ OpWmizing the total variaWon 𝐷-.(𝜋(| 𝜋  may be difficult
§ Relax the problem using Pinsker’s inequality [Csiszar and Körner, 

2011]
𝐷-.(𝜋(| 𝜋 ≤ 2𝐷/0 𝜋( |𝜋
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Toward Practical Algorithm
24

§ 𝐶 provided by theory is quite high (too conservaWve)
§ Replace regularizaWon with constraint (trust region) (e.g. REPS 

[Peters et al., 2010])
𝜋"%& = argmax

$3
𝐿$ 𝜋(

	 s.t.	 𝔼1~34[𝐷/0 𝜋( 𝜋 ≤ 𝛿

😕

New hyperparameterAlso: not a gradient method 
anymore?

😕
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Further Steps Towards Practical Algorithms
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§ Importance weighWng

𝔼1~34𝔼4~$3 𝐴$ 𝑠, 𝑎 = 𝔼1~34𝔼4~$
𝜋( 𝑠, 𝑎
𝜋 𝑠, 𝑎 𝐴$(𝑠, 𝑎)

⟹ Natural Policy Gradient (NPG) [Kakade, 2002]
⟹ Trust-Region Policy OpWmizaWon (TRPO) [Schulman et al., 
2015]
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1. Recap: policy gradient and actor-criWc

2. ConservaWve policy iteraWon (CPI)
a. Performance difference lemma

3. Natural policy gradient (NPG)

4. Trust region policy opWmizaWon (TRPO)

5. Proximal policy opWmizaWon (PPO)
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Parameter space vs distribution space
28

Steepest descent direction of a function ℎ 𝜃 → −∇ℎ 𝜃
§ It yields the most reduction in ℎ per unit of change in 𝜃 (parameter 

space)
§ Change is measured using the standard Euclidean norm ⋅

−∇ℎ
∇ℎ

= lim
5→+

1
𝜖
arg min

3: 3 85
ℎ 𝜃 + 𝑑

Is the Euclidean norm the best metric?
§ Recall: 𝜃	induces stochastic policy
§ à we are interested in optimizing in distribution space.



Wu

29

Example
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Natural gradient
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§ Can we use an alternative definition of (local) distance?
§ As suggested by [Amari, 1998] it is better to define a metric based 

not on the choice of the coordinates but rather on the manifold 
these coordinates parametrize! Distribution space!

§ Choose: KL divergence as the “metric”
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Natural gradient
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§ A Riemannian space generalizes Euclidean space to curved spaces. In 
Riemannian space, the distance is defined as

𝑑9 𝑣, 𝑣 + 𝛿𝑣 = 𝛿𝑣-𝐺 𝑣 𝛿𝑣
where 𝐺 is the metric tensor

G
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Natural Gradient
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Natural Gradient [Amari, 1998]

The steepest descent in a Riemannian space is given by
U∇ℎ 𝜃 = 𝐺 𝜃 :&∇ℎ 𝜃

§ In Riemannian space, the distance is defined as
𝑑9 𝑣, 𝑣 + 𝛿𝑣 = 𝛿𝑣-𝐺 𝑣 𝛿𝑣-

where 𝐺 is the metric tensor

§ What is the metric tensor? Known for many objecMves!
§ Example: KL divergence (metric) à Fisher informaMon (metric tensor)
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KL Divergences and the Fisher Informa=on Matrix
33

§ The Kullback Leibler divergence can be approximated by the Fisher 
informaWon matrix (2nd order Taylor approximaWon)

𝐷/0 𝑝 𝑥 𝜃 ‖𝑝 𝑥 𝜃 + Δ𝜃 = Δ𝜃-𝐹 𝜃 Δ𝜃 + 𝑂 Δ𝜃;
where 𝐹 𝜃  is the Fisher InformaWon Matrix (FIM)

𝐹 𝜃 = 𝔼
<~= ⋅ 𝜃

∇ log 𝑝 𝑥 𝜃 ∇ log 𝑝 𝑥 𝜃 -

§ Captures informaWon on how a parameter influences the 
distribuWon
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Natural Policy Gradient
35

𝜋"%& = argmax
$3

𝔼1~34𝔼4~$
𝜋( 𝑠, 𝑎
𝜋 𝑠, 𝑎

𝑄$(𝑠, 𝑎)

s.t.	 𝔼1~34 𝐷/0 𝜋(‖𝜋 ≤ 𝛿	

How to solve it?  Do it approximately:
ℒ#! 𝜃 ≈ ℒ#! 𝜃" + 𝑔- 𝜃 − 𝜃"

�̀�/0 𝜃a𝜃" ≈
1
2
𝜃 − 𝜃" -𝐹 𝜃 𝜃 − 𝜃"

where 𝑔 = ∇#ℒ#! 𝜃  and 𝐹 𝜃 ≔ ∇#9 �̀�/0 𝜃a𝜃"  is the FIM.

≔ ℒ%" 𝜋
&

≔ O𝐷56 𝜋&‖𝜋
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Natural Policy Gradient
36

The approximate problem is thus:
𝜃"%& = argmax

#
𝑔- 𝜃 − 𝜃"

	 s.t.	
1
2
𝜃 − 𝜃" -𝐹 𝜃 − 𝜃" ≤ 𝛿

whose solution is given by:

𝜃"%& = 𝜃" +
2𝛿

𝑔-𝐹:&𝑔	 𝐹:&𝑔

Algorithms [Kakade, 2002; Peters and Schaal, 2008a]

Step size
Natural 
gradient
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Natural policy gradient
<latexit sha1_base64="IAAe9ZYlOI4N4wTz/1l8L1pPLkE=">AAACn3icbVFba9RAFJ7EW11vW33Uh6OLWqGERCz2sXhBoUVWcLeVTAyTyWR36OTSmRPpMs3f8of45r9x9gZ16wcDH98535lzyRolDYbhH8+/dv3GzVtbt3t37t67/6C//XBs6lZzMeK1qvVJxoxQshIjlKjESaMFKzMljrPT9/P48U+hjayrbzhrRFKySSULyRk6Ke3/egH0rGU50JKdp5biVCB72cE4XdKdlfIKKIUeRXGO1gQYdHDJiNMssx+71BpqZAn5D9rIjipRYAwfUnt41K3LwMUFLKkrqOVkigm4xDOwdDFLrCdZYqMgXGA33CQdzYVC1qX9wVqCq2TtH5AVhmn/N81r3paiQq6YMXEUNphYplFyJboebY1oGD9lExE7WrFSmMQueurguVNyKGrtXoWwUC87LCuNmZWZy5wvw2zG5uL/YnGLxX5iZdW0KCq+/KhoFWAN82NBLrXgqGaOMK6l6xX4lGnG0Z2055YQbY58lYxfB9FeEH59MzjYX61jizwmz8gOichbckA+kyEZEe498d55h96R/9T/5H/xh8tU31t5HpF/4H//C5YHyCY=</latexit>

max
✓0

V✓(✓
0)

s.t. Es⇠d⇡ [DKL(✓
0||✓)]  �

S/ll hard to op/mize

Can approximate KL with Fisher informa/on matrix

Also: not a gradient method 
anymore?

😕

Kakade, 2002; Peters and Schaal, 2008 Adapted from Matteo Pirotta

Captures how much a parameter 
influences the distribution

vs vanilla policy gradient:
Ignores how much parameters 
influence the distribu/on

How much parameters change

How much policy changes
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Natural Policy Gradient
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Initialize policy parameter 𝜃7
for k = 1,2, … do

Collect trajectories 𝒟+  using policy 𝜋+ = 𝜋 𝜃+
Estimate advantage function using any algorithm
Compute
§ Policy gradient T𝑔+  (using advantage estimate)
§ KL-divergence Hessian / Fisher information matrix V𝐹+
Compute new policy using natural gradient

𝜃+12 = 𝜃+ +
2𝛿

T𝑔+) V𝐹+82 T𝑔+
V𝐹+82 T𝑔+

end
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Source: Policy Search: Methods and Applica=ons, Peters and Neumann
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Natural actor-cri=c (2008)

§ NPG + refinements + compatible function approximation + imitation 
learning initialization

Real-time online learning for robot control

https://www.youtube.com/watch?v=Fhb26WdqVuE
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1. Recap: policy gradient and actor-critic

2. Conservative policy iteration (CPI)
a. Performance difference lemma

3. Natural policy gradient (NPG)

4. Trust region policy optimization (TRPO)

5. Proximal policy optimization (PPO)
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What’s the problem now?
Problem:
Matrix inversion is

<latexit sha1_base64="d0423OGNpFVv0fFHLRT3HxxpG84=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyXxgV0W3Lizgn1AG8tkMm2HTiZhZlIooX/ixoUibv0Td/6NkzYLbT0wcDjnXu6Z48ecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x7eZ355QqVgkHvU0pl6Ih4INGMHaSH3b7oVYjwjm6f2sEjxdnvftslN15kCrxM1JGXI0+vZXL4hIElKhCcdKdV0n1l6KpWaE01mplygaYzLGQ9o1VOCQKi+dJ5+hM6MEaBBJ84RGc/X3RopDpaahbyaznGrZy8T/vG6iBzUvZSJONBVkcWiQcKQjlNWAAiYp0XxqCCaSmayIjLDERJuySqYEd/nLq6R1UXWvq87DVbley+sowgmcQgVcuIE63EEDmkBgAs/wCm9War1Y79bHYrRg5TvH8AfW5w+8FZMI</latexit>

O(d3)

Use itera/ve solu/on approach
(conjugate gradient method)

Called truncated natural policy gradient (TNPG)

Problem: Might not improve V(θ) due to KL approximation (of TV distance)

Solution: enforce KL constraint using an adaptive step size
i.e. Try several step sizes and pick one that gives improvement & not too far
• Can always select a smaller step size to get improvement
• Don’t want to update too slowly

Called trust region policy op/miza/on (TRPO)

𝑑 could be in the millions

Pascanu, Razvan, and Yoshua Bengio. "RevisiGng natural gradient for deep networks." ICLR, 2014.

Schulman, John, et al. "Trust region policy opGmizaGon." ICML, 2015.

Problem: Due to approxima/on, KL-constraint might be violated
How much to 

change?
How to control how 
much of a change?



Wu

Trust Region Policy Optimization
43

How?
Backtracking line search with exponen=al decay (decay coeff. 𝛼 ∈ (0,1), budget 𝐿)

Compute NPG step Δ+
for j = 0, … , 𝐿 do

Compute update 𝜃 = 𝜃$ + 𝛼%Δ$
if ℒ&% 𝜃 > 0 and F𝐷'( 𝜃H𝜃$ ≤ 𝛿 then

Accept update and 𝜃$)* = 𝜃$ + 𝛼%Δ$
break

end

endfor

In prac=ce, TRPO is implemented as (T)NPG plus line search.
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Example: Con=nuous control [Duan et al., 2016]

Walker-2D Swimmer

Remark: Choosing KL 
constraint 𝛿 is preferable to 
choosing learning rate 𝛼.
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1. Recap: policy gradient and actor-criWc

2. ConservaWve policy iteraWon (CPI)
a. Performance difference lemma

3. Natural policy gradient (NPG)

4. Trust region policy opWmizaWon (TRPO)

5. Proximal policy opAmizaAon (PPO)
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One more method:

proximal policy optimization [Schulman et al., 2017]

+ itera/ve approach to compu/ng F-1g

+ adap/ve step sizes

Still pretty expensive to compute
Involves computing a Hessian 𝑂(𝑛1) ☹

Adap/ve step sizes worked well. Let’s lean into it. Avoid natural gradient.

Regularize on KL term
Use adap/ve step sizes to stay within 𝛿

46
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proximal policy op/miza/on [Schulman et al., 2017]

Clipped objec/ve:

Key idea: Extra safety measure. Modify objective to ignore big changes.
Problem: Too many approxima/ons going on. S/ll have high variance issues.

Note: r is ra<o, not reward

48

Surrogate objecEve 

𝐿+./ 𝜋& = 𝔼'~)/𝔼*~+
𝜋& 𝑠, 𝑎
𝜋(𝑠, 𝑎)

𝐴+(𝑠, 𝑎) = 𝔼'~)/𝔼*~+ 𝑟'* 𝜋& 𝐴+ 𝑠, 𝑎

𝜋.23 = argmax
4

𝐿4!
5678 𝜋

Data is noisy à
Don’t under-index on 

disadvantageous  when 
the new policy is v. 

different from old policy

Data is noisy à
Don’t over-index on 

advantageous ac=ons 
when the new policy is v. 
different from old policy

What’s a big change?
𝜋& 𝑠, 𝑎 ≠ 𝜋(𝑠, 𝑎)

𝜋& 𝑠, 𝑎
𝜋(𝑠, 𝑎) 

One way: look at
Importance weigh<ng



Wu

PPO with Clipping
50

Input: policy 𝜃+, clipping 𝜖
for k = 1,… do

Collect trajectories 𝒟0 using policy 𝜋0 = 𝜋 𝜃0
Estimate advantage or Q-function using any algorithm
Compute:

𝜃012 = argmax
3
𝐿39
45.6 𝜃

where:

𝐿+45.6 𝜋& = 𝔼7~+9 &
892

,

min 𝑟8 𝜃 D𝐴8
+9, clip 𝑟8 𝜃 , 1 − 𝜖, 1 + 𝜖 D𝐴8

+9

end
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PPO with Adap=ve KL Penalty
51

Input: policy 𝜃6, KL penalty 𝛽6, KL-divergence 𝛿
for k = 1,… do

Collect trajectories 𝒟$ using policy 𝜋$ = 𝜋 𝜃$
Es[mate advantage or q-func[on using any algorithm
Compute by gradient descent:

𝜃$)* = argmax
&
ℒ&% 𝜃 − 𝛽$F𝐷'( 𝜃H𝜃$

if F𝐷'( 𝜃$)*H𝜃$ ≥ 1.5𝛿 then
𝛽&'# = 2𝛽&

end
if F𝐷'( 𝜃$)*H𝜃$ ≤ +

*.-
 then

𝛽&'# =
𝛽&
2

end

end
Ini*al 𝛽6 not important.  Some iteraMon may violate KL constraint, mostly not!
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Solving a Rubik’s cube with robot hand
Policy and value networks: 13 million parameters
Ac/on space: 20 actuated joints (discre/zed with 11 bins) à |A| = 1120

OpenAI. Solving Rubik's Cube with a Robot Hand. (2019).

PPO + automa/c domain randomiza/on
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Implementa)on ma,ers. What really makes PPO work?
56

See careful empirical studies:
• Engstrom, Logan, et al. "ImplementaEon maUers in deep policy gradients: A case study 

on PPO and TRPO." arXiv preprint arXiv:2005.12729 (2020).
• Andrychowicz, Marcin, et al. "What maUers in on-policy reinforcement learning? a large-

scale empirical study." arXiv preprint arXiv:2006.05990 (2020).

Humanoid

PPO vs PPO-M: value func=on clipping, reward scaling, orthogonal 
ini=aliza=on & layer scaling, Adam learning rate annealing

https://arxiv.org/abs/2005.12729
https://arxiv.org/abs/2006.05990
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Summary
§ Policy gradient methods are an alternaMve and powerful class of 

reinforcement learning methods, based on directly opMmizing the policy, 
rather than the value funcMon.

§ Due to the on-policy nature, data from π(θ) only says something about π(θ’) 
if θ and θ’ are close (performance difference lemma) à Need to be careful 
about the learning rate.

§ A series of techniques to alleviate the burden of learning rate selecMon: 
relaxaMon to KL divergence, trust regions, natural gradients, iteraMve matrix 
inversion, adapMve step sizes, advantage clipping.

§ Core pracMcal policy gradient methods: REINFORCE, TRPO, PPO, SAC.
§ UlMmately, computaMonal efficiency is important when handling millions (or 

billions) of parameters.
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