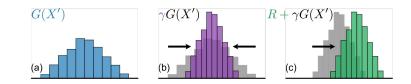
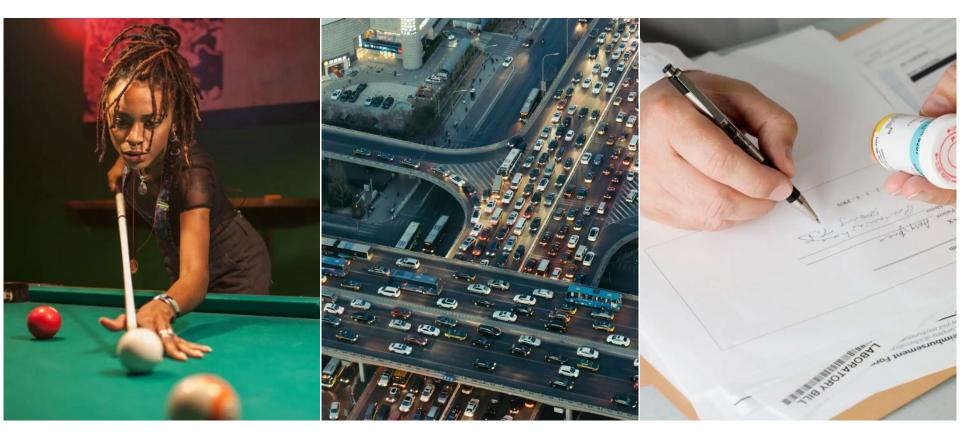
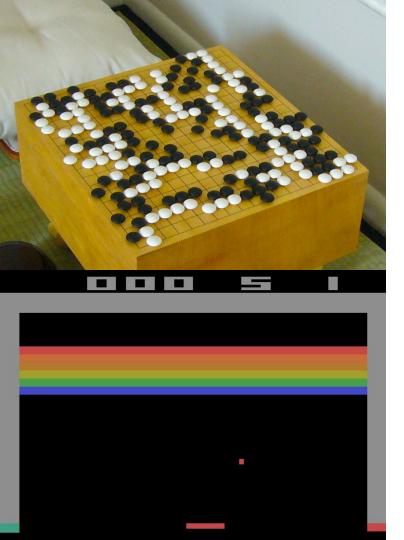
6.7920 Reinforcement Learning Foundations and Methods Distributional Reinforcement Learning

Marc G. Bellemare





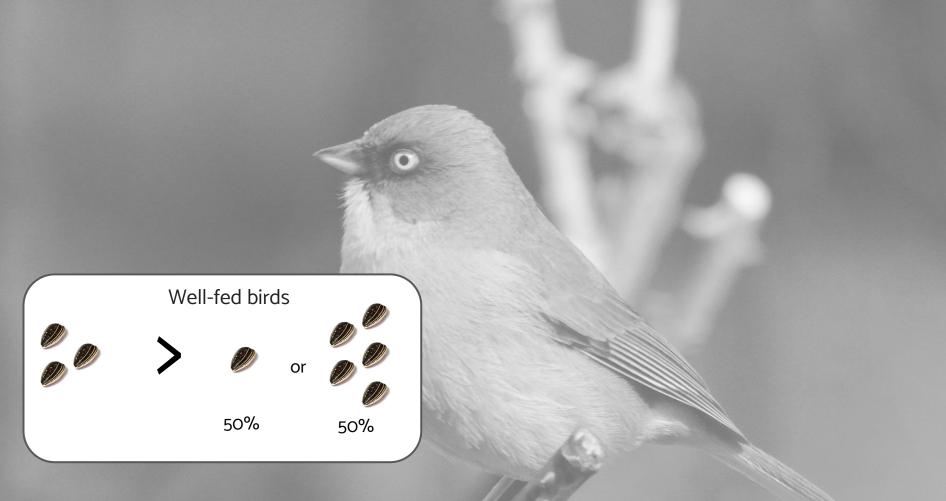
Randomness is an integral part of complex systems



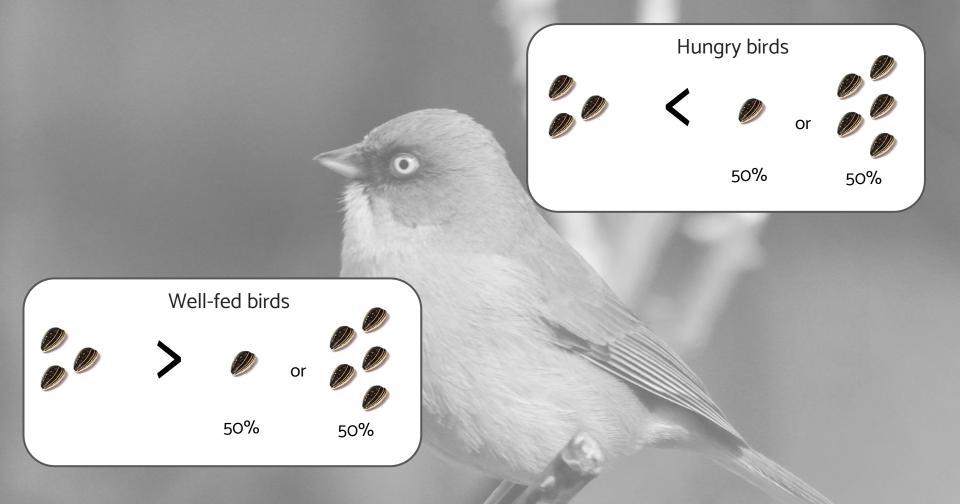
The general idea, and this is fairly unanimously accepted, is to use **some average of the possible outcomes as a measure of the value of a policy**. Bellman, 1957

Caraco, Martindale, Whittam, An Empirical Demonstration of Risk-Sensitive Foraging Preferences (1980)

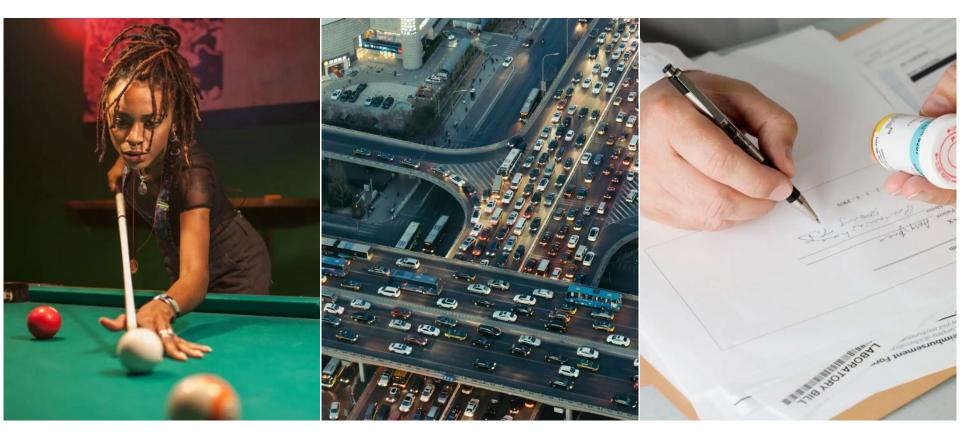
DOCTOR NO.



Caraco, Martindale, Whittam, An Empirical Demonstration of Risk-Sensitive Foraging Preferences (1980)



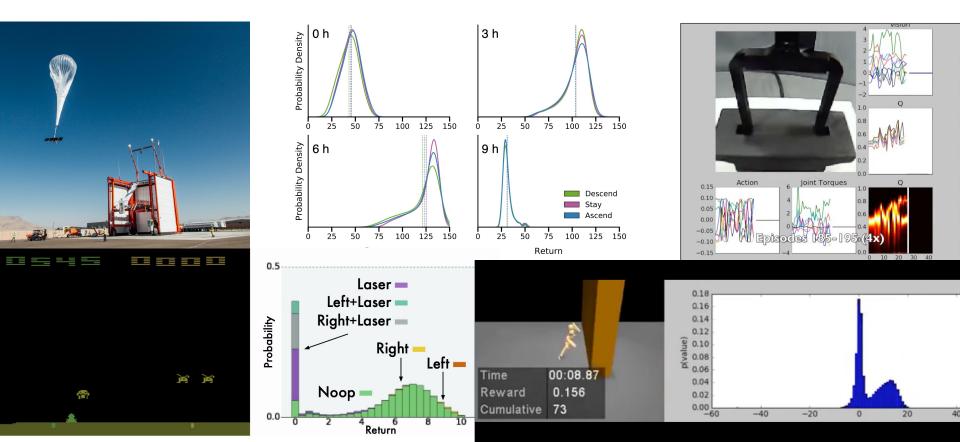
Caraco, Martindale, Whittam, An Empirical Demonstration of Risk-Sensitive Foraging Preferences (1980)



Randomness is an integral part of complex systems, and is not well-characterized by expected values

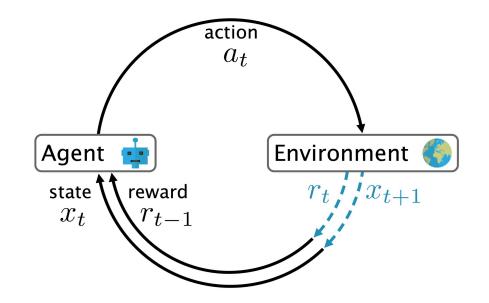
Distributional reinforcement learning is ...

the study and design of RL algorithms that treat randomness as the key quantity of interest

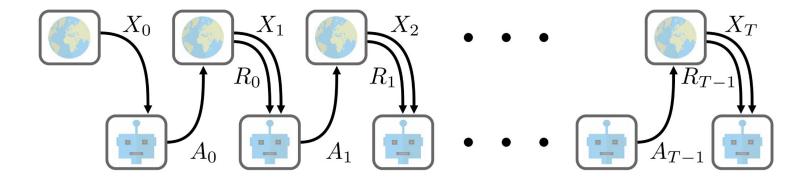


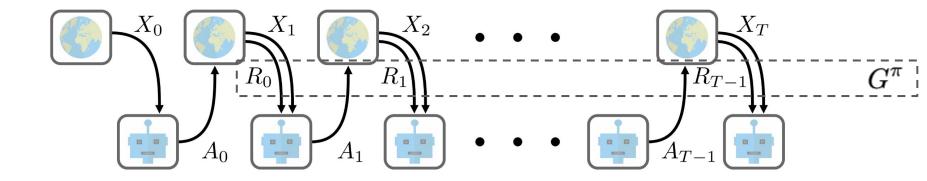
Mathematical framework Making it practical Risk-sensitive control

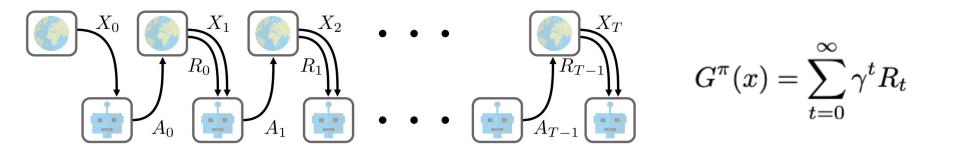
Markov decision processes

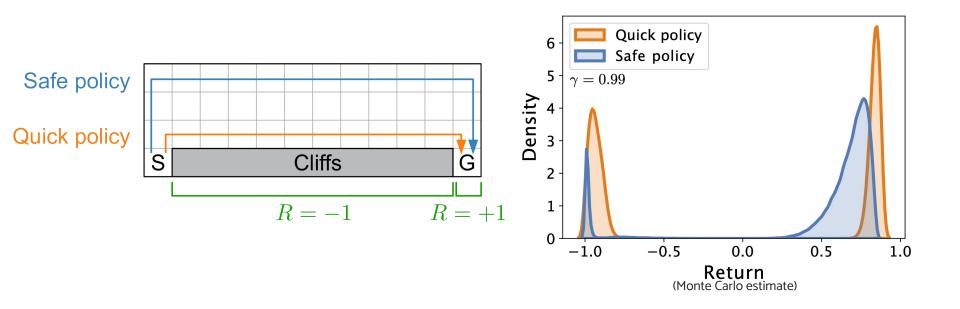


The generative equations









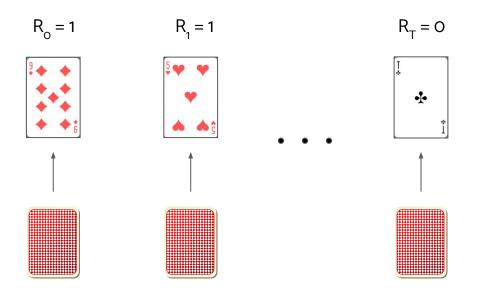
Immediate questions

How do the parameters of an MDP affect the distribution of random returns?

Can we adapt the language of reinforcement learning to distributions?

How can we learn to predict the random return (from data)?

Example 1: One-card solitaire

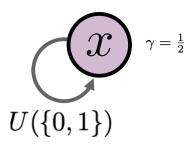


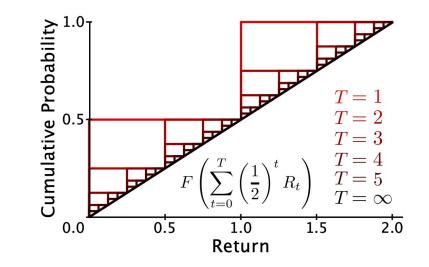
What is the probability distribution of G^{π} when sampling …

• With replacement?

- $\gamma = 1$
- Without replacement? (offline)

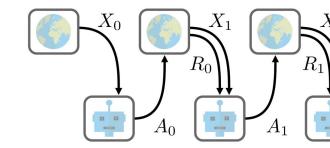
Example 2: Bernoulli rewards, 1/2 discount





Value function:

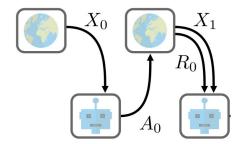
$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \, | \, X_{0} = x \right]$$



Bellman equation:

$$V^{\pi}(x) = \mathbf{E}_{\pi} \left[R + \gamma V^{\pi}(X') \,|\, X = x \right]$$

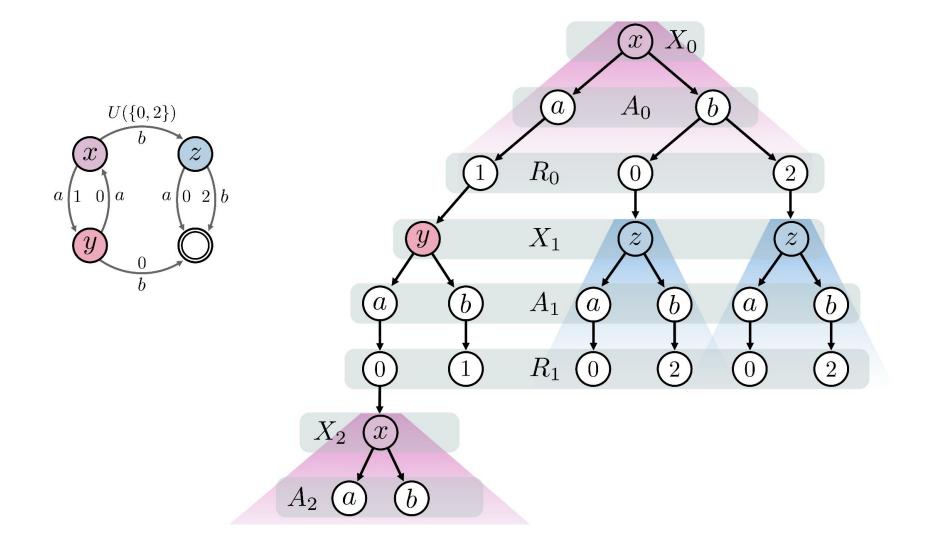
The value function is given *recursively* in terms of immediate reward & next state



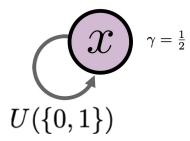
The random-variable Bellman equation

$$G^{\pi}(x) = \sum_{t=0}^{\infty} \gamma^{t} R_{t}, \quad X_{0} = x$$

$$\downarrow$$
 $G^{\pi}(x) \stackrel{\mathcal{D}}{=} R + \gamma G^{\pi}(X'), \quad X = x$
 \uparrow
Equality in
distribution



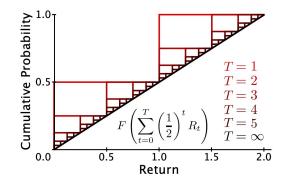
Why equality in distribution matters



 $G(x) = R + \gamma G(x)$ $G(x) \stackrel{\mathcal{D}}{=} R + \gamma G(x) \bigstar$

An alternative? The CDF Bellman equation

$$F_{G^{\pi}(x)}(z) = \mathbf{E}_{\pi}\left[F_{G^{\pi}(X')}\left(\frac{z-R}{\gamma}\right) | X = x\right]$$



Even better: Return-distribution functions

Random variables are convenient – but sometimes hard to work with

We really only care about the relationship between their *distributions*

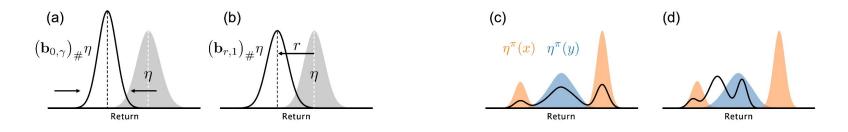
Idea: express random-variable equation directly in terms of distributions

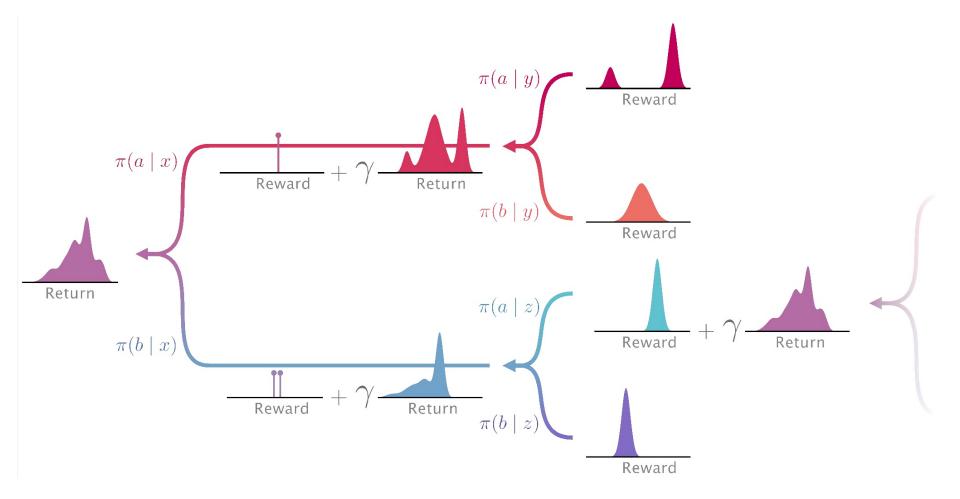
The distributional Bellman equation

$$G^{\pi}(x) \stackrel{\mathcal{D}}{=} R + \gamma G^{\pi}(X'), \quad X = x$$
$$\downarrow$$
$$\eta^{\pi}(x) = \mathbf{E}_{\pi} \left[(\mathbf{b}_{R,\gamma})_{\#} \eta^{\pi}(X') \, | \, X = x \right]$$

Key operations

$$\eta^{\pi}(x) = \mathbf{E}_{\pi} \left[(\mathbf{b}_{R,\gamma})_{\#} \eta^{\pi}(X') \, | \, X = x \right] \text{ Scaling (a) and shifting (b)}$$
$$\eta^{\pi}(x) = \mathbf{E}_{\pi} \left[(\mathbf{b}_{R,\gamma})_{\#} \eta^{\pi}(X') \, | \, X = x \right] \text{ Indexing (c)}$$
$$\eta^{\pi}(x) = \mathbf{E}_{\pi} \left[(\mathbf{b}_{R,\gamma})_{\#} \eta^{\pi}(X') \, | \, X = x \right] \text{ Mixing (d)}$$





Solving the (standard) Bellman equation

The value function:

$$V^{\pi}(x) = \mathbf{E}\left[G^{\pi}(x)\right]$$

Bellman operator:

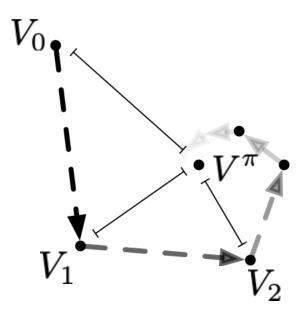
$$(T^{\pi}V)(x) = \mathbf{E}_{\pi} \left[R + \gamma V(X') \,|\, X = x \right]$$

Dynamic programming:

$$V_{k+1}(x) = (T^{\pi}V_k)(x)$$

Fundamental contractive result:

$$\|V_{k+1} - V^{\pi}\|_{\infty} \le \gamma \|V_k - V^{\pi}\|_{\infty}$$



The distributional Bellman operator

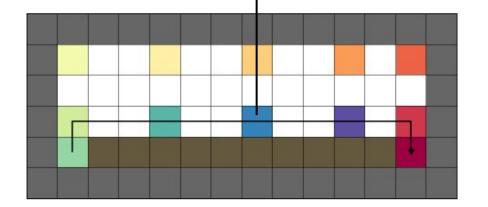
Transform a collection of probability distributions into a new collection:

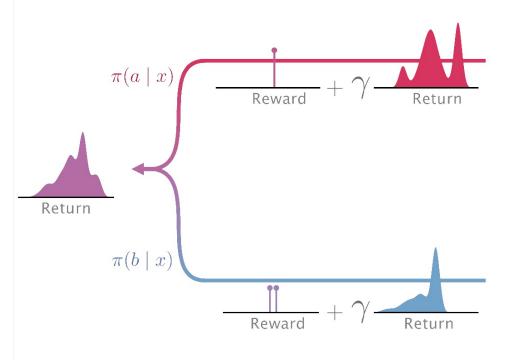
$$(\mathcal{T}^{\pi}\eta)(x) = \mathbf{E}_{\pi} \left[(\mathbf{b}_{R,\gamma})_{\#} \eta(X') \,|\, X = x \right]$$

More explicitly:

$$(\mathcal{T}^{\pi}\eta)(x) = \sum_{a \in \mathcal{A}} \sum_{r \in \mathcal{R}} \sum_{x' \in \mathcal{X}} \mathbb{P}_{\pi}(A = a, R = r, X' = x' | X = x)\eta(x')$$

$$(\mathcal{T}^{\pi}\eta)(x) = P(\text{up I x}) \left[\int_{1}^{1} \int_{0}^{1} + P(\text{right I x}) \right]_{1} \left[\int_{1}^{1} \int_{0}^{1} \int_{0}^{1} + P(\text{left I x}) \right]_{1} \left[\int_{1}^{1} \int_{0}^{1} \int_{0}^$$





$$\eta^{\pi}(x) = (\mathcal{T}^{\pi}\eta^{\pi})(x)$$

Solving the distributional Bellman equation

Random-variable Bellman equation:

$$G^{\pi}(x) \stackrel{\mathcal{D}}{=} (\mathcal{T}^{\pi}G^{\pi})(x)$$

Random-variable operator:

$$(\mathcal{T}^{\pi}G)(x) \stackrel{\mathcal{D}}{=} R + \gamma G(X'), \quad X = x$$

Distributional dynamic programming:

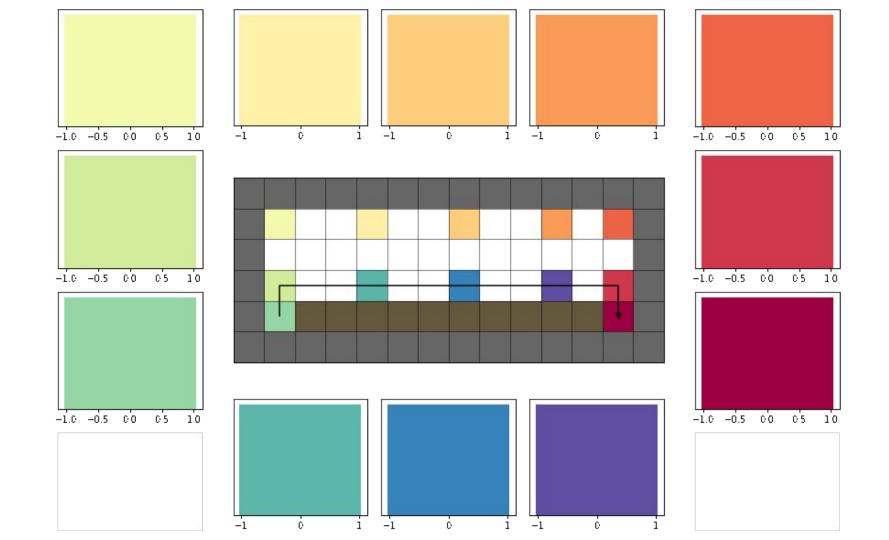
$$G_{k+1}(x) \stackrel{\mathcal{D}}{=} (\mathcal{T}^{\pi}G_k)(x)$$

Contraction in Wasserstein distance: $\sup_{x \in \mathcal{X}} w_p (G_{k+1}(x), G^{\pi}(x)) \leq \gamma \sup_{x \in \mathcal{X}} w_p (G_k(x), G^{\pi}(x))$ $p \in [1, \infty]$

Hence:

$$\lim_{k \to \infty} G_k(x) \stackrel{\mathcal{D}}{=} G^{\pi}(x)$$

(or equivalently, with $\eta^{\pi}(x)$)



Mathematical framework Making it practical Risk-sensitive control

Can we **compute** the return-distribution function?

A few challenges

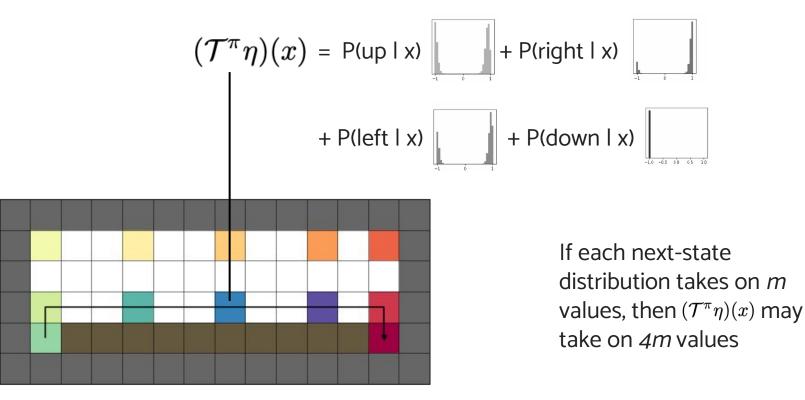
Probability distributions are **infinite-dimensional**; need to worry about

Memory Efficient backups Estimating from samples NP-hardness (Mannor and Tsitsiklis 2011, 2013, BDR 2022)

Given a finite-memory approximation scheme...

- How accurate is it?
- Can it be computed efficiently?
- Does it result in a contractive map?

The "growing support" problem



The empirical representation

Represent a distribution

$$\eta(x) = \sum_{i=1}^{m(x)} p_i(x) \delta_{ heta_i(x)}$$

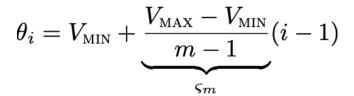
Using 1 + 2 m(x) parameters for state x?

Could grow exponentially!

An alternative: the categorical representation

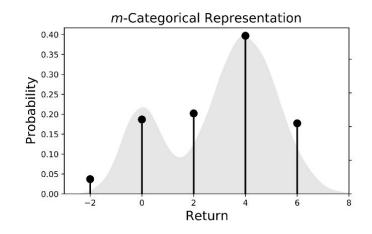
Fix number of particles to m

Keep them in fixed locations

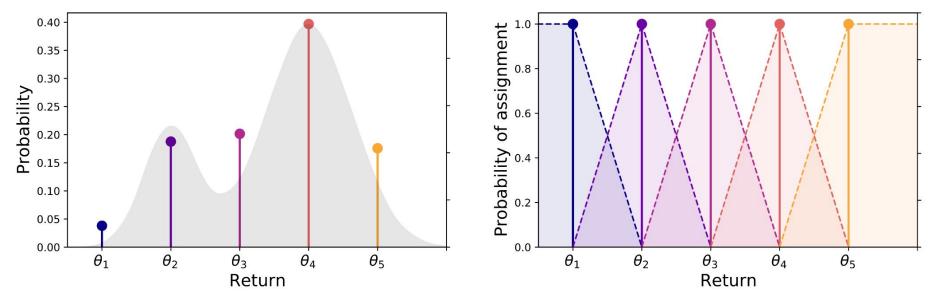


Parametrize probability at each location:

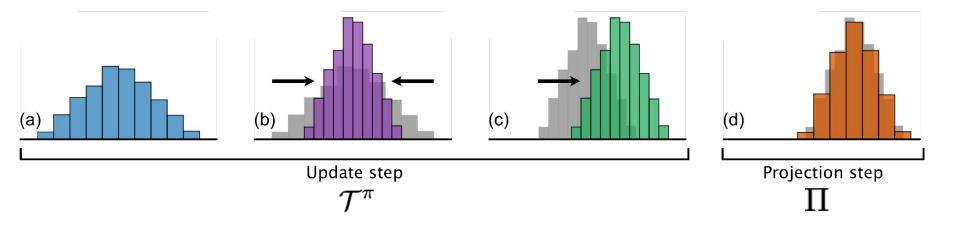
$$\eta(x) = \sum_{i=1}^{m} p_i(x) \delta_{\theta_i}$$



Solving the support problem with the categorical projection



"Assign probability mass in proportion to the distance to the nearest locations"



Categorical dynamic programming:

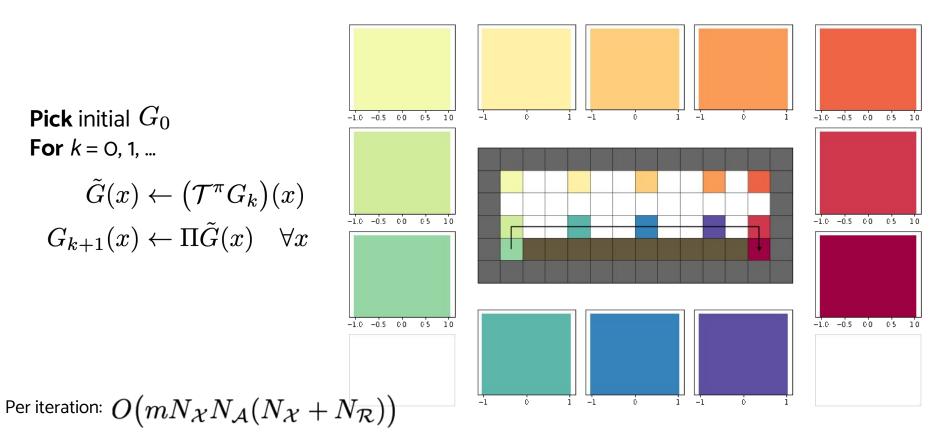
$$G_{k+1}(x) \stackrel{\mathcal{D}}{=} (\Pi \mathcal{T}^{\pi} G_k)(x)$$

Categorical dynamic programming

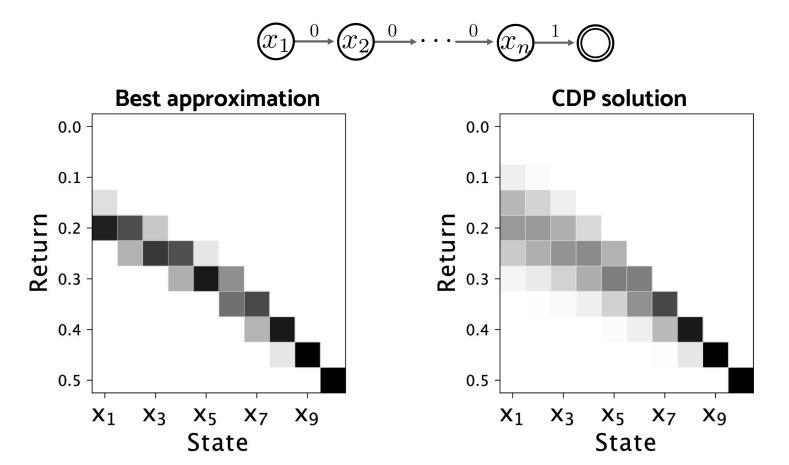
Pick initial G_0 **For** *k* = 0, 1, ...

$$\tilde{G}(x) \leftarrow (\mathcal{T}^{\pi}G_k)(x)$$

 $G_{k+1}(x) \leftarrow \Pi \tilde{G}(x) \quad \forall x$



Diffusion error (due to projection)



How good is this approximation?

Measured in Cramér (I_2) distance

Convergence rate

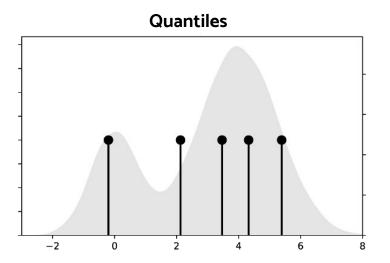
If
$$K \ge \frac{\log\left(\frac{1}{\varepsilon}\right) + \log \overline{\ell}_2(G_0, G_c^{\pi})}{c \log\left(\frac{1}{\gamma}\right)}$$

Then $\overline{\ell}_2(G_K, G_c^{\pi}) < \varepsilon$

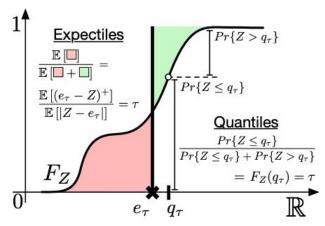
Approximation error

$$\overline{\ell}_{2}(G_{\mathcal{C}}^{\pi}, G^{\pi}) \leq \frac{V_{\text{MAX}} - V_{\text{MIN}}}{(m-1)\left(1 - \gamma^{\frac{1}{2}}\right)}$$

A few other effective representations



- "Transpose" of categorical representation
- Projection is contraction in Wasserstein distance
- Learning from samples requires care
- Ignores distribution tails



- Smooth version of quantiles, handles tails
- Parameters no longer locations or probabilities
- Requires additional *imputation* machinery
- Convergence still not completely understood

Temporal-difference learning

- Start with some initial value function estimate ${\cal V}$
- Given a sample transition (x, a, r, x'),

$$V(x) \leftarrow (1 - \alpha)V(x) + \alpha(r + \gamma V(x'))$$

- TD learns one state at a time;
- By incrementally updating its value function.

Categorical temporal-difference learning

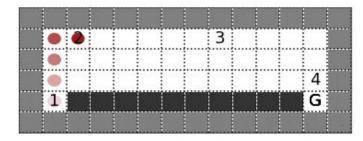
The distributional equivalent of TD learning

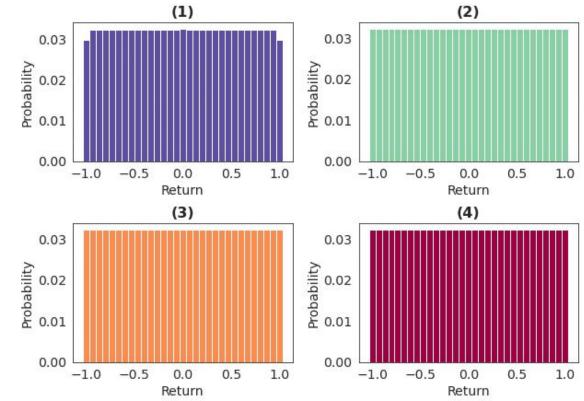
Combines TD update rule with distributional "ideas": *m* particles, projection, pushforward

$$\eta(x) \leftarrow (1 - \alpha)\eta(x) + \alpha \big((\Pi_C(\mathbf{b}_{r,\gamma})_{\#}\eta(x') \big)$$

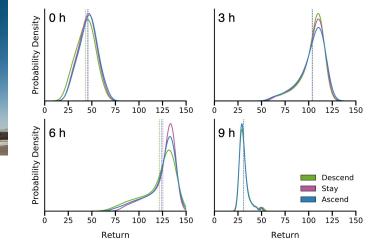
Instead of full update, take a small step "towards" categorical target

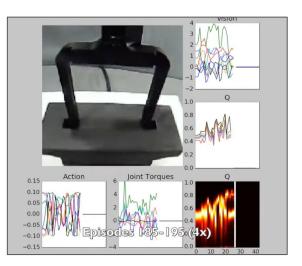
Keep in mind: can't add probability distributions, only mix

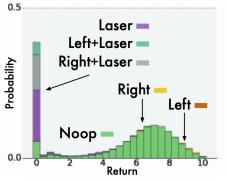


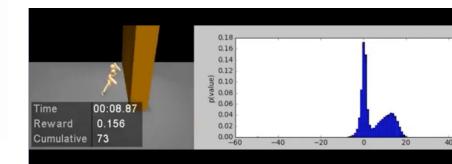


Mathematical framework Making it practical **Risk-sensitive control**

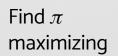


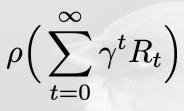






Risk-sensitive control





Where ρ is a **risk measure**:

$$\rho:\mathscr{P}(\mathbb{R})\to\mathbb{R}$$

Risk measures in RL

Mean-variance criterion

•

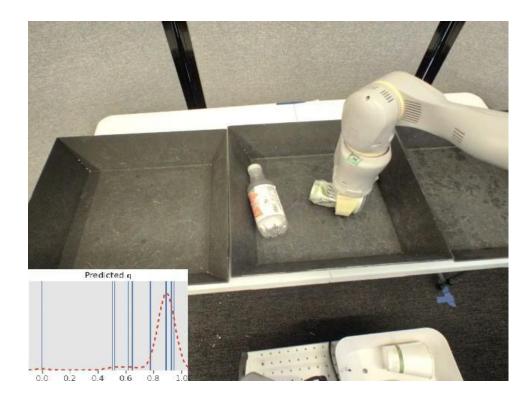
•

•

$$\rho(G) = \mathbb{E}[G] - \lambda \mathbb{V}(G), \lambda \in [0, \infty)$$
Value-at-risk
Conditional value-at-risk
And also:
Entropic risk
Entropic value-at-risk
Risk distortion metrics
etc.
$$P_{Z}$$

$$-F_{Z}$$

Risk-sensitive grasping (Q2-Opt)



Task:

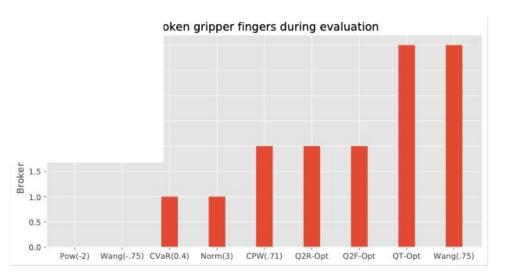
Object grasping from vision Discount factor + per-step penalty Large dataset of offline grasps (QT-Opt)

 Non-trivial distributions arise from ... actuation noise, environment dynamics, limited sensors, function approximation, policy nonstationarity

	Model	Grasp Success Rate	
	QT-Opt	70.00%	
Distributional	Q2R-Opt	79.50%	
	Q2F-Opt	82.00%	

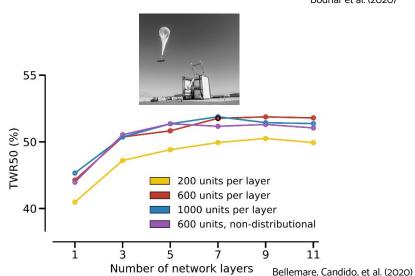
Risk-seekiı

Risk-avers

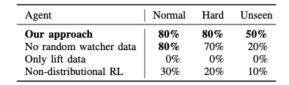


Model	Grasp Success Rate	
QT-Opt	70.00%	
Q2R-Opt	79.50%	
Q2F-Opt	82.00%	

Bodnar et al. (2020)



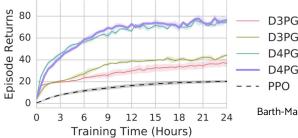
Wurman et al. (2022)



(a) lift_green						
Agent	Normal	Hard	Unseen			
Our approach	60%	40%	40%			
No random watcher data	50%	30%	30%			
Only stacking data	0%	10%	0%			
Non-distributional RL	20%	0%	0%			

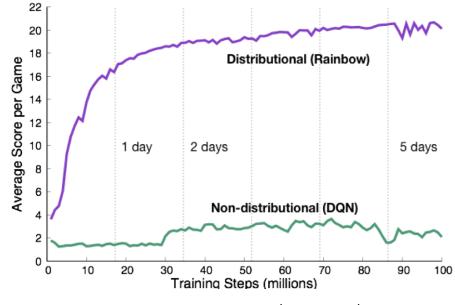
(b) stack_green_on_red.

Cabi et al. (2020)



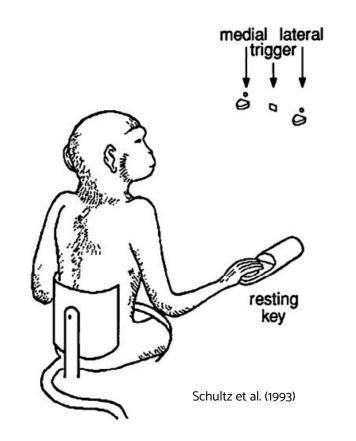
- D3PG, Non-Prioritized D3PG, Prioritized
- D4PG, Non-Prioritized
- D4PG, Prioritized

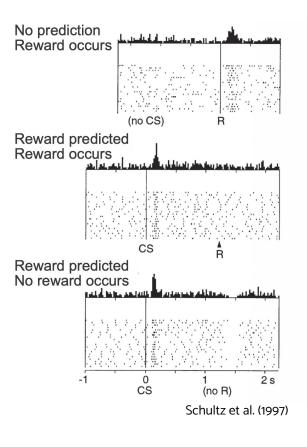
Barth-Maron*, Hoffman*, et al. (2018)

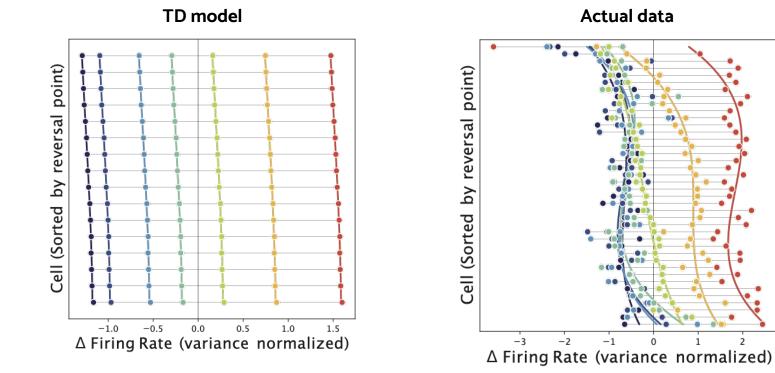


Bard*, Foerster*, et al. (2020)

#3: Understanding the brain

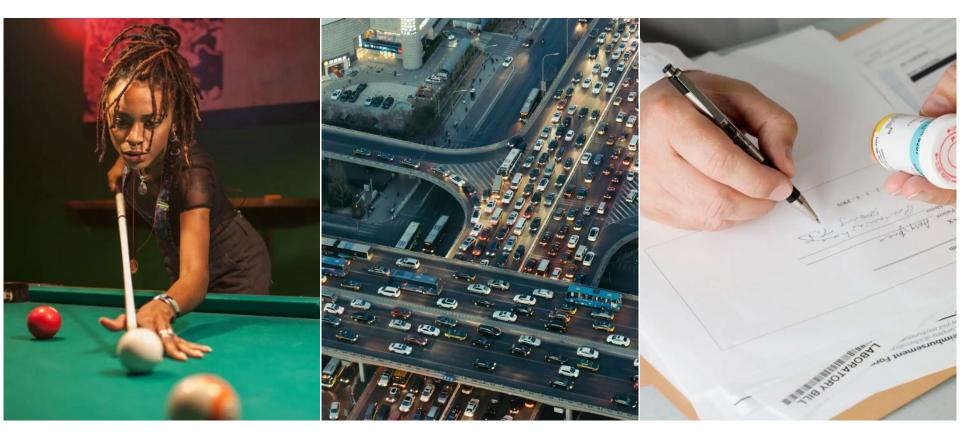






Dabney et al. (2020) Data from Eshel et al. (2015)

2



Randomness is an integral part of complex systems, and is captured by distributional RL

6.7920 Reinforcement Learning Foundations and Methods Distributional Reinforcement Learning

Marc G. Bellemare

