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1. Solving finite-horizon decision problems
a. Example: shortest path rou1ng
b. Dynamic programming algorithm
c. Sequen;al decision making as shortest path
d. Forward DP
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Example: Shortest Path Problem

Sequential decision problem 
§ Start state s0: city 2
§ Action a0: take link between city 2 and city 3 
§ State s1: city 3
§ Action a1: take link between city 3 and city 5
§ State s2: city 5
§ …

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.

6



Wu

Solving Shortest Path

Naive approach: enumerate all possibilities.
• From a starting city s0, choose any remaining 

city (N	- 1 choices). Choose any next remaining 
city (N	- 2 choices). ...
Until there is only 1 option remaining.

• Add up the edge costs.
• Select the best sequence (lowest total cost).
• O(N!).
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Assumption: all cycles have non-negative length.
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Solving Shortest Path

Issue: repeated calculations of subsequences.

• Dynamic programming: divide-and-conquer, or 
the principle of optimality.

• Overall problem would be much easier to solve if a 
part of the problem were already solved.

• Break a problem down into subproblems.
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Solving Shortest Path
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Outline

1. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
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More generally: stochas3c problems
§ Stochastic environment:

• Uncertainty in rewards (e.g. multi-armed  
bandits, contextual bandits)

• Uncertainty in dynamics, i.e. 
𝑠! , 𝑎! → 𝑠!"#

• Uncertainty in horizon (called stochastic 
shortest path)

§ Stochastic policies (technical reasons)
• Trades off exploration and exploitation
• Enables off-policy learning
• Compatible with maximum likelihood  

estimation (MLE)

Dynamic programming in deterministic setting is insufficient.
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Bellman’s Principle of optimality (1957)

27

“An  optimal policy has the property that, whatever the initial state and 
the  initial decision are, the remaining decisions must constitute an 

optimal policy  with regard to the state resulting from the first decision.”

0 t T

st Tail Subproblem

Optimal Bellman equation, i.e. the workhorse of reinforcement learning
(Intuition for now, we will show it later)

𝑉∗ 𝑠 = max
"∈$	

𝑟 𝑠, 𝑎 + 𝛾𝔼&!~	( ⋅ &,")	𝑉∗ 𝑠,
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Principle of op5mality (Bellman, 1957)
29

Principle (Optimality)
Let {𝑎"∗ , … , 𝑎$%&∗ } be an op*mal ac*on sequence, which together with 𝑠" 
and {𝜖", … , 𝜖$%&} determines the corresponding state sequence {𝑠&∗, … , 𝑠$∗}	via 
the state transi*on func*on. Consider the subproblem whereby we start 
at 𝑠'∗ at *me 𝑡 and wish to maximize the value func*on from *me 𝑡 to *me 
𝑇,

over {𝑎', … , 𝑎$%&} with 𝑎( ∈ 𝐴( 𝑠( , 𝜏 = 𝑡,… , 𝑇 − 1. Then, the truncated 
op*mal ac*on sequence  {𝑎'∗, … , 𝑎$%&∗ } is op*mal for this subproblem.

0 t T

st Tail Subproblem

<latexit sha1_base64="4um86o0glLsBlw4n3bKWCrkHyS8=">AAACb3icbVFNb9QwEHXCR8vytZQDhyJksSB1KaySSgguSJUQEsci7baVNmnkeCe7Vh0ntcdIKytXfiA3/gMX/gF2uofSMpLlpzdvZjzPZSuFwST5FcW3bt+5u7V9b3D/wcNHj4dPdo5NYzWHGW9ko09LZkAKBTMUKOG01cDqUsJJef455E++gzaiUVNct5DXbKlEJThDTxXDH1kJS6EcXNie6QZZzXBVlu5LRzMJFc6pLhx2e6bAszdjuk8zY+vCZcjsJ4f7adeduem7tPOywFEvDPdbyvo7VPgG09BgOqaZFssV5oMM1OLK0GI4SiZJH/QmSDdgRDZxVAx/ZouG2xoUcsmMmadJi7ljGgWX4LewBlrGz9kS5h4qVoPJXe9XR197ZkGrRvujkPbs1QrHamPWdemVwQxzPRfI/+XmFquPuROqtQiKXw6qrKTY0GA+XQgNHOXaA8a18G+lfMU04+i/KJiQXl/5Jjg+mKTvJ8m3g9Hhq40d22SXvCR7JCUfyCH5So7IjHDyO9qJdqPn0Z/4WfwippfSONrUPCX/RDz+C+bCuvM=</latexit>

E
"
rt(s

⇤
t ) +

T�1X

⌧=t+1

r⌧ (s⌧ , a⌧ ) + rT (sT )

#
(1)
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Dynamic programming algorithm
30

𝑉! 𝑠! = 𝑟! 𝑠!  State s
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Dynamic programming algorithm

State s
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𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
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Dynamic programming algorithm
32
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Dynamic programming algorithm
33
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Dynamic programming algorithm
34
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Dynamic programming algorithm
35
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Theorem (Dynamic programming)

For every ini@al state 𝑠!, the op@mal value 𝑉∗(𝑠!) is equal to 𝑉! 𝑠! , 
given above.
Furthermore, if 𝑎#∗ = 𝜋#∗ 𝑠#  maximizes the right side of the above for 
each 𝑠#  and 𝑡, the policy 𝜋∗ = 𝜋!∗ , … , 𝜋$%&∗  is op@mal.

𝑉$ 𝑠$ = 𝑟$ 𝑠$  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠' ∈ 𝒮' do
        𝑉' 𝑠' = max

)4∈𝒜4 ,4
𝔼,456∼.(,4,)4,14) 𝑟' 𝑠', 𝑎' + 𝑉'3& 𝑠'3&

end for

Dynamic programming algorithm
36
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Dynamic programming algorithm

§ Proof: by induc@on
§ “Efficient”: O(|S|2|A|T )

§ For deterministic shortest path routing
• Equivalent to Bellman-Ford algorithm
• Strength: Generality
• “Efficient”: O(|S||A|T )
• Much better than naive approach O(T!)
• Weakness: ALL the tail subproblems are solved

§ Consider: Do other shortest path algorithms have 
sequential decision interpretations? Dijkstra’s, A*, 
Floyd–Warshall, Johnson’s, Viterbi, etc.

37

𝑉$ 𝑠$ = 𝑟$ 𝑠$  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠' ∈ 𝒮' do
        𝑉' 𝑠' = max

)4∈𝒜4 ,4
𝔼,456∼.(,4,)4,14) 𝑟' 𝑠', 𝑎' + 𝑉'3& 𝑠'3&

end for
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Proof of the induc3on step
Let 𝑓7: 𝑆	×𝐴×ℝ → 𝑆 denote the transition function.
For simplicity, consider deterministic policies 𝜋7: 𝑆 → 𝐴.
Denote tail policy from time 𝑡 onward as 𝜋7:9:; = 𝜋7 , 𝜋7<;, … , 𝜋9:;
Assume that 𝑉7<; 𝑠7<; = 𝑉7<;∗ 𝑠7<; .  Then:

𝑉7∗ 𝑠7 = max
>!,>!"#:%&#

𝔼
?!:%&#

𝑟7 𝑠7 , 𝜋7 𝑠7 + 𝑟9 𝑠9 + <
@A7<;

9:;

𝑟@ 𝑠@ , 𝜋@ 𝑠@ 	

	 =	max
>!

𝑟7 𝑠7 , 𝜋7 𝑠7 + max
>!"#:%&#

𝔼
?!:%&#

𝑟9 𝑠9 + ∑@A7<;9:; 𝑟@ 𝑠@ , 𝜋@ 𝑠@

            = max
>!

𝑟7 𝑠7 , 𝜋7 𝑠7 + 𝔼
?!

max
>!"#:%&#

𝔼
?!"#:%&#

𝑟9 𝑠9 + ∑@A7<;9:; 𝑟@ 𝑠@ , 𝜋@ 𝑠@
 = max

>!
𝑟7 𝑠7 , 𝜋7 𝑠7 + 𝔼

?!
𝑉7<;∗ 𝑓7 𝑠7 , 𝜋7 𝑠7 , 𝜖7

 = max
>!

𝑟7 𝑠7 , 𝜋7 𝑠7 + 𝔼
?!
𝑉7<; 𝑓7 𝑠7 , 𝜋7 𝑠7 , 𝜖7 	

 = max
B!∈𝒜! D!

𝑟7 𝑠7 , 𝑎7 + 𝔼D!"#∼F(D!,B!,?!) 𝑉7<; 𝑓7 𝑠7 , 𝑎7 , 𝜖7 	

           = 𝑉7 𝑠7
Interpretation as optimal reward-to-go (cost-to-go) function.

38

𝜖' denotes the 
randomness in 

transi1ons 
from 𝑠' to 𝑠'()
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Solving Shortest Path
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Outline

1. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
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Sequen5al decision making as shortest path
For Deterministic Finite-State Problems

Example: Thermostats (linear-quadratic control)
Applications: 
control systems, 
industrial manufacturing

48
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Sequen5al decision making as shortest path
For Deterministic Finite-State Problems

Example: Breakout

49
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Sequential decision making as shortest path

For Deterministic Finite-State Problems

    ...  

...  

     ...   

s0Initial  
State
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d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
    ...  

Discuss: If shortest path isn’t hard, why are DP problems still challenging?
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Sequen5al decision making as shortest path
For Deterministic Finite-State Problems

Example: Integer programming (combinatorial optimization)
<latexit sha1_base64="c+ClJlmdGHvvzaLFbxTZzYfc/20="></latexit>

max cTx

subject to Ax = b

x 2 {0, 1}T
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Sequential decision making can get hairy

Example: traveling salesman problem (TSP)
N	cities.
Goal: Find the shortest tour (visit every city  
exactly once and return home).
In this case, can’t get around exponential. (why?)
|S| =  O(N!) , 	|A| =  N, 	T 	 	=  N,  so
O(|S||A|T	)  =  O(N!).
(Actually, DP is slightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.

52
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Sequential decision making can get hairy

Example: traveling salesman problem (TSP)
N	cities.
Goal: Find the shortest tour (visit every city  
exactly once and return home).
In this case, can’t get around exponential. (why?)
|S| =  O(N!) , 	|A| =  N, 	T 	 	=  N,  so
O(|S||A|T	)  =  O(N!).
(Actually, DP is slightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.
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Key challenge: huge decision spaces
§ Arcade Learning Environment (ALE): 

framework that allows researchers 
and hobbyists to develop AI agents 
for Atari 2600 games

§ Suppose the state is discretized at 
10 x 20 and each cell takes one of 4 
values: {ball, paddle, brick, empty}

§ Possible game states: 4@!! ≈ 10&@!

For reference: 
There are between 1078 to 1082 
atoms in the observable universe.

Cannot only explore. Cannot only exploit.
Must trade off exploration and exploitation.

54
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Key challenge: huge decision spaces

For reference: 
There are between 1078 to 1082 
atoms in the observable universe.

Cannot only explore. Cannot only exploit.
Must trade off exploration and exploitation.

55

Go: 319x19

≈ 1090 x (# atoms in universe)
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Travelling Salesman Problem (h=ps://xkcd.com/399/)
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Summary & takeaways
§ The principle of optimality relates solving a sequential decision 

problem to smaller ”future” subproblems (called tail subproblems).
§ Dynamic programming solves sequential decision problems by 

leveraging the principle of optimality. It applies in both deterministic 
and stochastic settings.

§ The curse of dimensionality refers to the exponential growth in state 
spaces. This renders “efficient” dynamic programming algorithms 
insufficient for many problems of interest.
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Outline

1. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
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Bonus: Forward dynamic programming algorithm?
62

State s
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optimal “reward-to-arrive”
Consider: stochas'c 
shortest path rou0ng

• Travel to intended city 
with probability 1 − 𝜖.

• Travel to any city with 
probability 𝜖.
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Forward Dynamic Programming Algorithm?
63

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 1,… , 𝑇 do

𝑉# 𝑠# = max
A!"#∈𝒜!"# D!"#

𝔼E!"# 𝑟# 𝑠# + 𝑉#%& 𝑠#%& 𝑠#
	 s.t.	 𝑠# = 𝑓#%& 𝑠#%&, 𝑎#%&, 𝜖#%&

end for

Discuss: Does forward DP work?  Why/why not?  When/when not?
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Dynamic programming algorithm

𝑉$ 𝑠$ = 𝑟$ 𝑠$  
for 𝑡 = 𝑇 − 1,… , 0 do
    𝑉# 𝑠# = max

A!∈𝒜! D!
𝔼 𝑟# 𝑠# , 𝑎# + 𝑉#F& 𝑠#F&

end for
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