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Randomness is an integral part of complex systems



The general idea, and this is fairly unanimously 
accepted, is to use some average of the possible 
outcomes as a measure of the value of a policy. 

Bellman, 1957



Caraco, Martindale, Whittam, An Empirical Demonstration of Risk-Sensitive Foraging Preferences (1980)
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Randomness is an integral part of complex systems,
and is not well-characterized by expected values



Distributional reinforcement learning is …
the study and design of RL algorithms that treat randomness as the key quantity of interest
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Markov decision processes



The generative equations

Initial state distribution

Policy

Reward distribution

Transition kernel

Sometimes:



The random return

Joint distribution



(Monte Carlo estimate)



Immediate questions

How do the parameters of an MDP affect the distribution of random returns?

Can we adapt the language of reinforcement learning to distributions?

How can we learn to predict the random return (from data)?



What is the probability distribution 
of        when sampling …
● With replacement?
● Without replacement? (offline)

Example 1: One-card solitaire

R0 = 1 R1 = 1 RT = 0



Example 2: Bernoulli rewards, 1/2 discount



The value function is given recursively
in terms of immediate reward & next state

Value function:

Bellman equation:



The random-variable Bellman equation

Equality in 
distribution





Why equality in distribution matters



An alternative? The CDF Bellman equation



Even better: Return-distribution functions

Random variables are convenient – but sometimes hard to work with

We really only care about the relationship between their distributions

Idea: express random-variable equation directly in terms of distributions

Collection of return 
distributions



The distributional Bellman equation



Scaling (a) and shifting (b)

Indexing (c)

Mixing (d)

Key operations





Solving the (standard) Bellman equation

The value function:

Bellman operator:

Dynamic programming:

Fundamental contractive result:



Transform a collection of probability distributions into a new collection:

More explicitly:

The distributional Bellman operator



=  P(up | x)              + P(right | x)

+ P(left | x)               + P(down | x)





Random-variable Bellman equation:

Random-variable operator:

Distributional dynamic programming:

Solving the distributional Bellman equation

Contraction in Wasserstein distance :

Hence:

(or equivalently, with             )
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Can we compute the return-distribution function?

Probability distributions are infinite-dimensional; need to worry about
Memory
Efficient backups
Estimating from samples
NP-hardness (Mannor and Tsitsiklis 2011, 2013, BDR 2022)

Given a finite-memory approximation scheme…
How accurate is it?
Can it be computed efficiently?
Does it result in a contractive map?

A few challenges



=  P(up | x)              + P(right | x)

+ P(left | x)               + P(down | x)

If each next-state 
distribution takes on m 
values, then               may 
take on 4m values 

The “growing support” problem



The empirical representation

Represent a distribution 

Using 1 + 2 m(x) parameters for state x?

Could grow exponentially!



An alternative: the categorical representation

Fix number of particles to m
Keep them in fixed locations

Parametrize probability at each location:



Solving the support problem with the categorical projection

“Assign probability mass in proportion to 
the distance to the nearest locations”



Categorical dynamic programming:



Categorical dynamic programming

Per iteration:

Pick initial
For k = 0, 1, …



Best approximation CDP solution

Diffusion error (due to projection)



How good is this approximation?

If

Then

Convergence rate Approximation error

Measured in Cramér (l2) distance



● Smooth version of quantiles, handles tails
● Parameters no longer locations or probabilities
● Requires additional imputation machinery
● Convergence still not completely understood

A few other effective representations

Quantiles

● “Transpose” of categorical representation
● Projection is contraction in Wasserstein distance
● Learning from samples requires care
● Ignores distribution tails

Expectiles



Temporal-difference learning



Categorical temporal-difference learning

The distributional equivalent of TD learning

Combines TD update rule with distributional “ideas”:
m particles, projection, pushforward

Instead of full update, take a small step “towards” categorical target

Keep in mind: can’t add probability distributions, only mix
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Risk-sensitive control

Find 𝜋 
maximizing

Where 𝜌 is a
risk measure:



❖ Mean-variance criterion

❖ Value-at-risk
❖ Conditional value-at-risk
❖ And also:

➢ Entropic risk
➢ Entropic value-at-risk
➢ Risk distortion metrics
➢ etc.

Risk measures in RL

FZ



● Task:
Object grasping from vision
Discount factor + per-step penalty
Large dataset of offline grasps (QT-Opt)

● Non-trivial distributions arise from …
actuation noise,
environment dynamics,
limited sensors,
function approximation,
policy nonstationarity

Bodnar et al., RSS 2020

Risk-sensitive grasping (Q2-Opt)

https://docs.google.com/file/d/1TWHFKBwDAiqmPeB5dkwNJXys2J1cwMUb/preview?resourcekey=0-yxGbwZWkY9bvWdVH_2geDQ


Distributional

Risk-averse

Risk-seeking



Barth-Maron*, Hoffman*, et al. (2018)

Cabi et al. (2020)

Bellemare, Candido, et al. (2020)

Bodnar et al. (2020)

Wurman et al. (2022)



Bard*, Foerster*, et al. (2020)



#3: Understanding the brain

Schultz et al. (1993) Schultz et al. (1997)



Dabney et al. (2020)
Data from Eshel et al. (2015)

TD model Actual data



Randomness is an integral part of complex systems,
and is captured by distributional RL
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