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Outline

● Dilemma in RL
○ Difficulties in Model-free and Model-based RL

● An Inspiration from Representation for Control
○ Provable and Practical Stochastic Nonlinear Control

● Coherent Solution: RL with Linear Representation
○ Linear Representation for MDP
○ Linear Representation for POMDP



Markov Decision Processes (MDPs)

Markov Decision Process

● State space:
● Action space:
● Reward function:
● Transition: 
● Initial state distribution: 
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Model-free RL: (deep) Q-Learning
Q-Learning: dynamic programming via Bellman recursion 

TD update

Deep version



Model-free RL: Policy Gradient
Policy Gradient: direct policy optimization

 
Policy gradient:

PG update:

Natural PG, Soft AC….



Model-free RL

Pros:

● Modeling: easy to incorporate with function approximator, e.g., deep nets, with 
gradient based learning.

Cons: 

● Exploration: difficulty in capturing the uncertainty with arbitrary nonlinear 
functions. 

● Planning: no guarantee for the global convergence for optimal policy with 
general nonlinear functions.



Model-based RL

● Collect data through some policy
● Estimate the dynamics model and reward 
● Model predictive control based on the estimated models 



Model-based RL: LQR

● Collect data through some policy
● Estimate the linear dynamics model and quadratic reward
● Optimize the estimated LQR model 



Model-based RL: LQR

Linear Quadratic Regulator

With given model,  we have efficient solution & elegant analysis.



Model-based RL: LQR

Pros:

● Exploration: theoretical-rigorous and computation-efficient uncertainty 
estimation.

● Planning: elegant planner with global convergence guarantee for solving LQR.

Cons: 

● Modeling: linear dynamics model is too restrict.



Model-based RL: Deep MBRL

● Collect data through some policy
● Estimate the dynamics model and reward (deep models)
● Model predictive control based on the estimated parameters 

Model-Ensemble Trust-Region Policy Optimization (ME-TRPO)
Stochastic Lower Bound Optimization (SLBO)
Mode-Free Model-Based (MB-MF)
Probabilistic Ensembles with Trajectory Sampling (PETS-RS and PETS-CEM)
Benchmarking Model-Based Reinforcement Learning

https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1807.03858
https://arxiv.org/abs/1708.02596
https://arxiv.org/abs/1805.12114
https://www.cs.toronto.edu/~tingwuwang/mbrl.html


Deep Model-based RL

Pros:

● Modeling: exploiting the deep models for better approximation.  

Cons: 

● Exploration: difficulty in capturing the uncertainty with arbitrary nonlinear 
functions. 

● Planning: difficult to control with nonlinear dynamics model.



Dilemma in RL

Trade-off: Modeling, Exploration and Planning

A practical algorithm with rigorous theoretical guarantee to achieve balance?

Representation-based Reinforcement Learning



Representation View for Provable Control 

Stochastic Nonlinear Control:



Representation View for Provable Control 

Stochastic Nonlinear Control:

MDP reformulation:



Representation View for Provable Control 

Stochastic Nonlinear Control:

MDP reformulation:



Representation View for Provable Control 

The transition and reward function are factorizable:

The value functions defined as



Representation View for Provable Control 

The transition and reward function are factorizable with 

Integration representable:

Q-function is linearly representable:



Linear MDPs

The transition and reward function are factorizable with 

Integration representable:

Q-function is linearly representable:



Linear Spectral MDPs

The transition and reward function are factorizable with 

Integration representable:

Q-function is linearly representable:

Not A Special Model
but a Generic Structure



Planning for Stochastic Nonlinear Control

Given arbitrary bounded nonlinear transition    , we can construct the 
representations                  for value function.

Optimization can be solved by dynamic programming in the obtained space. 
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Thompson Sampling - Exploration vs. Exploitation 

Basic idea: pruning the possible model sets with more data observed in a 
probabilistic way 



Regret Bound

We define the regret of the first K episodes as

With some extra assumptions to regularize the transition and reward function, we 
have 



Empirical Performance



Empirical Performance



Summary and Gaps

Take home message:

● Linearization makes nonlinear potentially solvable
● Linearization bridges model-free and model-based RL

Gaps between theory vs. practice:

● Infinite-dim linearization approximation (Ren et al, CDC 2023)
● Posterior approximation
● Gaussian noise

Could we do better to avoid these limitations?

https://arxiv.org/pdf/2304.03907.pdf


Learning Single Feature for Linear MDPs

● Un-normalized conditional density: intractable MLE

● Feature is changing: exploration in a nonlinear space, is UCB still working? 



Learning Single Feature for Linear MDPs

● Un-normalized conditional density: intractable MLE

● Feature is changing: exploration in a nonlinear space, is UCB still working? 

Uehara, M., Zhang, X., & Sun, W. (2021). Representation Learning for Online and Offline RL in Low-rank MDPs. arXiv preprint arXiv:2110.04652.



Alternative?

● Un-normalized conditional density

Induce difficulty in representing 



Making Linear Representations Learning Tractable

● We consider a contrastive loss (NCE/CPC)  as a tractable alternative to the MLE

   

   



Making Linear Representations Learning Tractable

● We consider a contrastive loss (NCE/CPC)  as a tractable alternative to the MLE

   

   We can show the objective leads to solution



Making Linear Representations Learning Tractable

● We consider the SVD as a tractable alternative to the MLE

SVD decomposition

         

       

Connection to Successor Features
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Making Linear Representations Learning Tractable

● We connect the Latent Variable Model with Linear MDP



Making Linear Representations Learning Tractable

● We connect the Latent Variable Model with Linear MDP



Making Linear Representations Learning Tractable

● We connect the Latent Variable Model with Linear MDP

Evidence Lower Bound (ELBO) of LVM



Making Linear Representations Learning Tractable

● We connect the Diffusion Model with spectral decomposition MDP

 Score-base Representation Learning



Algorithm

● Collect data
●
● Learn representation via NCE / SVD / ELBO
● Calculate UCB bonus
● Policy evaluation with Bellman recursion

● Policy Optimization with learned Q

Sample complexity                                      such that  



Empirical Performances



Empirical Performances



Representations vs. Skills Learning

Correspondence between policies and value functions

                 forms value functions, therefore, induces skills.



Byproduct of the Reference Distribution

Stationary Occupancy Distribution in infinite-horizon MDP



Byproduct of the Reference Distribution

Stationary Occupancy Distribution in infinite-horizon MDP

Linear Stationary Ratio



Primal-Dual Spectral Representation in DICE

Stationary Occupancy Distribution in infinite-horizon MDP

Linear Stationary Ratio

Yang Hu, Tianyi Chen, Na Li, Kai Wang, Bo Dai. Primal-Dual Spectral Representation for Off-policy Evaluation. ArXiv, 2024

https://arxiv.org/abs/2410.17538


Summary and Gaps

Linearization enables RL with nonlinear models:

● efficient exploration 
● efficient planning

Still not applicable for practical setting:

● RL from observations, e.g., images/videos/texts



Rich Observations in Real World

 



Rich Observations in Real World

 

But no complete state information



Linear Representation for POMDPs

Partially Observable MDP 



POMDPs are difficult, but NOT all of them

Partially Observable MDP 

 Computation: PSPACE-complete (Papadimitriou & Tsitsiklis, 1987)
 Statistic: Exponentially w.r.t. the horizon (Jin et al., 2020a)

Structured POMDPs with efficient sample complexity (Jin et al., 2020a; Golowich et al., 2022; Liu et 
al., 2022; 2023, Efroni et al., 2022; Guo et al., 2023)



The Difficulty of POMDPs 

Equivalent Beliefs MDPs



The Difficulty of POMDPs 

Equivalent Beliefs MDPs



L-decodable POMDPs



Linear Representation for POMDPs



Linear Representation for POMDPs



Linear Representation for POMDPs

Under  L-Step Decodable Assumption

Under Moment Matching Policy



Linear Representation for POMDPs

Under  L-Step Decodable Assumption
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Linear Representation for POMDPs

Under  L-Step Decodable Assumption



Linear Representation for POMDPs



Linear Representation for POMDPs

A Special World Model

Connection to LLMs



Empirical Performances



Video-based Reinforcement Learning



Foundation Models for Representation Learning

 

 



Foundation Models for Representation Learning

 

 

encoder decoder



Foundation Models for Representation Learning

 

 

encoder decoder

Transformer MLP



Linear Representation for POMDPs



Empirical Performances



Empirical Performances



Positioning in the Big Picture

Yann LeCun, 2022Rich Sutton, 2022
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Code

Spectral Representation for RL: https://github.com/haotiansun14/rl-rep

Sim-to-Real: https://congharvard.github.io/steady-sim-to-real/

https://github.com/haotiansun14/rl-rep
https://congharvard.github.io/steady-sim-to-real/


Thanks!
Questions?



Spectral View of Representations



Markov Decision Processes (MDPs)

Markov Decision Process

● State space:
● Action space:
● Reward function:
● Transition: 
● Initial state distribution: 

 

LQR can be reformulated as a special case of MDP



NCE approaches MLE
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