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Evaluation in Reinforcement Learning

Is the RL method working?

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods
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Readings

1. Lecture Appendices A-C (see end of slides)



Outline

1. Challenge 1: RL is quite sensitive
2. Solution 1: Standardize RL evaluation
3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization



Outline

1. Challenge 1: RL is quite sensitive

a. Performance evaluation in RL
b. Sensitivity analysis of RL

2. Solution 1: Standardize RL evaluation
3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization



Performance evaluation in RL

Consider a method (A) and method + modification (A+X)
Ex. NPG vs NPG + Truncation
Ex. TNPG vs TNPG + KL line search

How to figure out which is better?

HW: Emulate performance evaluation in RL



When RL works, it’s great

~ [Bellemare, 2020]
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But, RL is highly sensitive
Network architecture
Inherited codebase
Code-level optimizations
Tasks (benchmarks)
Random seed
Method hyperparameters
MDP specification (observation, discount rate, frame skip, etc.)

See Lecture Appendix C for more examples



Example: Sensitivity of RL to network architecture

HalfCheetah-v1 (PPO, Policy Network Structure) HalfCheetah-vl (TRPO, Policy Network Activation) DDPG with HalfCheetah Environment - Critic Network Activations
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Figure 2: Significance of Policy Network Structure and Activation Functions PPO (left), TRPO (middle) and DDPG (right).

Half Cheetah

Henderson, Islam, Bachman, Pineau, Precup, Meger, Deep Reinforcement Learning That Matters, AAA/ Conference on Artificial Intelligence, 2018.



Example: Sensitivity of RL to codebase

HalfCheetah-vl (TRPO, Codebase Comparison)

HalfCheetah-vl (DDPG, Codebase Comparison)

of hyperparameters (as used in other experiments).

Figure 6: TRPO codebase comparison using our default set

Henderson, Islam, Bachman, Pineau, Precup, Meger, Deep Reinforcement Learning That Matters, AAA/ Conference on Artificial Intelligence, 2018.
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Example: Sensitivity of RL to code-level optimizations

Does PPO outperform TRPO?
Yes and No

More like: PG + clipping + code-
level optimizations >> TRPO

PPO-M: PPO minus code-level

optimizations*

* *Code-level optimizations: value
function clipping, reward scaling,
orthogonal initialization & layer

scaling, Adam learning rate
annealing

PPO-NoClip: PPO minus clipping

800

600

400

Mean Reward

200

Mujoco Humanoid-v2

— TRPO
— PPO
— PPO-M

100 200 300 400
# lterations

WALKER2D-V2 HOPPER-V2

HUMANOID-V2

PPO

PPO (BASELINES)
PPO-M
PPO-NoOCLIP

3292 [3157,3426] 2513 [2391, 2632]
3424 2316

2735 [2602, 2866] 2142 [2008, 2279]

2867 [2701, 3024] 2371 [2316, 2424]

806 [785, 827]

674 [656, 695]
831 [798, 869]

PPO-NoClip >> PPO-M

L. Engstrom et al., “Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO,” in ICLR, 2020.



Outline

1. Challenge 1: RL is quite sensitive

2. Solution 1: Standardize RL evaluation

a. Standard benchmarks
b. Standard libraries
c. Standard statistical & experimental design techniques

3. Challenge 2: Overfitting to benchmarks

4. Solution 2: Explicitly model generalization
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Strategies for handling RL sensitivity

Control for as many factors as possible
Standardize, standardize, standardize
Benchmarks
RL codebases
Hyperparameter tuning

Run multiple trials for statistical confidence
How many?



Standard benchmarks ) L

Mountain Car
Acrobot Cart Pole Continuous

Classic control

Sanity checking, fast /
experiments, develop ideas

Mountain Car Pendulum

Multi-Joint dynamics with Contact (Mujoco)

Continuous control, high-dimensional state spaces
Arcade Learning Environment (ALE)

50+ Atari 2600 games . . .

Various RL challenges: pixel learning, e Half Cheeteh Hopper  Inverted Pendulum Pusher Reacher
model learning, model-based planning,
imitation learning, transfer learning, and

intrinsic motivation, exploration, etc.

Inverted Double
Humanoid Standup Humanoid Pendulum

Swimmer Walker2D

"Gymnasium Documentation." 4 Nov. 2024, gymnasium.farama.org.
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Environment: An Evaluation Platform for General Agents,” JAIR, 2013, doi: 10.1613/jair.3912.
Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement learning for continuous control,” in ICML, 2016.



http://gymnasium.farama.org/
https://doi.org/10.1613/jair.3912

Many available benchmarks & tools

Third-party environments with
Gymnasium [1]

Autonomous Driving
Biological / Medical
Economic / Financial
Electrical / Energy
Game

Mathematics /
Computational

Robotics

Telecommunication Systems

F‘,| 3
100m [

100m

R €[25,35]m

—_—
Fy € [400,1000]vehs/hr

o
| o o D T P Do Do
e
100m 100m 50m
F € [1500,2500
€ [1500,22 hs/h 7
[ Jvehs/hr 30(Jveh/hr/ - Fy € [400,1000]vehs/hr
400m 100m 30m

Framework for building custom traffic environments
using SUMO traffic simulator [2]

[1] "Gymnasium Documentation." 4 Nov. 2024, gymnasium.farama.org/environments/third party environments.

[2] Z. Yan, A. R. Kreidieh, E. Vinitsky, A. M. Bayen, and C. Wu, “Unified automatic control of vehicular systems with reinforcement learning,” IEEE T-ASE, 2022, doi:

10.1109/TASE.2022.3168621. Github: github.com/mit-wu-lab/auto

matic_vehicular control.



http://gymnasium.farama.org/environments/third_party_environments
https://doi.org/10.1109/TASE.2022.3168621
http://github.com/mit-wu-lab/automatic_vehicular_control

Common RL method libraries

RL Platform Documentation @ Code Coverage Type Hints Last Update

selines3 docs M coverage m last update
(1) last update M

last update february 2020 |

last update m

) last update [october

codecov last update [october

coverage last update [oct

(1): it has continuous integration but the coverage rate is not available CleanRL

* Includes parent library Ray

"tianshou." GitHub, 6 Nov. 2024, github.com/thu-ml/tianshou/#comprehensive-functionality.



A typical number of runs

Figure 1: Number of runs in RL over the years. Be-
ginning with DQN [75] on the ALE, 5 or less runs are
common in the field. Here, we show representative RL
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5 or Iess papers with empirical results, in the order of their publi-
cation year: TD-learning [99], Sparse coding [100], Op-
O tions [102], Tetris (CEM) [103], Batch-Q [31], ALE [5],
(0\(\ .\(\Q DQN [75], AlphaGo [96], A3C [76], DDPG [62], ES [88],
\Q;o 06 PPO [92], SAC [36], Rainbow [42], AlphaStar [110], Go-
wn «Q’ @CJ & Explore [28], OpenAl Five [8], Balloon navigation [7]
C 100 o o ,0(9 ,{}0 \’{\(9 < and MuZero [91].
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Agarwal, et al. “Deep reinforcement learning at the edge of the statistical precipice.” NeurlIPS, 2021. Wu



Because training is expensive (recall Rainbow)

The cost of Rainbow:
e ~5 days to train a game on a P100
e 57 games
e 5independent seeds
e P100 costs about US$6000

Medan human-normalized score

4 Lower-bound of cost:
s 0 sho e 34,200 GPU hours

Figure 1: Median humu::r:a'l’; performance across ® 1 425 days
57 Atari games. We compare our integrated agent (rainbow- @ Total cost: EXPENS'VE

colored) to DOQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any bascline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over S points.

Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021.
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However, 5 runs are not enough

i : : : - = Reported
11 i i Bl DER
3.0% iy | OTR 5-20 runs
v 1l l
= I | CURL
Y I |
S N — BrQ Repeatedly sampled
o iy l[r i olE) from 100 runs
$ 1.5% (Il , SPR
£ { l‘i I (Bootstrap)
it i i
“u : i :
W " I i
QI |HJHH' gllll
0.0% =51 0.2 0.3 0.4 0.5

Median Human Normalized Score

Issue 1: Insufficient to conclude which methods are better
Issue 2: Reported numbers severely overestimate the expected mean/median
Vaximization bias (recall overestimation in DQN)

Agarwal, et al. “Deep reinforcement learning at the edge of the statistical precipice.” NeurlPS, 2021. Wu



Tip 1: Compute confidence intervals

Capture confidence in estimation of the mean performance

E.g., Student t-distribution (Gaussian assumption), Percentile
bootstrap

Use hypothesis tests for rigorous comparison
Can we reject the null hypothesis that performance of A and B are the same?

See lecture Appendix A for a concept refresher (and a discussion on
whether the Gaussian assumption is OK)

~200 - =200 7 -200

Confidence intervals for
DQN on Mountain Car
(30 runs) [1] —-400 —-400 -400

—500 —~500 o -500
) I 1 ) ) I I I 1 1 1 T T T T T T T

0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k

—-300 A —300 - -300 —

(w/ 200 re-samplings)

(a) a = 0.05 with Student’s t  (b) @ = 0.3 with Student’s t (c) o = 0.05 with bootstrap
[1] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.
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https://doi.org/10.48550/arXiv.2304.01315
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Tip 1A: Paired t-test for comparing two methods
Non-blocking design (t-test) = Blocking design (paired t-test)
Blocking controls for sources of variation
A vs B 2> A-B >0, where A-B are paired

Confidence intervals (unpaired) Paired t-test confidence intervals
—200 - M 100 Clearer comparison Task: Mountain Car [1]
EQRC
AL £ —
—-300 - Greater separation from D=0
DQN
—100
—400 4 When the shaded region
Gpon - Gegre does not include the
Unclear Compar]son —200 — horizontal line at D = 0, then
—500 - the reported difference is
| | I I I I I I I T T T statistically significant
0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k

(a) Individual performance of DQN and EQRC. (b) Performance difference D = Gpgon — GeQrc-

[1] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315. Wu



https://doi.org/10.48550/arXiv.2304.01315

Tip 2: Isolate the modification

Isolate the precise modification made in the proposed method

Consider a new method A4 which is method 4 with modification X
(A + X)

Example: a novel replay buffer.

Rather than evaluating A by comparing with A, B, C, etc., estimate
the effect of X by comparingAvsA+ X,BvsB + X, Cvs C + X.

Furthermore, apply blocking design (paired t-test) | ]
Compare A— (A+X)vsO,B—(B+X)vs0,C—(C+X)vsO
Estimates whether the relative effect was significant
Can pool samples together into a single paired t-test

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.



https://doi.org/10.48550/arXiv.2304.01315

Tip 3: Use robust statistics

Use of robust statistics can ease estimation of
typical performance [1].

Interquartile-mean (IQM) drops the highestand |\ o @ o

lowest 25% of samples, before computing the exhibits a non-Gaussian
mean of the remaining 50% of the data. Py

occurring 5% of the time [2]

The median can be used directly, but that drops
almost nearly all of the data.

—500 —-400 -300 -200 -100

[1] Agarwal, et al. “Deep reinforcement learning at the edge of the statistical precipice.” NeurlPS, 2021.
[2] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.



https://doi.org/10.48550/arXiv.2304.01315

Outline

1. Challenge 1: RL is quite sensitive
2. Solution 1: Standardize RL evaluation

3. Challenge 2: Overfitting to benchmarks

a. General purpose or benchmark-specific RL methods?
b. Motivation: RL for designing future mobility systems
c. Task underspecification (NeurlPS 2022)

4. Solution 2: Explicitly model generalization

23



Wanls Kabbaj, 2016

Motivation: seamless mobility

\—\ MBTA bus service (Boston), 2016

&“’”_’——qm % / s ol
S SWARCO Smart Charging, 2022 Safe & efficient trafflc
=

Challenge

Designing and operating

future mobility systems

requires solving many hard

optimization & control

. I S . problems.
Transit network design Fleet electrification
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Example: Mixed Autonomy Traffic [1-2]

= Autonomy features
*  Autonomy adoption
°  Autonomy level

= Traffic features
* Different performance measures
*  Multi-objective optimization
*  Network topology and configuration
*  Sensing, communication, & control technology
*  Type of vehicles & road users
*  Human behavior
*  Weather conditions
*  Social & cultural norms

Countless variants

Too many problems to
manually derive algorithms by hand.
Can we automatically derive algorithms?

[1] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on automatic control,, 1993.
[2] P. loannou and Z. Xu, “Throttle and Brake Control Systems for Automatic Vehicle Following,” I V H S Journal, 1994.



Heterogeneity in mixed autonomy traffic

Source of heterogeneity

Examples

Traffic phenomena

Phantom jams, capacity drop, convective instability

Ring, multi-lane ring, figure 8, merge, bottleneck,

.
st oo o ol o aa

........................................................... Roughly speaking:

Lomposite nety 3 10

~ 6OK ScenariOS ................................................................

Penetration of CAVs

None, low, moderate, high
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Personal journey with reinforcement learning

VISIBILITY

Peak of Inflated Expectations

Mostly negative RL results; return to 1) model-based
approaches, 2) supervised learning, and 3) both, to make
progress

Plateau of Productivity
Mixed autonomy traffic (2017)

AlphaGoZero (2017)
EEEEEEEwHE] .
NENENC AlphaGo (2016) Slope of Enlightenment
T Model based transfer learning (2024) [today]
g%ﬁﬁiﬁﬁgg DQN (2015)

Task underspecification (2022) [today]
Trough of Disillusionment

Technology Trigger TIME

>

Wu, Kreidieh, Vinitsky, Bayen, “Emergent behaviors in mixed-autonomy traffic,” in 1st Annual Conference on Robot Learning (CoRL), PMLR, 2017.

Wu, Kreidieh, Parvate, Vinitsky, Bayen, “Flow: A modular learning framework for mixed autonomy traffic,” IEEE Transactions on Robotics (-RO), 2021.

Vinitsky, et al. Wu, Bayen. “Benchmarks for reinforcement learning in mixed-autonomy traffic,” in 2nd Annual Conference on Robot Learning (CoRL), PMLR, 2018.

Yan, Kreidieh, Vinitsky, Bayen, Wu, “Unified automatic control of vehicular systems with reinforcement learning,” IEEE Transactions on Automation Science and Engineering (T-ASE), 2022.
Jayawardana, Tang, Li, Suo, Wu. “The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning.” Advances in Neural Information Processing Systems (NeurIPS), 2022.



NOT SURE IF TRAFFIC IS HARD
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LIDOT | *
Task variations: signalized intersections S ot
345 intersections analyzed
164 unique configurations
Feature Units Mean Standard Dev
Lane Count - 3.8 1.37
Speed mph 32.6 5.40
Length of Lanes meters 260.8 193
Vehicle inflow vehicles/hour  73.5 774
Left Turns Count - 0.229 0.496
Right Turns Count - 0.100 0.298

Traffic signal control
Decision (action): traffic phases

s

"I

%T (p3ﬂ ¢4d
¢6& <P7\ %P

Example: Typical phases, or traffic
movements, in a 4-way intersection.

Qu*, Valiveru*, Tang, Jayawardana, Freydt, Wu. “What is a Typical Signalized Intersection in a City? A Pipeline for Intersection Data Imputation from OpenStreetMap.” TRB, 2023.
Jayawardana, Tang, Li, Suo, Wu. “The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning.” Advances in Neural Information Processing Systems (NeurlPS), 2022.



Sensitivity of RL to task variation

Method evaluation for traffic signal control

Rank Benchmark [1] Salt Lake City

1 Best Max pressure Fixed Time
2 IDQN Max pressure
3 MPLight IDQN
4 IPPO MPLight
5 Fixed Time MPLight*

6 Worst MPLight* IPPO
Methods: — Deep RL — — Classical strategy

= Deep RL is not robust to problem variations
= Simple baseline outperforms deep RL methods!

i

Salt Lake City

Single Signal

)

Benchmark
(RESCO [1])

[1] Ault, Sharon. “Reinforcement learning benchmarks for traffic signal control.” Advances in Neural Information Processing Systems (NeurlIPS), 2021.

Jayawardana, Tang, Li, Suo, Wu. “The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning.” Advances in Neural Information Processing Systems (NeurIPS), 2022.
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Sensitivity of RL to task variation Overfitting to benchmark?
1.0-e ] ® °
.. . . . 230g9-
Similar findings in popular control benchmarks g5
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550 ?
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Refe rence Figure 11: Visual illustration of family of point MDPs used in the Pendulum task § E; 05 .
z2= [ ]
benchmark 001 x | - .
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Reported performance is reproduced from common benchmark task specification. Method

Jayawardana, Tang, Li, Suo, Wu. The Impact of Task Underspecification in Evaluating Deep Reinforcement Learning. Advances in Neural Information Processing Systems (NeurlPS), 2022.



Outline

1.

Challenge 1: RL is quite sensitive
Solution 1: Standardize RL evaluation
Challenge 2: Overfitting to benchmarks

Solution 2: Explicitly model generalization

a. Contextual RL
b. Model-based transfer learning (NeurlPS 2024)

35



A broader framework

= Contextual Markov Decision Process (CMDP)
* A generalization of MDP that explicitly incorporates environment characteristics
* Useful for describing families of MDPs

= Contextual Reinforcement Learning (CRL) studies CMDPs

Example:
Problem variations in

) ) i - Training
signalized intersections

Training
contexts

Context
Distribution

Iy
ki
Ce

Testing
contexts

Adapted from AutoML

1] A. Modi, N. Jiang, S. Singh, and A. Tewari, “Markov Decision Processes with Continuous Side Information,” in Proceedings of Algorithmic Learning Theorg, PMLR, Apr. 2018.
2] A. Hallak, D. Di Castro, and S. Mannor, “Contextual Markov Decision Processes,” Feb. 08, 2015, arXiv: arXiv:1502.02259. Available: http://arxiv.org/abs/1502.02259

_

Policy-Transfer




cMDP 37

Want: Fast, reliable training for CMDPs [Taskoj
Typical approaches

Multi-task training Policy >

Inde,pe_nde_nt tr‘odnimj

SOOO O <

)
T 701 7o T3 7T " "
0 1 2 3 4 uniVer$oJ policy
X Expensive to train all tasks More sample efficient to train
Specializes policies to different tasks X Requires high model capacity [1]

X Cross-task training instability

[11 A. A. Taiga, R. Agarwal, J. Farebrother, A. Courville, and M. G. Bellemare, “Investigating Multi-task Pretraining and Generalization in Reinforcement
Learning,” in The Eleventh International Conference on Learning Representations, 2023.
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Unreasonable effectiveness of zero-shot transfer

= Neither is sufficient.

0 Observatlon Zero-shot transfer is cheap & works remarkably well

1.0

| MultltaskTralnlng
[ Independent Training
[ Oracle Transfer

o
©

o
0

o©
q

e
o
)

©
%]

°
i
.

Average Generalized Performance

o
w

Cartpole Pendulum BipedalWalker Traffic Signal Control Eco-driving Control
(Mass of Cart) (Timestep) (Friction) (Inflow) (Green Phase)
CMDP Tasks

. . . Note: all methods given same training budget
= Algorithmic question

* How to select which tasks to train? = Source task selection problem

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurlPS), Dec. 2024.



Problem formulation

Aim: Choose source tasks that maximize target tasks performance

Option 1: Source task selection (STS) problem

Choose training tasks all at once budget

K=2

Option 2: Sequential source task selection (SSTS) problem ~

Choose training tasks sequentially T T1
O O
© /o O/ o
‘/ A cMDP
/4 PN
O OO oxexe [ e Oj
™0 Ty 1 T 71 702

Policy <>
[1] J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy.” Under review.
[2] J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning.” Under review. Wu
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Proposed approach: Model-based transfer learning

= Strategically select training tasks Zero-shot Generalization

= How? Explicit modeling of Lol
generalization performance
(“model-based”) g %
£
g 0.6 1
Example: Cartpole f g 0.l
benchmark task na E
< 0.2
0.0
0 1 2 3 4 5
Car.tpole CMDP Mass of the pole in CartPole

Il ' Modeling assumption:
h Linear generalization gap

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurlPS), Dec. 2024.



Warm-up 1
= Assume: Constant performance across contexts

= Assume: Fixed training budget

1 ____________________ -
0.8 e
Theorem 1: §
. - . . ©
Equidistant selection is I - <A Transfer Budget K =
optimal 5 B
Q Transfer |
B ol T S T BN Transfer2
N 04' E :
= I Transfer 3
g i [ Transfer 4
o) . Transfer 5
Z 0.2 -g o ............................................................................. - Transfer6
: : . BB Transfer 7
20 30 40
Context

J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy,” arXiv, 27 Nov. 2023, doi:10.48550/arXiv.2312.09436.



https://arxiv.org/abs/2312.09436

Warmup 2

Assume: Constant performance across contexts

—Assume:Fixed-training budget 2 ¢- optlmal

Anytime algorithm

[0}
O
e
©
Theorem 2: E
Greedy selection is bounded E
sub-optimal 3|
T 041 k=1
E N k=2
Z 024 N k=3
| k=4
; I k=5
0 0.25 0.5 0.75 1

Context

J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy,” arXiv, 27 Nov. 2023, doi:10.48550/arXiv.2312.09436.



https://arxiv.org/abs/2312.09436
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Model-based transfer learning

Marginal generalization
(a) performance Generalization gap
» (linear)

Estimated training
performance .*°
(Gaussian Proceg8)

. i -
: Generalization
i performance

Zero-shot : > )
Transfer T s Wy B ST

Xo | X1 [ X2 | euu | eue [ oun |XN-3[XN-2|XN-1 Xo | X1 ng

Next Y
lteratio Context space X
(d)

Acquisition
function

Terminate Select max!

Train on x4!

Zero-shot

argmax
Transfer

Xo | X1 | X2 [ eeu | eun | vns |XN-3]XN-2|XN-1 xo.xz vee | een | v |XN=3|XN-2[XN-1

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurlPS), Dec. 2024.



MBTL: Control experiments

e o o +
A o o o

o
(N)

Normalized performance

e
o

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurlPS), Dec. 2024.
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. . MBTL achieves up to 25x improved
MBTL: Traffic experime nts sample efficiency over independent

and multi-task training.
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MBTL: Sensitivity analysis
Generalization gap (slope): Did not tune

Bayesian optimization acquisition function: Not that sensitive
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Figure 8: Sensitivity analysis on acquisition functions.

J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurlPS), Dec. 2024.
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MBTL: Sensitivity analysis

Underlying RL method: Remains effective vs baselines

DQN
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J.-H. Cho, V. Jayawardana, S. Li, and C. Wu, “Model-Based Transfer Learning for Contextual Reinforcement Learning,” in Advances in Neural Information Processing Systems (NeurlPS), Dec. 2024.
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Summary

Modern RL methods are powerful but highly highly sensitive.

Factors include: random seeds, hyperparameters, implementation
details, MDP specifications, task variation

To , control as many factors as possible,
use common benchmarks & codebases, and apply standard
statistical techniques. At the very least, run multiple trials (=10-20).

However, overreliance on benchmarks can lead to methods that
overfit the benchmark, including issues of
(a.k.a. limited external validity).

Explicit modeling of generalization performance can enable reliable
RL methods (with greater external validity).

The design of RL methods remains an art as well as a science. See
Lecture Appendix B for RL method implementation best practices.

Wu



49

Further reading

1. AlexIrpan. Deep Reinforcement Learning Doesn't Work Yet. Sorta Insightful Blog,
2018. https://www.alexirpan.com/2018/02/14/rl-hard.html

2. Amid Fish. Lessons Learned Reproducing a Deep Reinforcement Learning Paper.
Blog, 2018. http://amid.fish/reproducing-deep-r|

3.  A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in
Reinforcement Learning.” arXiv, Apr. 03, 2023. doi: 10.48550/arXiv.2304.01315.

4. For general principles on experimental design: D. C. Montgomery, Design and
analysis of experiments, Tenth edition. Wiley, 2020.

* Chapter 1: Introduction
* Chapter 2: Simple Comparative Experiments


https://www.alexirpan.com/2018/02/14/rl-hard.html
http://amid.fish/reproducing-deep-rl
https://doi.org/10.48550/arXiv.2304.01315

Appendix A

Confidence intervals, p-values, testing under
non-standard distributions

50
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Confidence intervals
Capture confidence in estimation of the mean performance

A common choice is the Student t-distribution (Gaussian assumption)

Consider n samples: M{, M,, ..., M,,
Ry g

The confidence interval is of the form l]VI —tan 7= tan %]

N\ de 1 n — de 1 n VaY/
whereMd:f; ilei,O'dsz i=1(Mi_M)

The t-test statistic t, ,, depends on the significance level (typically « = 0.05 or 0.01) and
the number of samples [see lookup table].

-200 —200 7 -200

Confidence intervals 200 - 300 - 300 4
for DQN on Mountain
Car (30 runs)

—400 —400 -400

(w/ 200 re-samplings)

-500 _500 4 -500
T T

T T T T T T T T T T T
0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k

(a) a = 0.05 with Student’s t  (b) @ = 0.3 with Student’s t (c) a = 0.05 with bootstrap

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.
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https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
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Confidence intervals

Percentile bootstrap is more expensive, but requires few
assumptions
Method: Obtain n samples, then re-sample n values with replacement.
Repeat for m re-samplings, usually large (m = 10,000).
A 95% confidence interval is generated using the [0.025,0.975]t%
percentiles of the m re-sampled means.

-200 —200 7 -200

Confidence intervals 200 - 300 - 300 4
for DQN on Mountain
Car (30 runs)

—400 - —400 -400

(w/ 200 re-samplings)

-500 _500 4 -500
T

T T T T T T T T T T T T T T T T T
0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k

(a) a = 0.05 with Student’s t  (b) @ = 0.3 with Student’s t (c) a = 0.05 with bootstrap

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.
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Reminder on p-values

p-value (a): the risk of wrongly
rejecting the null hypothesis

p-values are NOT the error rate of S
the statistical test (£) g

RAS

-2 Ty X

Figure 1: Two normal distributions

Table 1: Hypothesis testing representing the performances of two
algorithms. Dashed lines: performance
True H, True H, measures (realizations). Plain lines:
empirical means of the two samples
Pred. Hy True neg. 1—a™  False neg. B* (N =3).
Pred. H, False pos. a* True pos. 1—3*

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.
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Testing under non-standard distributions

192 runs of SAC

SAC

It’s typical for RL methods to exhibit
non-standard distributions, i.e. non-
Gaussian.
There may even be long-tailed performance = S
distributions
Ex (PuddleWorld). 30 runs was found to be Q

sufficient to estimate the mean.

DQN on PuddleWorld
exhibits a non-Gaussian

How bad is the Gaussian assumption then? performance curve, with

low performing runs
occurring 5% of the time

(e

—500 —400 —-300 —200 —100

A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, 2023. doi: 10.48550/arXiv.2304.01315.
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Testing under standard distributions
How sensitive are statistical tests — normal o-1

= himod. o=1

to distributional assumptions? To ~— togmorm o=
RL methOdS? bimod. 0=2

log-norm. g=2

Figure 2: Candidate distributions to represent algo-
rithm performances.

Consider the standard normal 503 — s bousiag
Number of samples to achieve 202 = Gakediies: |
false positive rate of 0.05 801

Q | gﬁ__‘___; _____
r_|.EO,0- { L . L L N A
2 3 5 10 20 30 50 100

Sample size N (log scale)

B. L. Welch, “The generalization of student’s’ problem when several different population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28-35, 1947.
C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.
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Testing under non-standard distributions

Gaussian assumption is fine! — normal o=1

— bimod. oo
Welsh t-test (and standard t-test) is L:md'mgl
most robust to candidate distributions

T-test: Assumes equal variances.

Welch’s t-test: Different variances. Figure 2: Candidate distributions to represent algo-

log-norm. g=2
rithm performances.

S — t-test bootstrap S] — t-test bootstrap
@0.3r == Welch t-test permutation g === Welch t-test permutation
o Mann-Whitney == a=0.05 90_3_ Mann-Whitney == q=0.05
_“2" 0.2 . Ranked t-test g = Ranked t-test
= £0.2
(%] (%]
o o
] e — [J] 0.1 —
A B, 2t n I —f — — — e
L 0.0k N . . . i , e 0.0k : L : i N x
2 3 9 10 20 30 50 100 2 3 5 10 20 30 50 100
Sample size N (log scale) Sample size N (log scale)
(a) (b)

Figure 6: False positive rates for different distributions, different standard deviations. x; and x> are
drawn from two different distributions, centered in 0 (mean or median), with o3 =1 and o2 = 2. (a): normal
and log-normal distributions. (b): bimodal and log-normal distributions.

B. L. Welch, “The generalization of student’s’ problem when several different population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28-35, 1947.
C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.
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Example: performance distributions for SAC vs TD3

Visualization of 192 runs

504 oAC *U — t-test bootstrap
20.3 == Welch t-test permutation
40] o = Mann-Whitney = === a=0.05
g 0.2 = Ranked t-test
> 304 :b_—_l
g 4 Half Cheetah
20.1
20 ] ————  e———————————
2 p— — —— -4
104 & 0.0k - g ! ! ! A
2 3 5 10 20 30 50 100
Sample size N (log scale)
00 20‘00 40‘00 GObO 8000 10000 12000 . ..
peromence Figure 7: False positive rates when com-

paring SAC and TD3. x; is drawn from SAC
performances, x2 from TD3 performances.
Both are centered in 0 (mean or median),
with 01 = 1.313 and 02 = 1.508.

Frequency

Relative effect size € = 0.93 (mean)
- 10-15 tests sufficient

0 2000 4000 6000 8000 10000 12000 14000
Performance

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/arXiv.1904.06979.
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Appendix B

Implementation best practices

For:
* Designing RL methods
*  Applying RL methods
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Implementation best practices

Randomization

This allows for more
precise “blocking designs” to cancel out nuisance factors, e.g.,
unlucky initializations, by permitting applying different algorithms or
configurations on the same data (environment instance) [1]

In practice, this means using separate random seeds for the agent
and the environment [2].

[1] D. C. Montgomery, “Design and analysis of experiments,” Tenth edition. Hoboken, NJ: Wiley, 2020.
[2] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, Apr. 03, 2023. doi: 10.48550/arXiv.2304.01315.
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Implementation best practices

Baselines

Consider , such as random search or a constant policy, to
indicate if the RL method is learning anything interesting. These can be
surprisingly strong baselines.

Consider SotA methods for the problem of interest, to indicate if the RL
method is learning something important.
, especially for specific applications!

Design an that has privileged access to information, to
indicate the suboptimality gap of the RL method. For example, full state
information (vs partially observed) or oracle access to certain training
labels.

for all methods, for a fair
comparison. For example, consider the same number of hyperparameter
settings for each method.
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Implementation best practices

Environments A

= Make use of existing benchmarks. Because
benchmarks are prone to errors, misspecification,
reward hacking, etc. Popular benchmarks are
more likely to have these issues worked out (but
no guarantee, of course).

i
= Be wary of perverse (worst-case) examples or \
random MDPs. These problems, while commonly
used for (worst-case) theoretical analysis, may not
be representative of problems you ultimately care
about [1].

= Most importantly, use tasks that test the claims of
the approach.

[1] A. Patterson, S. Neumann, M. White, and A. White, “Empirical Design in Reinforcement Learning.” arXiv, Apr. 03, 2023. doi: 10.48550/arXiv.2304.01315.
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Implementation best practices

Environments

- your mileage may vary (YMMV)

If benchmarks do not exist for your domain, start with
creating simple versions of your application.

) (i) Qi) (50 =0

Consider using the closest available benchmarks to your — &
application. : : @_

and gradually increase complexity —

both for the environment and the agent. B
Avoid working on image-based environments unless you 35
are specifically interested in pixel-based learning (e.g., T o0 000 oo
sensorimotor control). That extra complexity is often L=
orthogonal to other challenges. 0 EE
8

[1] J.-H. Cho, S. Li, J. Kim, and C. Wu, “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy,” arXiv, 27 Nov. 2023, doi:10.48550/arXiv.2312.09436.
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Implementation best practices

Environments

Training is expensive!

Example [1]: Similar conclusions to Rainbow DQN using 9 carefully selected
small-scale tasks (vs 57 medium-scale games)!

438x less compute to get the same results

CartPole-v0 Acrobot-v1 LunarLander-v2 MountainCar-v(
™ | - \/
MinAtar

[1] Obando-Ceron J. S., Castro P. S. Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research. ICML, 2021. Wu
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Implementation best practices

Comparisons
s — t-test bootstrap
0.3 == \Nelch t-test permutation
10-20 trials typically good enough c Mann-Whitney == a=0.05
So.2 =~ Ranked t-test
8
20.1
b
©
Not wall clock or CPU time, which O — S5 | 10 N(?'o 3'0I )5'0 T60
depend on hardware and/or other ol e T Hog seae
running processes Figure 7: False positive rates when com-
# samples is a more reproducible paring SAC and TD3. x; is drawn from SAC
measure performances, x2 from TD3 performances.

Both are centered in 0 (mean or median),
with 01 = 1.313 and 05 = 1.508.

[1] B. L. Welch, “The generalization of student’s’ problem when several different population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28-35, 1947.
[2] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms.” arXiv, 2022. doi: 10.48550/4#Xiv.1904.06979
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Implementation best practices

Guidance on hyperparameters

A (small-enough) constant learning rate typically suffices

Beyond that, annealing the learning rate can help (continually decay the
learning rate)

Nonstationary environments tend to benefit from smaller learning rates

(e.g., e-greedy)
Start with higher exploration, gradually decay it to some lower limit,
e.g. € = 0.05.

Ensure that there is enough training time near the lower limit, for training
stability



Implementation best practices

Guidance on hyperparameters

, see comprehensive
hyperparameter study [1]

Caveat 1:

Caveat 2: YMMV even for Mujoco benchmarks, because the hyperparameter
sweeps are conducted locally wrt PPOv2.
Recommendations (see paper for theories behind the recommendations):

Normalize normalize normalize — reward scaling, input normalization, value function
normalization

Use separate networks for the value fn & policy

Limit exploration at the start. In practice, this means setting a low initial std for the
policy network

tanh activation > RelLU
MSE >> Huber loss for the value function loss

[1] Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” ICLR, 2021. Wu



Implementation best practices
Replay buffer

Needs considerable capacity to perform well
Typical sizes are 10K-1M.

Take care at the start of training: Collect enough initial “experience”
by allowing the replay buffer to fill up part way, before starting to
update the value function



Implementation best practices
Optimization
Take multiple passes through collected data

Use mini-batch gradient descent, rather than SGD or batch gradient
descent

Typical mini-batch sizes range from 32 to 1024
Optimizers: Adam (RMSprop + momentum) and RMSprop are both
sensible

RMSprop is preferred for value-based methods (more stable, less sensitive to
hyperparameters)



More practical tips (via Eugene Vinitsky, 2024)

Use fast RL environments rather than slow environments
Collecting trajectories is often the bottleneck in RL training
Fast environment implementations can easily collect trajectories
Examples: pufferlib and vmas
Can then iterate much faster on RL algorithms

Use a hyperparameter tuner instead of trying to grid search.

Now even directly built into weights and biases:
https://docs.wandb.ai/tutorials/sweeps/

There is growing evidence that classification losses outperform
regression losses: https://arxiv.org/pdf/2403.03950



https://docs.wandb.ai/tutorials/sweeps/
https://arxiv.org/pdf/2403.03950

More practical tips (via John Schulman circa 2018)

DQN is more reliable on some Atari tasks than others. Pong is a
reliable task: if it doesn’t achieve good scores, something is wrong

Large replay buffers improve robustness of DQN, and memory
efficiency is key

Use uint8 images, don’t duplicate data

Be patient. DQN converges slowly—for ATARI it’s often necessary to
wait for 10-40M frames (couple of hours to a day of training on GPU)
to see results significantly better than random policy

Try Huber loss on Bellman error

. if x| <0
L(X) — 2

d| x| — % otherwise



More practical tips (via John Schulman circa 2018)

Try Double DQN—significant improvement from small code change

To test out your data pre-processing, try your own skills at navigating
the environment based on processed frames

Always run at least two different seeds when experimenting

Learning rate scheduling is beneficial. Try high learning rates in initial
exploration period

Try non-standard exploration schedules



A final note

If you noticed some inconsistencies in the tips, it’s because RL is still
an art as well as a science. Your experience may vary too.

And feel free to get in touch—including in the years to come—if you
have suggestions on implementation best practices.



Appendix C

Additional examples of RL sensitivity

Wu



HalfCheetah-vl (TRPO, Different Random Seeds)

Example: Sensitivity of RL to random seeds
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S000

(000

Average Return
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1000

Henderson, Islam, Bachman, Pineau, Precup, Meger, Deep Reinforcement Learning That Matters, AAA/ Conference on Artificial Intelligence, 2018.
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------- Random Average (5 runs)

- Random Average (5 runs)

(.00 0.25 0.50 0.75 1.00
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Half Cheetah

74



= Example hyperparameter sweep for RL methods

Hyperparameter | Full Space Small Space LR Only
leaning_rate log(interval(le-6, 0.1)) log(interval(le-6, 0.1)) log(interval(le-6, 0.1))
ent_coef interval(0.0, 0.5) interval(0.0, 0.5)
n_epochs range[5,20] range[5,20]
batch_size {16, 32, 64, 128}
n_steps {256, 512, 1024, 2048, 4096}

§ gae_lambda interval(0.8, 0.9999)
clip_range interval(0.0, 0.5)
clip_range_vf interval(0.0, 0.5)
normalize_advantage {True, False}
vf_coef interval(0.0, 1.0)
max_grad_norm interval(0.0, 1.0)
leaning_rate log(interval(le-6, 0.1))  log(interval(le-6, 0.1)) log(interval(le-6, 0.1))
train_freq range[1,1e3] range[1,1e3]

O tau interval(0.01, 1.0) interval(0.01, 1.0)

& batch_size {64, 128, 256, 512}
learning_starts range[0,1e4]
buffer_size range[5e3,5¢7]
gradient_steps range[1,10]
learning_rate log(interval(le-6, 0.1)) log(interval(1le-6, 0.1)) log(interval(le-6, 0.1))
batch_size {4, 8,16, 32} {4, 8, 16, 32}
exploration_fraction interval(0.005, 0.5) interval(0.005, 0.5)

> learning_starts range[0,le4]

O train_freq range[1,1e3]

. gradient_steps range[1,10]
exploration_initial_eps interval(0.5, 1.0)
exploration_final_eps interval(0.001, 0.2)
buffer_size range[5e3,5¢7]

Table 4: StableBaselines search spaces.

T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in Reinforcement Learning and How To Tune Them.” arXiv, 2023. doi: 10.48550/arXiv.2306.01324.
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Example: Sensitivity of RL to hyperparameters

= Same algorithm has different sensitivities in different environments
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Figure 28: DQN Hyperparameter Importances on Acrobot (left), MiniGrid Empty (middle) and MiniGrid DoorKey (right).

|

OpenAl’s Acrobot MiniGrid Empty MiniGrid DoorKey

T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in Reinforcement Learning and How To Tune Them.” arXiv, 2023. doi: 10.48550/arXiv.2306.01324.



https://doi.org/10.48550/arXiv.2306.01324

Example: Sensitivity of RL to hyperparameters

= Same algorithm has different sensitivities in different environments
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Figure 29: SAC Hyperparameter Importances on Pendulum (left) and Brax Ant(right).

\ A

OpenAl’s pendulum Brax Ant
(fully differentiable)

T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in Reinforcement Learning and How To Tune Them.” arXiv, 2023. doi: 10.48550/arXiv.2306.01324.
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Example: Sensitivity of RL to discount factor
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Figure 60: Analysis of choice Discount factor v (CRd): 95th percentile of performance scores
conditioned on choice (left) and distribution of choices in top 5% of configurations (right).
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Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.
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Example: Insensitivity of RL to “frame skip”
= Persist action for k frames (time steps). % n

Hopper Half Cheetah Walker

Popularly used for Atari [1]. % %
= Not so sensitive in these Mujoco tasks for k € {1,2,5}. [2] == "=

Hopper-vl Humanoid-vl Walker2d-v1 HalfCheetah-v1 Ant-v1 Hopper-vl Humanoid-vl Walker2d-v1l HalfCheetah-vl  Ant-vl - all
| " o 10 06 10
2500 800

Figure 61: Analysis of choice Frame skip (CR1): 95th percentile of performance scores condi-
tioned on choice (left) and distribution of choices in top 5% of configurations (right).

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Environment: An Evaluation Platform for General Agents,” JAIR, 2013, doi: 10.1613/jair.3912.
[2] Andrychowicz, et al., “What matters in on-policy reinforcement learning? A large-scale empirical study,” International conference on learning representations (ICLR), 2021.
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Example: Sensitivity of RL to “frame skip”

Caution: With each of these factors, your mileage may vary.

Example: Consider control frequency in a driving application [1].

Equivalent to frame skip k € {1, ..., 400}

== speed == desired speed

Speed (mis)
o

0
1000 1500 2000 2500 3000

Terminology for similar ideas:
Frame skip (video game development)
Zero-order hold (control theory) . . .
Action persistence (deep RL) Velocity-based advisories
Action repetition (deep RL)
Control frequency (control theory)

Time step (0.1 sec)

GLOSA Demo app [2]

[1] Cho, Li, Kim, Wu. “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy.” In review, T-RO.
[2] Reducing fuel emissions with innovative tech, 2018. https://www.eastpoint.co.uk/case-studies/glosa/
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Example: Sensitivity of RL to “frame skip”

Model highway (acceleration guidance) Highway ramp (velocity guidance)
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== Deep reinforcement learning (TRPO) v 14 == Deep reinforcement learning (TRPO)
=== Optimal velocity from hand-designed policy === Optimal velocity from hand-designed policy
=== Baseline (human) === Baseline (human)
0 T T T T — T T T T 0 r r T T T T T T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Guidance hold duration (sec) Guidance hold duration (sec)

Tasks: Equivalent to frame skip k € {1, ..., 400}
Method: TRPO

Train: 5 trials per hold duration
Test: 50 test epochs using the best trained policy

Cho, Li, Kim, Wu. “Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy.” In review, T-RO. Wu
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