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BANACH FIXED POINT THEOREM

Want to find x* that solves

F(x) =x

A simple iteration /[ _ ]
Noisy Oracle

Xpr1 = F(Xg) +wWy v

Banach Fixed Point Theorem

X} converges to X* geometrically fast (linearly) if F (.) is a contraction

Contraction: Forallxandy, ||[FX)—F®I| <vlx—yll

Works for any norm




STOCHASTIC APPROXIMATION

Want to find x* that solves

F(x) =x

A simple iteration .
Noisy Oracle

Xpr1 = F(Xg) +wy

Stochastic Approximation[Robbins, Monro ‘51]

Xp+1 = (1 — o)X + ap (F(xy) + wy)
= Xy + ap (F(xy) + wy — Xy)

{ Question: How well does this work? }




OUTLINE

« Stochastic Approximation Introduction
« Connection to Reinforcement Learning

« Finite Sample bounds on the mean-square error E|||x; — x*||* |

e [llustration in Reinforcement Learning
 Proof Sketch — A novel Lyapunov function
« Other Applications and Generalizations

» High Probability (Tail) bounds on ||x} — x™||
« Proof Sketch - Exponential Supermartingale and Bootstrapping
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FIXED POINT PROBLEMS

Stochastic Approximation to solve F(X) = x
Xp+1 = Xg + o (F(X) + Wy — x)

Optimization:

min f(X)
-NVf(x) +x=x

When f is smooth strongly convex, F(x) = —mVf (x) + X is contraction wrt £,-norm

[ SGD: Xg41 = Xk — 0 (Vf (Xk) + Wi




FIXED POINT PROBLEMS

Stochastic Approximation to solve F(X) = x

Xp+1 = Xg + ap (F(xy) + wi — Xy)

Linear Equations:
Ax=Db

(I+nA)x—nb =x

When A is Hurwitz (Re(};) < 0), F(x) = (I + nA)x — nb is contraction wrt weighted
£,-norm

[ Linear SA: X, = Xy + ax(Axy — by)




REINFORCEMENT LEARNING

Deepmind’s StreetLearn Navigation
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Reward Ry,
Environment

Goal: Maximize long-
term rewards




REINFORCEMENT LEARNING

State Value function

0.0)

Vn‘(S) — [E[ :BkR(Sk'Ak) SO = S'AkNT[(Sk)I
k=0

State-Action Value function

Qn(s: Cl) =[E [zkzoﬁkR(Sk'Ak) SO — S'AO — a'ARNT[(Sk)]

Goal - Control: Find the optimal policy

[

.

Smaller Goal - Policy Evaluation: Evaluate the value function of policy

15
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BELLMAN EQUATION

Policy Evaluation
\Vn(s) = E[R(s,4) + BV (S1)]So = S'ANTE(S)]
|
Vi = H(Vn)

Control Problem

Q\*(S, a) =E [R(S, a) + ,[)’rrzlz’ix Q*(Sl,a’)‘ So =5,4p = a]’

v
Q" =H(Q)

Need to solve the Fixed point Equation

When the operator H(. ) not known




Q- LEARNING AND ASYNCHRONOUS SA

« Bellman Equation for the control problem:

Q*(s,a) =E [R(S, a) + B max Q*(S1,a)| Sy = 5,4, = a]

\ )
|

Q" = H(Q")

* Q-Learning
« Sample using a fixed policy

Qk+1(Sk, Ax) = Qi (Sk, Ax) + ay, [R(Sk»Ak) + B max Qr(Sk+1,a) — Qk (Sk»Ak)]

 Stochastic Approximation

« Asynchronous SA: Update only one component. Other components are not updated J e (i ]
L I

Qi1 = Qi + o (A@y)Yy) + wi — Q)




MARKOVIAN STOCHASTIC APPROXIMATION

Want to find x* that solves

[ Xp+1 = Xk + o (AgXyg — by) ]

F(x) = Ey., [Fx,Y)] =x

Markovian Stochastic Approximation

Xp+1 = Xk + ax(F(Xg, Yi) + wi — xg)
Multiplicative Noise Additive Noise

Assumptions

Yy is a finite state Ergodic Markov chain with stationary distribution u
* Yy is geometrically mixing

 Noise wy - iid or martingale difference, mean zero,||wy|| < B(||xk|| + 1)

« F(.) is a contraction w.r.t arbitrary norm ||[F(x) = FW)|| < v lIx — y||
« F(.) is Lipschitz in X uniformly in Y.




MEAN SQUARE BOUNDS




FIXED STEP SIZE

Markovian Stochastic Approximation Xpr1 = X + a (F(xy, Yi) + Wi — Xg)

/[ £ -norm J
IFX) —F®WI <vlx-yll contraction

-

N

Theoremichen, M, shakkottai, shanmugam 21]: If the step-size a is small enough,

E[llxx —x*[|12] < c;(1 — cpa)klo8 a4 czaloga™1

Given a target error €, one can pick small enough step

size so that eventually the mean square error is €. XKk

 Mean Square sample complexity of 0 (i)

=




DIMINISHING STEP SIZES

Markovian Stochastic Approximation Xp+1 = Xp + ap (F(Xy, Yi) + Wi — Xi)

IFx) —FWIl - <vylx—yll

Krheorem[Chen, M, Shakkottai, Shanmugam ‘21].

E[|lx —x*[1* ] < <

\_

* This leads to a sample complexity of 0 (Eiz)

 With continual improvement beyond this.
 Algorithm (choice of step-size) does not depend on €




SA mode

Additive noise

Mult noise
with
boundedness

Linear

Markovian
and Mult
noise

RELATED WORK

Operator

|I. ||,-contraction

||. || o-contraction

Hurwitz

Any norm
contraction

Context

Q-learning

TD-learning

SGD
Q-learning
TD-learning
Off-policy TD

Literature

[Bottou et al 18]

[Beck, Srikant 12,13] (poly d)
(Need iterates to be bounded)

[Srikant, Ying 19] (Markov Noise),
[Lakshminarayanan and Szepesvari 18]
(iid noise)

Our work
Also recovers all prior results




REINFORCEMENT
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Q-LEARNING: FINITE TIME BOUNDS

Q-Learning — using constant step size

Co

Qr+1(Sk, Ax) = Qx(Sk, A) + [R(Sk»Ak) + 5 max Qr(Sk+1,a") — Qk(sk:Ak)]

rresponding F(.) is a £4-norm contraction Q
k

-

-

Theoremichen, m, shakkottai, shanmugam 21]: FOr appropriate choice of «,

~

E[||Qx — Q*lIZ] < ¢;(1 — cpa)*71°827" 4 coalogar?

)

!
€ €
2 2

[ Question: How many iteration do we need to get within € of Q*? J

25




Q-LEARNING: SAMPLE COMPLEXITY

Q-Learning — using constant step size
Qic+1(Sk, A) = Qi (S, Ax) + ay [R(Sk;Ak) + B max Qi (Sk+1,a) — Qk (Sk:Ak)]

Qx

[ Sample Complexity: How many iteration do we need so that ]

E[lQx — Q'llw] < €?

[ aslan? |
4 I

Theoremichen, M, shakkottai, shanmugam 21]: Sample ceimplexity of Q learning is

A1 \o( L )5(2
(=7)°(z.)° ()

o




RELATED WORK — Q LEARNING

« Constant step size [Beck, Srikant 12,13]
« We improve by a factor of (|S||4])? (best case scenario)

« Constant step size high probability bounds [Li, et al 20]

« Diminishing step sizes high probability bounds [Even-Dar etal ‘03], [Qu, Wierman 20]




CONTRACTIVE STOCHASTIC APPROXIMATION: APPLICATIONS

Stochastic Approximation to solve F(x) = x

Xpe1 = Xg + @ (F(Xy) + Wi — x)

« Reinforcement Learning:
e Q-Learning
e TD-Learning — Policy Evaluation
e N-step TD learning and TD(A) — Efficiency of Bootstrapping
« Off-policy TD learning — Bias-Variance Trade off [Chen, M, Shanmugam, Shakkottai ‘21]
« Polyak-Ruppert Averaged Q learning [Li, Yang, Zhang, Jordan ‘21]

» Federated Reinforcement Learning [Khodadadian, Sharma, Joshi, M, 22]

« Robust Reinforcement Learning [Wang, Si, Blanchet, Zhou ‘23]

4 )
Many more future
applications!

« Markov Chain Variance Estimation [Agrawal, LA, M 24]
 Stochastic Gradient Descent [Bottou et al ‘18]

e Linear Stochastic Approximation [Srikant, Ying ‘19]




PROOF SKETCH
MEAN SQUARE BOUNDS




STOCHASTIC APPROXIMATION: INTUITION

Stochastic Approximation Xp+1 = Xx + o (F(Xy, Yi) + Wy — X))

Stochastic Approximation ODE
X —X —
=2 = (F(Xg, Yi) + Wy — Xi) x = (F(x) — x)

ak

« ODE Method [Borkar ‘09]:
« Stochastic Approximation converges asymptotically if the ODE is globally asymptotically stable (gas)

dM(x—x™) _ o
= YM(x — x¥)

« Show gas using a Lyapunov function, M(x) = ||x||%:

« Want: Error bounds on original SA. We do not use the ODE method. [ Control the ]

Errors

 Challenge: We need to handle error terms

Xg+1 — Xk = Ak QF(XR) — X + F(xy, Yi) — F(x) + wy )
| | | | ]

| | |

[ Discretization Error ] [ ODE Term ] [ Markovian Error ] [Additive Noise Error]




ODE VS STOCHASTIC APPROXIMATION

Stochastic Approximation 9DE
Xg+1 — Xk = ak(F(Xk Yk) + Wi — Xi) x = (F(x) —x)

‘\wﬁHLIST [ BADNEWS

Lyapunov function

Smoothness: M(y) < M(x) + (VM(X) y —X)+ = ||y x||2, M(x) = [|x||2, is not
\_ smooth )

Approximation: M(x) < [|x]|%2 < cM(x)

M(Xg41 — X ) M(Xk X*) < —yaM(xy — x*)+o(ay)




THE LYAPUNOV FUNCTION
W E%HLIST

Smoothness: M(y) < M(x) + (VM(X),Y —X) + % ly — x5

Approximation: M(X) < [|x]|% < cM(x)

/

.

MeO= [IxI303g00 = min{lull?, +2g(x - w)

\

J

o °

Moreau Envelope

2 1 2
IxI12,05-1x113




HANDLING THE ERRORS

OO oQ

o

Xp+1 — Xk = Ak (F(Xk) — Xk + F(xy, Y) — F(xg) + Wk)
| Y J y J | Y J \_'_;

[ Discretization Error ] [ ODE Term ] [ Markovian Error ] [Additive Noise Error]

« Due to smoothness, we are good, if we have a handle on Markovian Error
« Exploit geometric mixing [Srikant, Ying ‘19]
« Or use Poisson Equation Approach [Benveniste ‘90] [Haque, M 24]




CONTRACTIVE STOCHASTIC APPROXIMATION: GENERALIZATIONS

Stochastic Approximation to solve F(X) = x

Xp+1 = Xk + o (F(X) + Wi — x)

« Contraction wrt a seminorm [Zhang, Zhang, M ‘21]
« Seminorm p(x) = 0 does not imply x = 0. Examples: ||x|||| or span(x)

« Used to study Average Reward Reinforcement Learning

« Go beyond contraction [Nguyen, M ‘23]
o If the ODE, X = (F(x) — x) has a Lyapunov function with some rate

» Two Player Zero Sum Games
e [Chen, Zhang, Mazumdar, Ozdaglar, Wierman 23]




STOCHASTIC APPROXIMATION: OPEN GENERALIZATIONS

Stochastic Approximation to solve F(x) = x

Xpe1 = Xg + a (F(Xy) + Wi — x)

« Contractive SA: Variance Reduction
e [Mou, Khamaru, Wainwright, Bartlett, Jordan 22]

e Improving the State space dependance using Reverse Experience Replay
e In Linear case [Agarwal, Chaudhuri, Jain, Nagaraj, Netrapalli ‘21]

« Nonexpansive operators ||[F(x) — x*|| < [|x — x*||
e £5-norm is known [Chen, M, Shakkottai, Shanmugam ‘20]

» Two-time scale SA
Lot of work. Optimal rates are known only in special cases.

 Polyak-Ruppert Averaging




TAIL BOUNDS




TAIL BOUNDS

Stochastic Approximation to solve F(X) = x
Xp+1 = Xk + ap (F(Xg, Yi) + Wy — Xi)

Mean Square Bound:

E[llx, —x*[I*] < 0 G)

Using Markov Inequality, we get P (llxk —x*||?=0 (%) z) i

Question: Can we get stronger tail bounds of the form

P(lIx—x Il =0(5)z) <e

YES in additive noise.
Not quite in multiplicative noise!




STOCHASTIC APPROXIMATION - ADDITIVE NOISE

Want to find x* that solves

[ X1 = X + 0 (Axy — by) ]

F(x) = Ey., [FxY)] =x

Stochastic Approximation

Xp+1 = Xk + ax(F(Xx ) + wyg — X )
Assumptions
» Noise wy, - iid or martingale difference, mean zero, and is Sub Gaussian

e F(.) is a contraction w.r.t arbitrary norm ||[F(x) — FW|| < v lIx — y||
« F(.) is Lipschitz in X uniformly in Y.




ADDITIVE NOISE - EXPONENTIAL TAILS

a
X =X, +—(F(X) + wj, — X
k+1 = Xk k_l_h((k) k — Xk)

Question: Can we get tail bounds of the form P (lek —x*I?>0 %) Z) < e “4?

Pl ||x x*||2>0101 1 )
k = 2 085 =

Theoremizubeldia, chen, Maguluri 23]: If & is large enough, forany k = 0, w.p. (1 — §),
1
)

1 1 *
Sample complexity of O (5_2) log (5) to ensure ||X, — X*|| < ew.p. (1 —6)

o




MULTIPLICATIVE NOISE - THE CHALLENGE

e Linear SAtosolve AX =D
Xk+1 = Xk + o (AXy — by)

 Focus on multiplicative noise. Set b, = 0, we get product of matrices E[A] is Hurwitz and

E[(T+ oA is contraction
Xp+1 = Xx(I + aAy) LT+ o)

[The matrix (I + axAy) is not a contraction. It is a contraction only in expectation. ]

« Mean Square bounds under constant step sizes: [Lakshminarayanan, Szepeswari ‘18] [Srikant, Ying ‘19]

 Tail Bounds under constant step sizes [Durmus et al ‘21]
« Exponential tails if Ay is Hurwitz for all k. (i.e., assuming contraction at all times)

e Polynomial tails otherwise.
« Stationary distribution is heavy-tailed (Higher moments don’t exist after a point) [Srikant, Ying 20]

We get exponential tails with diminishing step sizes and do it for general contractive SA

43




STOCHASTIC APPROXIMATION - MULTIPLICATIVE NOISE

Want to find x™ that solves
F(x) = Ey., [FxY)] =x
Stochastic Approximation

X1 = Xk T ox(F(X, Y) + — X))

Assumptions
* Yy are iid with distribution u (or F(xy, Yy ) is a martingale)

« With bounded support - More precisely, ||F(xx, Yi) — FW|| < C(1 + [|x]D

- F(.) is a contraction w.r.t arbitrary norm [|[F(x) — F(y)|| < v [|x — y]|

« F(.) is Lipschitz in X uniformly in Y and bounded in Y




MULTIPLICATIVE NOISE — WEIBULLIAN TAIL

i) (log (%))M sample complexity

62
/ Theorem{zubeldia, chen, Maguluri23]: For appropriate a, for a givenJ; w.p. (1 — &), )\

= x; + —— (F(Xy, i) — 5
XKk+1 Xk+k+h( (XK, Yi) — Xi) 0(

f

- 1\ 1

\_ L kM otherwise -/

« M —integer = 1 depends on how bad the bounded noise Y is (how expansive the operator can be)

2

1 -
« Corresponds to a tail of the form P (llxk —x*[| =0 (ﬁ) Z) < g—cZM

« Weibullian tail (spans Gaussian, exponential and heavier — lighter than any ploynomial)
« Counter example that (almost) matches this exponent.

« Why does the bound go up in the beginning?




WHY DOES THE ERROR GO UP?

-

-

Need enough samples for averaging to
kick in to make sure the product of
matrices becomes contractive.

\

J




ERROR GOES UP INDEED




ANY

TIME CONCENTRATION

(04
X1 = Xg + —— (F(Xy, Yi) + Wi — Xy)

k+h

/

P

o

Xy — x*|1* <

k

kB

~

1 k+h " . 1
5>+10g<,{—+h> if k=0 105’(5) forallk > K |>(1-6)

Theoremizubeldia, chen, Maguluri 22]: FOr appropriate «, for a given | K

(et

otherwise /




ANY TIME CONCENTRATION

-

\

With a small blowup factor of

log (ﬂ), we have bound that is
K+h

uniform over time

O(log(1/0)) K




ANY TIME CONCENTRATION

-

With a small blowup factor of A

log (ﬂ), we have bound that is
K+h

uniform over time

O (log(l /52€—|—10g(k) )

JE

O(log(1/9))




RELATED WORK
« Under boundedness

 Either due to iterates being in compact set such as constrained optimization [Duchi et al ‘12], [Lan ‘20]

« Or iterates are bounded due to other structural properties such as in Q Learning, [Evan-Dar et al ‘17], [Li
et al 21], [Qu et al ‘20] or other related settings [Prashanth et al ‘21] [Thoppe et al ‘19], [Chandak ‘22]

« Constant Step Size that is picked as a function of € and § by obtaining a bound on just one point
(or a window) of the tail
o [Telgarsky ’'22], [Mou et al ‘22], [Li et al 21]

 Result needs a bound on the iterates at some time n,
e [Thuppe et al “19], [Dalal ‘18]

e Our results in contrast, hold for potentially unbounded iterates, with diminishing step sizes and
we bound the entire tail, without assuming any future bound.
« Moreover, we allow for general norm contractions and we get anytime concentration.




PROOF SKETCH
TAIL BOUNDS




PROOF SKETCH

« Step 1 — Additive noise case or if iterates are bounded
e Proof framework based on exponential Lyapunov function (and Moreau envelope)

» Step 2 - Anytime concentration
« Using Ville’s (Doob’s) maximal inequality for supermartingales

 Step 3 - Bootstrapping
« Inductively use the previous two cases




RECALL

Stochastic Approximation to solve F(X) = x
Xp+1 = Xk + @ (F(Xg, Yi) + wy — xi)

Mean Square Bound:

E[llx, —x*[I*] < 0 G)

Using Markov Inequality, we get P (llxk —x*||?=0 (%) z) i

Question: Can we get stronger tail bounds of the form
P (||X1< —x*|I* >0 G) Z) < e %7

YES in additive noise.
Not quite in multiplicative noise!




STEP 1: EXPONENTIAL TAIL BOUNDS

» Use exponential Lyapunov function to bound MGF and obtain tail bounds.

- ~
Goal: P(k|xx —x*|[* = 2z) <e

-

kM (x) kM(xk)

« Usee B asLlyapunov function to bound E [
« B is the bound we assume on the iterates

« Key trick: Incorporate the rate into the Lyapunov function
« We get a recursion (In the bounded case). Solving it, we get

[ E[eM(x0] < ceoDMxo) ]

» Applying Markov inequality, we get the exponential tail bounds.




STEP 2: ANY TIME CONCENTRATION

e Supermartingale - E[Z;,+1|Fi] < Zi

]P(ilzlgzk > Z) <

« Ville’s (or Doob’s) maximal inequality

kM(xp)
» Lyapunov function, e 2 is (almost) decreasing in expectation

» because we incorporated the rate in it
« Not quite — need to add a compensator term

[ M—clog(k) :

e B IS a supermartingale ]

« We get Anytime concentration (still assuming bounded iterates) using the
maximal inequality

» The compensator log (g) term gives the blowup factor of log in the result




STEP 3: BOOTSTRAPPING

X, < Bforallk X) < 5(2) for all k whp
> Step 1 and Step 2 >

When iterates x,, are not bounded, start with a worst case upper bound x;, < 0(k™) for all k

X, < 0(kM) for all k whp X, < 0(kM~Dfor all k whp
>

> Step 1 and Step 2

Bootstrap Inductively
o 0 O Need Anytime
Concentration

X, < 0(1) for all k whp X, < 5(%) for all k whp.
> Step 1 and Step 2 >




STEP 3: BOOTSTRAPPING
ka—ZC*HQ O(kM)




CONCLUSION

 Stochastic Approximation of a contractive operator under general norm
« Both Additive and Multiplicative Noise

- Mean Square Convergence under Markovian Noise
~ (1 ~(1 :
0 (E) rate of convergence and O (6—2) mean square sample complexity
« Moreau Envelope of the squared norm as the Lyapunov function

« Anytime Exponential Concentration under iid Noise
« Additive noise: O (i) rate Exponential tails and O (eiz) log (%) sample complexity

M
« Multiplicative noise: 0 G) rate Weibullain tails and O (eiz) (log (%)) sample complexity

 Proof based on Exponential supermartingales and Bootstrapping

« Ongoing work: Both additive and multiplicative noise, Markovian noise (and a simpler proof?)
61




THANK YOU

Questions?
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