Applications of Reinforcement Learning in Criminal Justice and Healthcare

Pengyi Shi

Purdue University

About me

Pengyi Shi

Joined Purdue in January 2014

Ph.D. in Industrial Engineering (Georgia Tech)

Research area:

- Healthcare operations, service operations, queueing and stochastic modeling
- Integrate data analytics into decision making (reinforcement learning, online learning)

Agenda

- Reinforcement learning in queueing network control
 - Jail diversion
 - Formulate model to apply RL
 - Hospital unit placement
 - Leveraging queueing structure in RL

Academic Partners

Xiaoquan Gao Purdue -> SMU

Griffin Carter AAE

Nan Kong BME

Nicole Adams Nursing

Jason Huber Director of TCCC

Robert Goldsmith Sheriff

Academic Partners

Community Partners

Government Agency Collaborator in IL

State-wide community-based alternatives to incarceration and improve access to interventions that reduce crime

Amy R. Ward Zhiqiang Zhang

Booth School of Business

(Purdue -> UCLA) Purdue

Bingxuan Li Chuwen Zhang

Data from Illinois Criminal Justice Information Authority

Rustandy Center

Overcrowding in the Correctional Systems

- Correctional facilities overcrowded
 - 2/3 of jail population have drug-related offences
 - Chronic disease

- Alternatives: Community-based programs
 - Reintegration
 - Treatment medical and therapy
 - Education, life-skill training

Background: Process Flow

8% and 32% for cognitive behavioral programs 30% for substance abuse treatment programs

LSI-R: identify an individual's risks and needs with regard to recidivism.^{20%} for education and employment programs <u>https://cech.uc.edu/about/centers/ucci/products/assessments.html</u>

 $c_R \approx$ \$150,000/person

Prescriptive Program Placement: Problem Formulation – MDP

- State $X_{m,j,d}$ number of clients [class (risk type), facility (jail/CC), LOS]
- Decision: routing $A_{m,j}$ [class (risk type), facility (jail/CC)]
- Cost function: convex occupancy cost + violation cost + recidivism cost

Prescriptive Program Placement Overview

Gao, Shi, Kong (2023) "Stopping the Revolving Door: MDP-Based Decision Support for Community Corrections Placement." Major Revision in *Operations Research*.

Structural Property

Main Result: Superconvexity

THEOREM 1. Under Assumption 1 and some mild technical condition, the optimal value function V^* satisfies $SuperC(e_{jail,l}, e_{cc,l})$, i.e., for all $s \in S$ and $l = 0, 1, ..., \min\{d_{jail}, d_{cc}\}$,

$$V^*(s + 2e_{CC,l}) - V^*(s + e_{CC,l}) \ge V^*(s + e_{jail,l} + e_{CC,l}) - V^*(s + e_{jail,l}),$$
(6)

$$V^*(s + 2e_{jail,l}) - V^*(s + e_{jail,l}) \ge V^*(s + e_{jail,l} + e_{CC,l}) - V^*(s + e_{CC,l}).$$
(7)

Cost decomposition + Policy deviation bounding + Coupling \rightarrow Value function comparison

Implication 1: one optimum → Policy Gradient Algorithm with Theorem 1 as theoretical support
Implication 2: The optimal policy has a "switch curve" structure

Policy Gradient Algorithm

Leverage switch-curve structure to enhance learning

Algorithm 1: Tabular batched actor-critic policy gradient **Input** : Step sizes $\alpha_{\theta}, \alpha_{\omega}$. Batch size N. Number of iterations T. **Output:** Value function $V(\tilde{s}), \tilde{s} \in \tilde{S}$. 1 Initialize $\{\theta_{j,m}(\tilde{s})\}_{j,m}, \tilde{s} \in \tilde{S}$ at random, $V(\tilde{s}) = 0, \tilde{s} \in \tilde{S}$. Initialize state $\tilde{s_1}$ at random. 2 for t = 1, 2, ..., T do for n = 1, 2, ..., N do 3 Set current state \tilde{s}_t . 4 Sample and store the placement of new arrivals $\tilde{a_n} \sim \pi_{\Theta}(\tilde{a}|\tilde{s}_t)$ and the next state $\tilde{s'}_n$. 5 \mathbf{end} 6 Update the policy parameters: 7 $\theta_{j,m} \leftarrow \theta_{j,m} - \alpha_{\theta} V(\tilde{s}_t) \cdot \frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta_{j,m}} \ln \pi_{\Theta}(\tilde{a}_n | \tilde{s}_t), \quad \text{Enforce switching curve structure}$ Update the value function with TD(0): 8 $V(\tilde{s}_t) \leftarrow V(\tilde{s}_t) + \alpha_{\omega} \left(\frac{1}{N} \sum_{n=1}^{N} \left(C(\tilde{s}_t) + \gamma \cdot V(\tilde{s}'_n) \right) - V(\tilde{s}_t) \right).$ (10)Sample the next states $\tilde{s}_{t+1} \sim P(\tilde{s}'|\tilde{s}_t, \tilde{a}_N)$. 9 10 end

Case Study: Data

- Tippecanoe County Community Corrections data
 - Individual-level data: demographics, criminal history, programs, appointments
 - ~56,000 records in 2010 2019

- Jail data
 - Population-level data: demographics, jail admissions, arrests, re-arrests
 - Tippecanoe county, monthly summary 2015 19

Test on Historical Data

• Efficiency frontier over different cost parameters

Leadership Buy-in: Capacity Planning

Recruit 4 more case managers: Reduce recidivism and violations in 3-yr window by 15%-38%.

Cost: Personnel cost (salary) +Variable cost (From increased HD population) = \$2,373,900

Benefit: Jail congestion mitigation + Recidivism reduction = \$40,657,524

- Results presented by Director of TCCC at townhall meeting for budget
- *Sustainable* workforce via better workload plan and reduced burnout

Ongoing Work – Interpretable

Community Corrections Data Analysis Tool

V0.3 - Last Updated 5/31/2022

Navigation Load Client Data & Set Active File Population History

Population History Analysis

Only .csv files are accepted by the program. Maximum file size is 50MB.

ions

Co-PI: Nicole Adams Nursing, Purdue RA: Griffin Carter AAE, Purdue

"A Community Approach for Racial Justice with Data-driven Analytics." 2021 Engagement Scholarship Research/Creative Activities Grant (**PI: Shi**)

Interpretable Placement Decision

Decision tree extracted from the RL-based policy to help understand the placement recommendation

Agenda

- Reinforcement learning in queueing network control
 - Jail diversion
 - Formulate model to apply RL
 - Hospital unit placement
 - Leveraging queueing structure in RL

Background: Hospital Inpatient Network

- Different inpatient units
- Different types of patients

Overflow (Off-service Placement)

Overflow to Reduce ED Crowding

• Overflow 20-30% Emergency Department (ED) patients

[1] Shi et al. (2016); Song et al. (2019)

Tradeoff between Waiting and Overflow

- Helps reduce waiting time and alleviate congestion temporarily
 - Resource pooling
- Not desirable
 - Compromise quality of care (Song et al. 2019)
 - More coordination (Rabin et al. 2012)
 - Overflow patients occupy capacity: "snowball effect" (Dong-Shi-Zheng-Jin 2020) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3306853
- Overflow decisions
 - Overflow the patient now or wait for another hour?
 - Overflow to which wards?
 - Medically closeness, distance to primary wards, ward occupancy, etc

A Five-pool Example

- Challenging to solve with conventional MDP methods
 - Large state space (~10¹⁴) and action space
 - Time-dependent arrival and discharge patterns

Modeling overflow decisions

• State at decision epoch t_k

 $S(t_k) = (X_1(t_k), \dots, X_J(t_k), Y_1(t_k), \dots, Y_J(t_k), h(t_k))$

Patient count of each pool j at t_k Time-of-day To-be-discharge co**imt**i**tetor** pool j

Modeling Overflow Decisions

Action

$$f(t_k) = \{ f_{ij}(t_k), \ i \neq j, \ i = 1, \dots, I, \ j = 1, \dots, J \}$$

• One period cost

$$g(S(t_k), f(t_k)) = \sum_{i=1}^{I} \sum_{j \neq i, j=1}^{J} B_{ij} \cdot f_{ij}(t_k) + \sum_{i=1}^{I} C_i \cdot Q_i(t_k+)$$

• Minimize long-run average cost = overflow cost + holding cost

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}\left(\sum_{k=1}^{n} g(S(t_k), f(t_k))\right)$$

Exact Analysis

• Bellman Equation

$$\gamma^* + \nu^*(s) = \min_{f} \left\{ g(s, f) + \sum_{s'} p(s'|s, f) \nu^*(s') \right\}, \quad s \in S$$

Cost-to-go

- *v(s)*: value function for state *s*
- Large state space $O(X^{J} Y^{J}) \sim 10^{14}$ and action space
 - Value iteration or policy iteration becomes infeasible

Tackling the Curse-of-dimensionality

- Large state space
 - Value function approximation + queueing structure
- Large action space
 - Original setup: combinatorial in matching
 - Atomic action: decomposing action into individual level
 - Policy gradient (PPO)
 - Time-varying long-run average setting

Jingjing Sun Jim Dai CUHK-Shenzhen ORIE, Cornell

Sun, Dai, Shi (2024) "Inpatient Overflow Management with Proximal Policy Optimization." <u>https://arxiv.org/abs/2410.13767</u>

Atomic Action

- Proximal Policy Optimization (PPO) Method
- Randomized policy: $\pi(a)$
- Macro- and micro-decision process

Algorithm

In iteration *i*:

Policy evaluation: value function approximation* $v_{\pi_{\eta}}(t,s)$

Minimize loss function w.r.t.
$$\theta$$

$$\sum_{k=0}^{N-1} \max \left[\left(\prod_{i=0}^{I_{X(t_k)}-1} \frac{\pi_{\theta}(a(t_k,i)|t_k,s(t_k,i))}{\pi_{\eta}(a(t_k,i)|t_k,s(t_k,i))} \right) \hat{A}_{\eta}(t_k,s(t_k),f(t_k)) \right]$$

$$\left(\prod_{i=0}^{I_{X(t_k)}-1} clip \left(\frac{\pi_{\theta}(a(t_k,i)|t_k,s(t_k,i))}{\pi_{\eta}(a(t_k,i)|t_k,s(t_k,i))}, 1-\epsilon, 1+\epsilon \right) \right) \hat{A}_{\eta}(t_k,s(t_k),f(t_k)) \right]$$
With
$$A_{\pi}(t,s,f) = c(s,f) - \bar{c}_{\pi} + \sum_{y \in S} P(t,s,f,y) h_{\pi}(t+1,y) - v_{\pi}(t,s)$$
Update policy (parameterized NN)

*Value function approximation using queueing structure, based on pool-wise decomposition

Policy Representation

Partially-connected structure

Combine the strengths of two intuitive designs (fully-separated or fully-connected)

Empirical Success

• Scalable algorithm: 20-pool network

Importance of Policy NN Design

Smaller sample can perform well under right design

Main Takeaway and Future Research

- Complicated tradeoff
 - Proper modeling and domain knowledge
 - Exciting area
- Future directions
 - Short-term vs long-term fairness (with Chuwen Zhang, Amy Ward)
 - Safe online learning?

Questions?

Email: shi178@purdue.edu