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Is the RL method working?
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1. Lecture Appendices A-C (see end of slides)

Readings
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1. Challenge 1: RL is quite sensitive

2. Solution 1: Standardize RL evaluation

3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization
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1. Challenge 1: RL is quite sensitive
a. Performance evaluation in RL
b. Sensitivity analysis of RL

2. Solution 1: Standardize RL evaluation

3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization
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Performance evaluation in RL
5

§ Consider a method (A) and method + modification (A+X)
• Ex. NPG vs NPG + Truncation
• Ex. TNPG vs TNPG + KL line search

§ How to figure out which is better?

§ HW: Emulate performance evaluation in RL
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When RL works, it’s great
6

Breast cancer screening
[Yala, 2022]

AlphaTensor

[Fawzi, 2022]

Google Loon

[Bellemare, 2020]

ChatGPT

[OpenAI, 2022, 2024]

AV safety validation

[Feng, 2023]

Drone racing
[Kaufmann, 2023]

Agent

Environment

action at

state st

reward rt

rt+1

st+1

Reinforcement learning interaction loop
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But, RL is highly sensitive
7

§ Network architecture
§ Inherited codebase
§ Code-level optimizations
§ Tasks (benchmarks)
§ Random seed
§ Method hyperparameters
§ MDP specification (observation, discount rate, frame skip, etc.)

See Lecture Appendix C for more examples
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Example: Sensitivity of RL to network architecture

Henderson, Islam, Bachman, Pineau, Precup, Meger, Deep Reinforcement Learning That Matters, AAAI Conference on Artificial Intelligence, 2018.
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Example: Sensitivity of RL to codebase

Henderson, Islam, Bachman, Pineau, Precup, Meger, Deep Reinforcement Learning That Matters, AAAI Conference on Artificial Intelligence, 2018.
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Example: Sensitivity of RL to code-level optimizations
§ Does PPO outperform TRPO? 
§ Yes and No
§ More like: PG + clipping + code-

level optimizations >> TRPO
§ PPO-M: PPO minus code-level 

optimizations*
• *Code-level optimizations: value 

function clipping, reward scaling, 
orthogonal initialization & layer 
scaling, Adam learning rate 
annealing

§ PPO-NoClip: PPO minus clipping

L. Engstrom et al., “Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO,” in ICLR, 2020.

Mujoco Humanoid-v2

PPO-NoClip >> PPO-M
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1. Challenge 1: RL is quite sensitive

2. Solution 1: Standardize RL evaluation
a. Standard benchmarks
b. Standard libraries
c. Standard statistical & experimental design techniques

3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization
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Strategies for handling RL sensitivity
12

§ Control for as many factors as possible
• Standardize, standardize, standardize
• Benchmarks
• RL codebases
• Hyperparameter tuning
• …

§ Run multiple trials for statistical confidence
• How many?
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Standard benchmarks
13

"Gymnasium Documentation." 4 Nov. 2024, gymnasium.farama.org.
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Environment: An Evaluation Platform for General Agents,” JAIR, 2013, doi: 10.1613/jair.3912.
Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement learning for continuous control,” in ICML, 2016.

Arcade Learning Environment (ALE)
50+ Atari 2600 games

Various RL challenges: pixel learning, 
model learning, model-based planning, 

imitation learning, transfer learning, and 
intrinsic motivation, exploration, etc.

Sanity checking, fast 
experiments, develop ideas

Classic control

Multi-Joint dynamics with Contact (Mujoco)
Continuous control, high-dimensional state spaces

http://gymnasium.farama.org/
https://doi.org/10.1613/jair.3912
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Many available benchmarks & tools
14

Third-party environments with 
Gymnasium [1]
§ Autonomous Driving
§ Biological / Medical
§ Economic / Financial
§ Electrical / Energy
§ Game
§ Mathematics / 

Computational
§ Robotics
§ Telecommunication Systems
§ …

[1] "Gymnasium Documentation." 4 Nov. 2024, gymnasium.farama.org/environments/third_party_environments.
[2] Z. Yan, A. R. Kreidieh, E. Vinitsky, A. M. Bayen, and C. Wu, “Unified automatic control of vehicular systems with reinforcement learning,” IEEE T-ASE, 2022, doi: 
10.1109/TASE.2022.3168621. Github: github.com/mit-wu-lab/automatic_vehicular_control.

Framework for building custom traffic environments 
using SUMO traffic simulator [2]

http://gymnasium.farama.org/environments/third_party_environments
https://doi.org/10.1109/TASE.2022.3168621
http://github.com/mit-wu-lab/automatic_vehicular_control
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Common RL method libraries
15

"tianshou." GitHub, 6 Nov. 2024, github.com/thu-ml/tianshou/#comprehensive-functionality.

Forks Stars

1.7k 9.1k

5.7k* 33.8k*

2.2k 10.1k

1.4k 10.6k

426 3.5k

111 822

1.1k 7.9k

639 5.6k

* Includes parent library Ray

CleanRL
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A typical number of runs
16

Agarwal, et al. “Deep reinforcement learning at the edge of the statistical precipice.” NeurIPS, 2021.

5 or less
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Because training is expensive (recall Rainbow)
17

Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021.
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However, 5 runs are not enough
18

Agarwal, et al. “Deep reinforcement learning at the edge of the statistical precipice.” NeurIPS, 2021.

5-20 runs

Repeatedly sampled 
from 100 runs

(Bootstrap)

Issue 1: Insufficient to conclude which methods are better
Issue 2: Reported numbers severely overestimate the expected mean/median

Maximization bias (recall overestimation in DQN)
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Tip 1: Compute confidence intervals
19

[1] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

(w/ 200 re-samplings)

Confidence intervals for 
DQN on Mountain Car

(30 runs) [1]

§ Capture confidence in estimation of the mean performance
§ E.g., Student t-distribution (Gaussian assumption), Percentile 

bootstrap
§ Use hypothesis tests for rigorous comparison
• Can we reject the null hypothesis that performance of A and B are the same?

§ See lecture Appendix A for a concept refresher (and a discussion on 
whether the Gaussian assumption is OK)

https://doi.org/10.48550/arXiv.2304.01315
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Tip 1A: Paired t-test for comparing two methods
20

§ Non-blocking design (t-test) à Blocking design (paired t-test)
§ Blocking controls for sources of variation
§ A vs B à A-B > 0, where A-B are paired

[1] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

Paired t-test confidence intervalsConfidence intervals (unpaired)

When the shaded region 
does not include the 

horizontal line at D = 0, then 
the reported difference is 

statistically significant

Unclear comparison

Clearer comparison Task: Mountain Car [1]

Greater separation from D=0

https://doi.org/10.48550/arXiv.2304.01315
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Tip 2: Isolate the modification
21

§ Isolate the precise modification made in the proposed method
§ Consider a new method !𝑨 which is method 𝑨 with modification 𝑿 

(𝑨 + 𝑿)
• Example: a novel replay buffer.

§ Rather than evaluating !𝑨 by comparing with 𝑨, 𝑩, 𝑪, etc., estimate 
the effect of 𝑿 by comparing 𝑨 vs 𝑨 + 𝑿, 𝑩 vs 𝑩+ 𝑿, 𝑪 vs 𝑪 + 𝑿.

§ Furthermore, apply blocking design (paired t-test) [Tip 1A]
• Compare 𝑨 − (𝑨 + 𝑿) vs 0, 𝑩 − (𝑩 + 𝑿) vs 0, 𝑪 − (𝑪 + 𝑿) vs 0
• Estimates whether the relative effect was significant
• Can pool samples together into a single paired t-test

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

https://doi.org/10.48550/arXiv.2304.01315
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DQN on PuddleWorld 
exhibits a non-Gaussian 
performance curve, with 

low performing runs 
occurring 5% of the time [2]

Tip 3: Use robust statistics
22

Use of robust statistics can ease estimation of 
typical performance [1].
§ Interquartile-mean (IQM) drops the highest and 

lowest 25% of samples, before computing the 
mean of the remaining 50% of the data.

§ The median can be used directly, but that drops 
almost nearly all of the data.

[1] Agarwal, et al. “Deep reinforcement learning at the edge of the statistical precipice.” NeurIPS, 2021.
[2] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

https://doi.org/10.48550/arXiv.2304.01315
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1. Challenge 1: RL is quite sensitive

2. Solution 1: Standardize RL evaluation

3. Challenge 2: Overfitting to benchmarks
a. General purpose or benchmark-specific RL methods?
b. Motivation: RL for designing future mobility systems
c. Task underspecification (NeurIPS 2022)

4. Solution 2: Explicitly model generalization
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Motivation: seamless mobility 24

Transit network design

Safe & efficient traffic

Wanis Kabbaj, 2016

MBTA bus service (Boston), 2016

Fleet electrification

SWARCO Smart Charging, 2022

Challenge
Designing and operating 
future mobility systems 

requires solving many hard 
optimization & control 

problems.
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Example: Mixed Autonomy Traffic [1-2]
26

§ Autonomy features
• Autonomy adoption
• Autonomy level

§ Traffic features
• Different performance measures
• Multi-objective optimization
• Network topology and configuration
• Sensing, communication, & control technology
• Type of vehicles & road users
• Human behavior
• Weather conditions
• Social & cultural norms

§ …

[1] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on automatic control,, 1993. 
[2] P. Ioannou and Z. Xu, “Throttle and Brake Control Systems for Automatic Vehicle Following,” I V H S Journal, 1994.

Too many problems to 
manually derive algorithms by hand. 

Can we automatically derive algorithms?

Countless variants
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Heterogeneity in mixed autonomy traffic
27

Source of heterogeneity Examples
Traffic phenomena Phantom jams, capacity drop, convective instability
Basic traffic networks Ring, multi-lane ring, figure 8, merge, bottleneck, 

intersection
Intersections Topology, turn restrictions, road grade, weather, travel 

demand, vehicle types, age, etc.
Composite networks Highway & urban networks, grid networks
Lane change behavior Disabled, MOBIL, etc.
Performance measure Congestion, safety, emissions, mixed, etc.
Traffic demand None, low, moderate, high
Objective Ego-centric, system-centric, mixed
Level of autonomy Levels 0–5
Penetration of CAVs 0–100%

Roughly speaking:
𝟑𝟏𝟎 ≈ 𝟔𝟎𝑲 scenarios
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Personal journey with reinforcement learning
28

Wu, Kreidieh, Vinitsky, Bayen, “Emergent behaviors in mixed-autonomy traffic,” in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.
Wu, Kreidieh, Parvate, Vinitsky, Bayen, “Flow: A modular learning framework for mixed autonomy traffic,” IEEE Transactions on Robotics (T-RO), 2021.
Vinitsky, et al. Wu, Bayen. “Benchmarks for reinforcement learning in mixed-autonomy traffic,” in 2nd Annual Conference on Robot Learning (CoRL), PMLR, 2018.
Yan, Kreidieh, Vinitsky, Bayen, Wu, “Unified automatic control of vehicular systems with reinforcement learning,” IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.
Jayawardana, Tang, Li, Suo, Wu. “The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning.” Advances in Neural Information Processing Systems (NeurIPS), 2022.

DQN (2015)

AlphaGo (2016)

AlphaGoZero (2017)
Mixed autonomy traffic (2017)

Task underspecification (2022) [today]
Model based transfer learning (2024) [today]

Mostly negative RL results; return to 1) model-based 
approaches, 2) supervised learning, and 3) both, to make 
progress
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Task variations: signalized intersections

Salt Lake City, Utah

Qu*, Valiveru*, Tang, Jayawardana, Freydt, Wu. “What is a Typical Signalized Intersection in a City? A Pipeline for Intersection Data Imputation from OpenStreetMap.” TRB, 2023.
Jayawardana, Tang, Li, Suo, Wu. “The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning.” Advances in Neural Information Processing Systems (NeurIPS), 2022.

345 intersections analyzed
164 unique configurations

Decision (action): traffic phases

Example: Typical phases, or traffic 
movements, in a 4-way intersection.

Traffic signal control
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Sensitivity of RL to task variation
31

§ Deep RL is not robust to problem variations
§ Simple baseline outperforms deep RL methods!

Benchmark
(RESCO [1])

Salt Lake City

Methods:  –– Deep RL  –– –– Classical strategy

Rank Benchmark [1] Salt Lake City
1 Best Max pressure Fixed Time

2 IDQN Max pressure
3 MPLight IDQN
4 IPPO MPLight
5 Fixed Time MPLight*

6 Worst MPLight* IPPO

Method evaluation for traffic signal control

[1] Ault, Sharon. “Reinforcement learning benchmarks for traffic signal control.” Advances in Neural Information Processing Systems (NeurIPS), 2021.
Jayawardana, Tang, Li, Suo, Wu. “The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning.” Advances in Neural Information Processing Systems (NeurIPS), 2022.
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Sensitivity of RL to task variation

*Reported performance is reproduced from common benchmark task specification.

Similar findings in popular control benchmarks

Jayawardana, Tang, Li, Suo, Wu. The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Reference 
benchmark

Overfitting to benchmark?
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1. Challenge 1: RL is quite sensitive

2. Solution 1: Standardize RL evaluation

3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization
a. Contextual RL
b. Model-based transfer learning (NeurIPS 2024)
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A broader framework
§ Contextual Markov Decision Process (CMDP)

• A generalization of MDP that explicitly incorporates environment characteristics
• Useful for describing families of MDPs

§ Contextual Reinforcement Learning (CRL) studies CMDPs

[1] A. Modi, N. Jiang, S. Singh, and A. Tewari, “Markov Decision Processes with Continuous Side Information,” in Proceedings of Algorithmic Learning Theory, PMLR, Apr. 2018.
[2] A. Hallak, D. Di Castro, and S. Mannor, “Contextual Markov Decision Processes,” Feb. 08, 2015, arXiv: arXiv:1502.02259. Available: http://arxiv.org/abs/1502.02259

Adapted from AutoML

Example: 
Problem variations in 

signalized intersections
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Want: Fast, reliable training for CMDPs
37

§ Typical approaches

❌ Expensive to train all tasks
✅ Specializes policies to different tasks

✅ More sample efficient to train
❌ Requires high model capacity [1]
❌ Cross-task training instability

[1] A. A. Taıga, R. Agarwal, J. Farebrother, A. Courville, and M. G. Bellemare, “Investigating Multi-task Pretraining and Generalization in Reinforcement 
Learning,” in The Eleventh International Conference on Learning Representations, 2023.
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Unreasonable effectiveness of zero-shot transfer
38

§ Neither is sufficient.
§ Observation: Zero-shot transfer is cheap & works remarkably well

§ Algorithmic question
• How to select which tasks to train? à Source task selection problem

Note: all methods given same training budget

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.
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Problem formulation
39

§ Aim: Choose source tasks that maximize target tasks performance
§ Option 1: Source task selection (STS) problem
• Choose training tasks all at once

§ Option 2: Sequential source task selection (SSTS) problem
• Choose training tasks sequentially

[1] J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy.” Under review.
[2] J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning.” Under review.
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Proposed approach: Model-based transfer learning
40

§ Strategically select training tasks
§ How? Explicit modeling of 

generalization performance 
(“model-based”)

Zero-shot Generalization

Cartpole CMDP

Example: Cartpole 
benchmark task

Modeling assumption:
Linear generalization gap

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.
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Warm-up 1
41

J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy,” arXiv, 27 Nov. 2023, doi:10.48550/arXiv.2312.09436.

Context
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§ Assume: Constant performance across contexts
§ Assume: Fixed training budget

Theorem 1:
Equidistant selection is 
optimal

https://arxiv.org/abs/2312.09436
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Warmup 2
42

§ Assume: Constant performance across contexts
§ Assume: Fixed training budget à 𝜖-optimal
§ Anytime algorithm

J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy,” arXiv, 27 Nov. 2023, doi:10.48550/arXiv.2312.09436.

Theorem 2:
Greedy selection is bounded 
sub-optimal

https://arxiv.org/abs/2312.09436
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Model-based transfer learning
43

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.

Assume: Constant performance across contexts
Assume: Fixed training budget
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MBTL: Control experiments
MBTL achieves up to 50x improved 
sample efficiency over independent 

and multi-task training.

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.
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MBTL: Traffic experiments
MBTL achieves up to 25x improved 
sample efficiency over independent 

and multi-task training.

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.
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MBTL: Sensitivity analysis
46

§ Generalization gap (slope): Did not tune
§ Bayesian optimization acquisition function: Not that sensitive

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.
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MBTL: Sensitivity analysis
47

§ Underlying RL method: Remains effective vs baselines

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2024.



Wu

48

§ Modern RL methods are powerful but highly highly sensitive. 
§ Factors include: random seeds, hyperparameters, implementation 

details, MDP specifications, task variation
§ To effectively evaluate methods, control as many factors as possible, 

use common benchmarks & codebases, and apply standard 
statistical techniques. At the very least, run multiple trials (≈10-20).

§ However, overreliance on benchmarks can lead to methods that 
overfit the benchmark, including issues of task underspecification 
(a.k.a. limited external validity).

§ Explicit modeling of generalization performance can enable reliable 
RL methods (with greater external validity).

§ The design of RL methods remains an art as well as a science. See 
Lecture Appendix B for RL method implementation best practices.

Summary
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1. Alex Irpan. Deep Reinforcement Learning Doesn't Work Yet. Sorta Insightful Blog, 
2018. https://www.alexirpan.com/2018/02/14/rl-hard.html

2. Amid Fish. Lessons Learned Reproducing a Deep Reinforcement Learning Paper. 
Blog, 2018. http://amid.fish/reproducing-deep-rl

3. A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in 
Reinforcement Learning.” arXiv, Apr. 03, 2023. doi: 10.48550/arXiv.2304.01315.

4. For general principles on experimental design: D. C. Montgomery, Design and 
analysis of experiments, Tenth edition. Wiley, 2020.

• Chapter 1: Introduction
• Chapter 2: Simple Comparative Experiments

Further reading

https://www.alexirpan.com/2018/02/14/rl-hard.html
http://amid.fish/reproducing-deep-rl
https://doi.org/10.48550/arXiv.2304.01315
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Appendix A

50

Confidence intervals, p-values, testing under 
non-standard distributions
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Confidence intervals
51

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

(w/ 200 re-samplings)

Confidence intervals 
for DQN on Mountain 

Car (30 runs)

§ Capture confidence in estimation of the mean performance
§ A common choice is the Student t-distribution (Gaussian assumption)
• Consider 𝑛 samples: 𝑀!, 𝑀", … ,𝑀#

• The confidence interval is of the form -𝑀 − 𝑡$,#
&'
#
, -𝑀 + 𝑡$,#

&'
#

§ where !𝑀 ≝ (
)
∑*+() 𝑀*, %𝜎 ≝

(
),(

∑*+() 𝑀* − !𝑀 -

§ The t-test statistic 𝑡.,) depends on the significance level (typically 𝛼 = 0.05 or 0.01) and 
the number of samples [see lookup table].

https://doi.org/10.48550/arXiv.2304.01315
https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
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Confidence intervals
52

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

§ Percentile bootstrap is more expensive, but requires few 
assumptions
• Method: Obtain 𝑛 samples, then re-sample 𝑛 values with replacement. 

Repeat for 𝑚 re-samplings, usually large (𝑚 ≈ 10,000).
• A 95% confidence interval is generated using the [0.025,0.975]th 

percentiles of the 𝑚	re-sampled means.

(w/ 200 re-samplings)

Confidence intervals 
for DQN on Mountain 

Car (30 runs)

https://doi.org/10.48550/arXiv.2304.01315
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Reminder on p-values
53

§ p-value (α): the risk of wrongly 
rejecting the null hypothesis

§ p-values are NOT the error rate of 
the statistical test (𝛽)

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.

https://doi.org/10.48550/arXiv.1904.06979
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Testing under non-standard distributions
54

§ It’s typical for RL methods to exhibit 
non-standard distributions, i.e. non-
Gaussian.

§ There may even be long-tailed performance 
distributions
• Ex (PuddleWorld). 30 runs was found to be 

sufficient to estimate the mean.

§ How bad is the Gaussian assumption then?

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.

DQN on PuddleWorld 
exhibits a non-Gaussian 
performance curve, with 

low performing runs 
occurring 5% of the time

192 runs of SAC

https://doi.org/10.48550/arXiv.2304.01315
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Testing under standard distributions
55

§ How sensitive are statistical tests 
to distributional assumptions? To 
RL methods?

§ Consider the standard normal
• Number of samples to achieve 

false positive rate of 0.05 

B. L. Welch, “The generalization of student’s’ problem when several different population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, 1947.
C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.

https://doi.org/10.48550/arXiv.1904.06979
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Testing under non-standard distributions
56

§ Gaussian assumption is fine!
§ Welsh t-test (and standard t-test) is 

most robust to candidate distributions
• T-test: Assumes equal variances.
• Welch’s t-test: Different variances.

B. L. Welch, “The generalization of student’s’ problem when several different population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, 1947.
C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.

https://doi.org/10.48550/arXiv.1904.06979
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Example: performance distributions for SAC vs TD3
Visualization of 192 runs

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.

Relative effect size 𝜖 = 0.93 (mean)
 à 10-15 tests sufficient

https://doi.org/10.48550/arXiv.1904.06979
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Appendix B

58

Implementation best practices

For:
• Designing RL methods
• Applying RL methods
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Implementation best practices
59

Randomization
§ Control the random seeds for the environment. This allows for more 

precise “blocking designs” to cancel out nuisance factors, e.g., 
unlucky initializations, by permitting applying different algorithms or 
configurations on the same data (environment instance) [1]

§ In practice, this means using separate random seeds for the agent 
and the environment [2].

[1] D. C. Montgomery, “Design and analysis of experiments,” Tenth edition. Hoboken, NJ: Wiley, 2020.
[2] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, Apr. 03, 2023. doi: 10.48550/arXiv.2304.01315.

https://doi.org/10.48550/arXiv.2304.01315
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Implementation best practices
60

Baselines
§ Consider simple methods, such as random search or a constant policy, to 

indicate if the RL method is learning anything interesting. These can be 
surprisingly strong baselines.

§ Consider SotA methods for the problem of interest, to indicate if the RL 
method is learning something important. These may include non-learning 
methods, especially for specific applications!

§ Design an oracle method that has privileged access to information, to 
indicate the suboptimality gap of the RL method. For example, full state 
information (vs partially observed) or oracle access to certain training 
labels.

§ Select comparable hyperparameter sets for all methods, for a fair 
comparison. For example, consider the same number of hyperparameter 
settings for each method.



Wu

Implementation best practices
61

Environments
§ Make use of existing benchmarks. Because 

benchmarks are prone to errors, misspecification, 
reward hacking, etc. Popular benchmarks are 
more likely to have these issues worked out (but 
no guarantee, of course).

§ Be wary of perverse (worst-case) examples or 
random MDPs. These problems, while commonly 
used for (worst-case) theoretical analysis, may not 
be representative of problems you ultimately care 
about [1].

§ Most importantly, use tasks that test the claims of 
the approach.

[1] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, Apr. 03, 2023. doi: 10.48550/arXiv.2304.01315.

https://doi.org/10.48550/arXiv.2304.01315
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Environments
§ Applications of RL - your mileage may vary (YMMV)
• If benchmarks do not exist for your domain, start with 

creating simple versions of your application.
• Consider using the closest available benchmarks to your 

application.

§ Start simple and gradually increase complexity – 
both for the environment and the agent.
• Avoid working on image-based environments unless you 

are specifically interested in pixel-based learning (e.g., 
sensorimotor control). That extra complexity is often 
orthogonal to other challenges.

[1] J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy,” arXiv, 27 Nov. 2023, doi:10.48550/arXiv.2312.09436.

[1]

https://arxiv.org/abs/2312.09436


Wu

Implementation best practices
63

Environments
§ More tasks is not necessarily better. Training is expensive!
• Example [1]: Similar conclusions to Rainbow DQN using 9 carefully selected 

small-scale tasks (vs 57 medium-scale games)!
• 438x less compute to get the same results

[1] Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021.
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Comparisons
§ Use the Welch’s t-test or t-test [1,2]
• 10-20 trials typically good enough

§ For sample efficiency comparison, 
report environment steps
• Not wall clock or CPU time, which 

depend on hardware and/or other 
running processes
• # samples is a more reproducible 

measure

[1] B. L. Welch, “The generalization of student’s’ problem when several different population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, 1947.
[2] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.

(trials)

https://doi.org/10.48550/arXiv.1904.06979
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Guidance on hyperparameters
§ Learning rates
• A (small-enough) constant learning rate typically suffices
• Beyond that, annealing the learning rate can help (continually decay the 

learning rate)
• Nonstationary environments tend to benefit from smaller learning rates

§ Exploration parameters (e.g., 𝜖-greedy)
• Start with higher exploration, gradually decay it to some lower limit, 

e.g. 𝜖 = 0.05.
• Ensure that there is enough training time near the lower limit, for training 

stability



Wu

Implementation best practices
66

Guidance on hyperparameters
§ For standard Mujoco benchmarks, see comprehensive 

hyperparameter study [1]
• Caveat 1: YMMV for other benchmarks / tasks.
• Caveat 2: YMMV even for Mujoco benchmarks, because the hyperparameter 

sweeps are conducted locally wrt PPOv2.
• Recommendations (see paper for theories behind the recommendations):

§ Normalize normalize normalize – reward scaling, input normalization, value function 
normalization

§ Use separate networks for the value fn & policy
§ Limit exploration at the start. In practice, this means setting a low initial std for the 

policy network
§ tanh activation ≫ ReLU
§ MSE ≫ Huber loss for the value function loss
§ …

[1] Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” ICLR, 2021.
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Replay buffer
§ Needs considerable capacity to perform well
• Typical sizes are 10K–1M.

§ Take care at the start of training: Collect enough initial “experience” 
by allowing the replay buffer to fill up part way, before starting to 
update the value function
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Optimization
§ Take multiple passes through collected data
§ Use mini-batch gradient descent, rather than SGD or batch gradient 

descent
• Typical mini-batch sizes range from 32 to 1024

§ Optimizers: Adam (RMSprop + momentum) and RMSprop are both 
sensible
• RMSprop is preferred for value-based methods (more stable, less sensitive to 

hyperparameters)
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§ Use fast RL environments rather than slow environments
• Collecting trajectories is often the bottleneck in RL training
• Fast environment implementations can easily collect trajectories 100x faster
• Examples: pufferlib and vmas
• Can then iterate much faster on RL algorithms

§ Use a hyperparameter tuner instead of trying to grid search.
• Now even directly built into weights and biases: 

https://docs.wandb.ai/tutorials/sweeps/

§ There is growing evidence that classification losses outperform 
regression losses: https://arxiv.org/pdf/2403.03950

https://docs.wandb.ai/tutorials/sweeps/
https://arxiv.org/pdf/2403.03950
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§ DQN is more reliable on some Atari tasks than others. Pong is a 
reliable task: if it doesn’t achieve good scores, something is wrong 

§ Large replay buffers improve robustness of DQN, and memory 
efficiency is key 

§ Use uint8 images, don’t duplicate data 
§ Be patient. DQN converges slowly—for ATARI it’s often necessary to 

wait for 10-40M frames (couple of hours to a day of training on GPU) 
to see results significantly better than random policy 

§ Try Huber loss on Bellman error 
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§ Try Double DQN—significant improvement from small code change 
§ To test out your data pre-processing, try your own skills at navigating 

the environment based on processed frames 
§ Always run at least two different seeds when experimenting 
§ Learning rate scheduling is beneficial. Try high learning rates in initial 

exploration period 
§ Try non-standard exploration schedules 
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§ If you noticed some inconsistencies in the tips, it’s because RL is still 
an art as well as a science. Your experience may vary too.

§ And feel free to get in touch––including in the years to come––if you 
have suggestions on implementation best practices.
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Additional examples of RL sensitivity
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Example: Sensitivity of RL to random seeds

Difference is “statistically significant”

Henderson, Islam, Bachman, Pineau, Precup, Meger, Deep Reinforcement Learning That Matters, AAAI Conference on Artificial Intelligence, 2018.
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Sensitivity of RL to hyperparameters
§ Example hyperparameter sweep for RL methods

T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in Reinforcement Learning and How To Tune Them.” arXiv, 2023. doi: 10.48550/arXiv.2306.01324.

https://doi.org/10.48550/arXiv.2306.01324
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Example: Sensitivity of RL to hyperparameters
§ Same algorithm has different sensitivities in different environments

T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in Reinforcement Learning and How To Tune Them.” arXiv, 2023. doi: 10.48550/arXiv.2306.01324.

MiniGrid Empty MiniGrid DoorKeyOpenAI’s Acrobot

https://doi.org/10.48550/arXiv.2306.01324
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Example: Sensitivity of RL to hyperparameters
§ Same algorithm has different sensitivities in different environments

T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in Reinforcement Learning and How To Tune Them.” arXiv, 2023. doi: 10.48550/arXiv.2306.01324.

Brax Ant
(fully differentiable)

OpenAI’s pendulum

https://doi.org/10.48550/arXiv.2306.01324
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Example: Sensitivity of RL to discount factor

Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.
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[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Environment: An Evaluation Platform for General Agents,” JAIR, 2013, doi: 10.1613/jair.3912.
[2] Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.

Example: Insensitivity of RL to “frame skip”
§ Persist action for 𝑘 frames (time steps). 

Popularly used for Atari [1].
§ Not so sensitive in these Mujoco tasks for 𝑘 ∈ {1,2,5}. [2]

https://doi.org/10.1613/jair.3912
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Example: Sensitivity of RL to “frame skip”
§ Caution: With each of these factors, your mileage may vary.
§ Example: Consider control frequency in a driving application [1].
• Equivalent to frame skip 𝑘 ∈ {1, … , 400}

GLOSA Demo app [2]

[1] Cho, Li, Kim, Wu. “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy.” In review, T-RO.
[2] Reducing fuel emissions with innovative tech, 2018. https://www.eastpoint.co.uk/case-studies/glosa/

Velocity-based advisories

Terminology for similar ideas:
Frame skip (video game development)

Zero-order hold (control theory)
Action persistence (deep RL)
Action repetition (deep RL)

Control frequency (control theory)

https://www.eastpoint.co.uk/case-studies/glosa/
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Example: Sensitivity of RL to “frame skip”

Guidance hold length (sec)

Highway ramp (velocity guidance)

Guidance hold duration (sec)

Cho, Li, Kim, Wu. “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy.” In review, T-RO.

Model highway (acceleration guidance)

Guidance hold duration (sec)

Av
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e 
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 (m
/s

)

(transfer source) Deep reinforcement learning (TRPO)Deep reinforcement learning (TRPO)

Tasks: Equivalent to frame skip 𝑘 ∈ {1,… , 400}
Method: TRPO
Train: 5 trials per hold duration
Test: 50 test epochs using the best trained policy


