
Between the Theory & Practice
of Contextual Bandits in Recommender Systems

Lihong Li
lihongli.cs@gmail.com

6.7920: Reinforcement Learning: Foundations and Methods
11/14/2023

mailto:Lihongli.cs@gmail.com

Contextual bandits

• The most widely deployed form of RL
• Everyday use in major RS like Amazon, Facebook, Google, Netflix, Spotify, …
• Commercialized tools on the cloud: AWS, Azure, …

• This lecture:
• A little shift towards practical challenges from theoretical discussions
• Examines RS and similar applications
• Focuses on limitations of the basic theory, and example solutions
• Not intended to be an extensive overview

Outline

• Bandit for RS recap
• Challenging the assumptions
• Handling the complexities
• What is a good algorithm
• Q&A

Recommender systems

• Over 3 decades of research [G92, BS97]
• Everywhere on & off the Web (thanks to vast volume of data & mobile)

Recommender
System

Candidate pool

Other data
sources

Example: Personalized news recommendation

5

Alex

Betty
Charlie

User-item rating matrix
(we may have numerical ratings instead of thumb up/down)

www.yahoo.com

http://www.yahoo.com/

Non-RL approaches
• Traditional approaches try to predict unseen ratings

• Collaborative filtering (CF)
• Content-based filtering

• CF: users with similar ratings in the past will be similar in the future
• Low-rank matrix factorization to fill in missing values in use-item rating matrix
• Evaluated against RMSE, Precision@K, Recall, …
• Example (square loss): ℓ 𝜃 ≔ !

"
∑# 𝑓 𝑥# , 𝑎#; 𝜃 − 𝑦# $

• Highly successful [ACE09, KVC09]
• Limitations

• Cold-start problem: new items/users don’t have enough data required by models; need
to actively experiment to improve model prediction

• Gap between offline proxy metrics (RMSE, …) and online metrics (adoption rate, ...):
higher offline metric may correlate poorly with online metrics

6

Bandits came to the rescue
• RL view of RS as sequential decision making

• Observes state/context: user features, page context, query, device, …
• Takes an action: what to recommend
• Receives reward: outcome/utility of the recommendation

• Simplest RL setting: contextual bandits [LZ08] (aka associative RL)

7

Observe action
set 𝐴! and
context 𝑥!

Select action
𝑎! ∈ 𝐴!

Receive reward
𝑟!	 (e.g., click) Goal: maximize ∑! 𝑟!	

𝑡 ← 𝑡 + 1

Plots from L+10

• LinUCB applied to personalized news recommendation [L+10]

Rich context 𝑥!
• Contextual signals: query, webpage, products-in-cart, device, …
• Demographic: age, gender, location, …
• Behavioral signals: previous views, clicks, purchases, visit frequency, …
• Social features: friend connections on Facebook, follows on Twitter, …

• Not all features are available
• Some features are missing for some users

• Eg, if they don’t log in, or if they opt out of personalization

Flexible choice of actions 𝐴!
• Item: product, news, video, music, app, job, health suggestion, …
• System parameter: reserve price, online bidding, …
• Edge/node in a graph: connections on LinkedIn/Facebook
• Email/coupon: marketing promotions
• …

Diverse choice of reward 𝑟!
• Adoption: click, subscription
• Duration: listen/watch time
• Revenue: product sales, real-time bidding
• Satisfaction: web search (use click, navigation, query reformulation etc.

to derive implicit satisfaction signal)
• Wellbeing: healthcare measurements

Wide success in practice

• Numerous applications in everyday lives
• Sometimes solving the problem even without knowing it
• Example: strategies to learn new user preferences in RS [R+02]

• “Random”: similar to explore-then-commit
• “Pure entropy”: similar to pure exploration
• “Balanced strategies”: mimicking UCB

• Diversity of scenarios is contrast with the simplicity of the bandit model
• Is the theory useful? Yes, proven.
• Are there gaps between theory and practice? Yes, we will see.
• How to close the gaps? We’ll see examples, opportunities and open questions.

Outline

• Bandit for RS recap
• Challenging the assumptions
• Handling the complexities
• What is a good algorithm
• Q&A

Revisit the contextual bandit model

For 𝑡	 = 	1, 2, 3,…
• Observe context 𝑥! ∼ 𝜈"
• Select one action 𝑎! ∈ 𝐴!
• Receive reward 𝑟! ∼ 𝜈# ⋅ |𝑥!, 𝑎!

Elegant and useful mathematical model, but ..
lots of simplifying assumptions that almost never hold in practice.
Good news: in many applications, they are good enough

Stochasticity assumptions of 𝑥! and 𝑟!
• Exogenous factors

• time of day, day of week, seasonality, macroeconomic, …
• some can be added as part of context (eg, time)
• but some are latent variables, so hard to include

• Dependence on history (past actions, as in full RL)
• Budget in real-time bidding
• Within-session in search and shopping
• Repeated exposure
• Previous medical treatments

• Further subtleties
• multiple users sharing the same account (eg, Netflix account)
• same user with multiple devices (“spillover effect”)

Case 1: Linear-reward assumption

• Much earlier bandit work assumed reward function is linear
• Easier to derive closed-form updates and analyze regret
• Still be useful in practice, but not ideal
• Example how things may go wrong?

• Challenges
• Poor modeling assumption leads to poor model fitting

• Linear function for 0/1 (eg, click or not) may output -1 or 100
• Poor fitting invalidates confidence intervals (as in LinUCB), harming exploration

efficiency (both theoretically and empirically)
• Efforts

• Bandits with generalized linear models (next)
• Bandits with kernels [S+10]
• Bandits with neural networks [Z+20]

Bandit with generalized linear models

• GLM extends linear models: there exist functions 𝑔, ℎ,𝑚 such that

𝑝 𝑟 𝑥, 𝑎 = exp
𝑟𝑢 − 𝑚 𝑢
𝑔 𝜂

+ ℎ 𝑟, 𝜂 , 𝑢 = 𝜙 𝑥, 𝑎 !𝜃∗

• This is exponential family of distribution. It’s known that
𝐄 𝑟	|𝑥, 𝑎 = �̇� 𝑢 = 𝜎 𝑢 	

 for some fixed, strictly increasing link function 𝜎 ⋅
• If 𝜎 is identity, we recover the original contextual linear bandit
• Popular choice for binary reward is logistic function: 𝜎 𝑢 = #

#$%&' ()
• Challenges

• No closed form of confidence intervals
• No closed form of parameter updates

GLM-UCB and regret bound

• Extending from linear (closed form) to GLM (approximate form) [L+17]
• Update: Find maximum-likelihood solution after step t

!𝜃* = argmax
+
log ℓ, 𝜃 = argmax

+
,
-./

*

𝑟*𝜙 𝑥* , 𝑎* 0𝜃 −𝑚 𝜙 𝑥* , 𝑎* 0𝜃

• Confidence interval: similar to the linear case (under regularity conditions on
𝜎), although analysis is involved

𝜙 𝑥, 𝑎 0 !𝜃* − 𝜃∗ = 𝑂 𝜙 𝑥, 𝑎 0𝑉*2/𝜙 𝑥, 𝑎

 where 𝑉* = ∑/3-4*𝜙 𝑥- , 𝑎- 𝜙 𝑥- , 𝑎- 0

• Regret bound of GLM-UCB: 8𝑂 𝑑𝑛 , nearly matching lower bound Ω 𝑑𝑛

Outline

• Bandit for RS recap
• Challenging the assumptions
• Handling the complexities
• What is a good algorithm
• Q&A

For 𝑡	 = 	1, 2, 3, …
• Observe context 𝑥* ∼ 𝜈5
• Select one action 𝑎* ∈ 𝐴*
• Receive reward 𝑟* ∼ 𝜈6 ⋅ |𝑥* , 𝑎*

Elegant and useful model for studying the fundamental E/E trade-off, but …
• Over-simplifying in many real-world applications
• Sometimes we need to enhance the model to deal with practical

complexities

Re-revisit the contextual bandit model

Actions

• There is substantial flexibility in designing the action set
• Enumeration of candidates
• Meta candidate: each arm corresponds to one algorithm
• Combinatorial set: ranking, webpage layout
• Continuous set: RS hyper-parameters

• As size of actions (and dimension of context) increases, exploration
also increase. Can we do better?

Case #2: Use of prior knowledge

• Many bandit algo & analysis assume little prior domain-knowledge
• Example: walking off the cliff (strong prior to present disasters)
• Example: finding a pizza house nearby
• A standard approach: Gittins index

• Start with prior over action’s reward distribution
• Every new reward for an action can be used to update the posterior distribution
• Can construct a MDP accordingly, solved by dynamic programming
• But complex, not easy to scale beyond simple cases, and may under-explore.

• How to benefit from prior (to reduce unnecessary exploration), in a
flexible and scalable way?

Thompson Sampling
• Key ideas:

• Start with a prior distribution of reward
• Choose actions according to posterior probability of the actions being optimal

• TS for Bernoulli bandits (where prior/posterior is Beta)
• Input: prior distribution 𝛼, 𝛽 > 0
• 𝑆% = 𝛼, 𝐹% = 𝛽, ∀𝑎 ∈ 𝐾
• For 𝑡 = 1,2,…

• Draw 7𝜃# ∼ Beta 𝑆# , 𝐹#
• Choose 𝑎! = argmax

#
7𝜃#, and observe reward 𝑟! ∈ 0,1

• Update: 𝑆# = 𝑆# + 𝑟!, 𝐹# = 𝐹# + 1 − 𝑟!

• TS can be instantiated to contextual bandits and even general RL
• TS also motivates the notion of Bayesian regret

TS: Empirical comparison to UCB

Left: synthetic data. Right: Yahoo! recommendation data. [CL11]

Rewards

• Asking for a reward signal may be impractical
• We often have user engagement of clicks etc. but not explicit thumb-up/down (next)

• Semi-bandit reward
• We may have finer grained reward signals (in combinatorial actions)

• Delayed reward
• Practical RS don’t have fully real-time rewards, due to engineering limits, or business

constraints. Example: it takes time (minutes, or even days) to lead to a purchase-
based reward

• Global constraint
• Budget of taking certain actions (eg, advertising/marketing).

• Multi-objective bandit
• Balancing user engagement, content diversity, monetization, etc.

• Pure exploration (next)

Case #3: Absolute vs relative reward

• In ranking or multi-slot recommendation, users often don’t give
explicit thumb-up and downs.
• We may equate “click” with thumb-up, and “no click” with thumb-

down, but this approach is noisy
• Clicks are affected by factors other than content quality/relevance
• Clicks are not equal. Absolute feedback is biased, due to position bias, but

relative feedback is more reliable [J+07]

• Interleaving to get relative feedback

https://dl.acm.org/doi/abs/10.1145/1458082.1458092

Dueling bandit

• Dueling bandit relies on relative (not absolute) reward signals [YJ09]
• 𝐴 ⊂ [−1,1]* is compact & convex, and 𝟎 ∈ 𝐴
• 𝐴 is parameter space of a ranking/recommendation function
• For 𝑡 = 1,2,3, … , 𝑇

• Select 2 actions: 𝑎& , 𝑎&' ∈ 𝐴
• Observe stochastic preference: 𝑃 𝑎& ≻ 𝑎&' = !

$
+ 𝜖 𝑎& , 𝑎&'

 (𝜖 is the fraction of users preferring results of 𝑎 over those of 𝑎’)

• Regret: 𝑅$ = ∑! 𝜖 𝑎∗, 𝑎! + 𝜖 𝑎∗, 𝑎!&

• Assumption: there is a differentiable & strictly concave utility function
𝜈: 𝐴 → ℜ s.t. 𝜖 𝑎, 𝑎H = 𝜎 𝜈 𝑎 − 𝜈 𝑎H − /

I
, for some link function 𝜎.

Example is logistic function: 𝜎 𝑥 = /
/JKLM 2N

Solving dueling bandit by gradient descent

• Regret is 𝑂 𝑛
+
,

• More recent results [S+18]

Case #4: Pure exploration

• A core challenges in bandits is balancing exploration and exploitation.
• A different scenario: pure exploration (aka best-arm identification)
• Examples

• Quickly identify the best system parameter and deploy it
• Quickly find the optimal recommendation strategy and serve users
• …

• Close connection to experimental design (randomized clinical trials)

Pure exploration MAB

• Given number of rounds 𝑛 and number of actions 𝐾
• For 𝑡 = 1,2,… , 𝑛

• Choose action 𝑎- ∈ 𝐾
• Receive reward 𝑟- ∼ 𝜇.$ (𝜇.$ is unknown to the agent)

• Recommend an action 7𝑎' ∈ 𝐾

• Recommendation error (assuming unique optimal action 𝑎∗ with
highest reward)

𝑒' = Pr 7𝑎' ≠ 𝑎∗

UCB-E

• For 𝑡 = 1,2, … , 𝑛
• Compute upper confidence bound

𝐵* 𝑎 = �̂�* 𝑎 + P𝐶* 𝑇*2/ 𝑎
• Take action 𝑎* = argmax

O
𝐵* 𝑎

• Observe reward 𝑟* ∼ 𝜈 𝑎*
• Update statistics

𝑇& 𝑎& = 𝑇&(! 𝑎& + 1

A𝜇& 𝑎& =
1

𝑇& 𝑎&
C
)*!

&

𝑟) ⋅ 𝐈 𝑎) = 𝑎&

• For details and deeper discussion [A+10]

UCB-E regret

• In UCB-1, 𝐶! ∼ 𝑡()
• A suboptimal arm is chosen 𝑂 log 𝑛 times in 𝑛 rounds
• That’s how we obtained its regret

• In UCB-E, 𝐶! ∼ 𝑡
• 𝑒/ = 𝑂 𝑛 ⋅ exp −𝑐𝑛 for some constant 𝑐
• But it implies the cumulative regret is linear
• Highlights an interesting and important distinction of pure exploration [BMS11]

• Difference in objective (need for exploitation or not)
• UCB-1 over-exploits for the purpose of pure exploration
• UCB-E under exploits for cumulative regrets

Outline

• Bandit for RS recap
• Challenging the assumptions
• Handling the complexities
• What is a good algorithm
• Q&A

What makes a good algorithm

• Theoretical tools: sample complexity, regret
• Empirical comparison
• Practical considerations

Regret

• Regret analysis offers a beautiful and useful theoretical framework
• Flexible with different reference point

• Gives a first-order answer, but incomplete
• Go deep into the notation and explain what can go wrong

• Too loose (even with matching lower bound)
• Hidden constants in big-O

• Too coarse
• Focuses on worse-case scenarios
• Limits in capturing complex real-world structures/patterns

• Too optimistic
• Relies on assumptions that fail to hold

Practical considerations

• Favors simple algorithms
• Transparency is important
• Fewer assumptions implies greater robustness
• Use prior knowledge whenever possible

• Bayesian prior
• multi-task/embedding
• warm-start model with historical data (off-policy RL)

Outline

• Bandit for RS recap
• Challenging the assumptions
• Handling the complexities
• What is a good algorithm

