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Readings

1. 6.231 Sp22 Lecture 3 notes, Section 2 [N3 §2]
2. DPOCvol1, 3.1 (LQR), 3.3-3.4

3. (Optional) MIT Underactuated Robotics, Chapter 10
Trajectory Optimization [link]


http://underactuated.mit.edu/trajopt.html
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So far: sequential decision making is hard

“Roadmap”
This time: What makes some sequential decision problems easy?

Next time [3x]: Why is there still hope of solving sequential decision problems?
(general solutions for small-state problems)

Next next time [8x]: Why is there still hope of solving large-state problems?



Outline

1. Recap & roadmap

2. Template for structural DP arguments

a. Convexity, monotonicity

3. Example: optimal stopping

4. Linear quadratic control (LQR)



Template for Structural DP Arguments

Recognize that the reward/cost-to-go function V; has a
( in induction proof).
Example: convexity or monotonicity
Then, argue that this property implies that the has

some nice structure.
Example: a threshold policy is optimal

Extend this with an : we show that if a reward-to-go
function V satisfies the property, then the “next” reward-to-go
function:

V=(x) = rgg(x) IE[g(s, aw) + V(f(s, a, W))]
a S
that is generated by a step of the DP algorithm will also satisfy this

property.



Operations that Preserve Convexity

Comes in handy in showing the convexity of reward-to-go functions.

If f1, ..., fm:D — Rare convex and wy, ...,w,, = 0, thenw, f; + ...+ w,, f,
is convex.

For some f: X XY — R, the g: X — R defined as

gx) = [ fx,y)w(y)dy
is convex if w(y) = 0 and the mapping x — f(x,y) is convex forall y € Y.

g(x) = f(Ax + b)is convexif f is convex.

g(x) = sup f(x,y) is convex if x — f(x,y) is convex forall y € Y.
y€Y

Further reading: For a detailed treatment, please refer to the book Convex Optimization by Boyd and Vandenberghe.
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Asset Selling With Irrevocable Decisions

= Discrete time setting, t = {0,1, ..., T — 1}
* Problem: you have an asset to sell by time T.
* At each epoch

" You receive an offer w; drawn independently from some distribution W (bounded).
* You must either accept the offer and invest the money at a fixed interest rate r > 0 or
reject and wait for the next offer.

* Goal: maximize the expected final revenue.
* Notes:

* Continuous state problem!

* Assume that a rejected offer is lost.



Asset Selling With Irrevocable Decisions

= State s;
o= {sold if Ay = Acceptor s; = sold
H17 lwe oow.
v{t=0,..T —1}.
* Set s; = 0 as a dummy variable.
* The state spaceis S € R U {sold}.

= Action space:
| o if s; = sold
Ae(se) = {{Accept, Reject} o.w.
= The revenue for each period is defined as:
( ) = 0 if uy # Accept
selSp Ue W) = (1+7r)"fs,  ifu, = Accept

with the revenue for the final state being:

10 if s; = sold
gr(sy) = {ST 0. W.
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DP recursion & optimal policy

Following the DP algorithm described in the previous section, set V;(s) = gr(s).

Fort ={T—-1,T — 2, ...,0}, set:
VE(s) = max{(1 + )T ts, E[V;\ (w1} if s # sold
‘ 0 if s = sold
Given the structure of the value-to-go functions, V;(s),
the optimal policy can be easily computed as the following threshold policy:

. Accept ifs; > «a
¢ (se)| (s¢ # sold) = {Reject ifs: < az

where the thresholds, , depend on time t.

It is the maximum of
the termination
value (1 + )T ts
and the continuation
value E[V/y; (wy)]

We remark that a;’s obey their own recursion. Since we must accept the last offer, ar = —oo.

Fort ={T—-1,...,0}

Uy = mE[maX{Wt; er1}]

Proof: By induction.

Remark (infinite horizon version): With i.i.d. offers, the optimal policy is stationary and the

optimal threshold a* is the solution to the fixed point equation:

a = —— E[max{w, a}]

In plain English: Accept the offer if it's better to invest

147 now than wait for a slightly better offer in the future,
which loses out on factor(s) of the interest rafg,



Asset Selling With Offers Retained

= Now consider the setting:
* The offers wy, ..., wr_; are i.i.d., non-negative, bounded.

* The rejected offers are not lost. At any period t, we can choose the highest
offer received so far.

= To accommodate this setting, we define the state such that
_ (sold if A = Acceptor s; = sold
St = {max{st, Wt o.w.
vt ={0,..,T —1}.

" The action space and functions g;’s stay the same.
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Optimal policy

An optimal policy for asset selling with offers retained is a stationary
policy m* = (u*, u*, ..., u*), where for s # sold,

Accept ifs > E,, [max{s, w}]

1+
Reject o.w.

e (s) =



Proof (Proposition)

: Fors # sold, wecansetV;(s) =s. Fort =T —1and s # sold,
max{(1 + r)s, E[max{w;_{, s}|}
(1+1r)s

By ,assume that V5 1 (s) = (1 + r)V/,(s). Then
Vi(s) = max{(1 + )" s, E[V;4( )13
> max{(1 + )T ts, }
max{(1 + r)T~+Ds E[V,, (max{s, w:})]}
(147)
. Sfi= {S|S > a, = (1 +r)"T-DE[V},, (max{s, Wt})]}

thresholds a; converge (backwards) because:

Thresholds a; are monotonically increasing (backwards)
Ay = A1 =S¢ S Siiq

Thresholds a; are bounded above (bounded offers)

L E,, [max{s, w}]

1 . * *
Thresholds a; — E E,, [max{s, w}], since 1) S 2 §{.1,2)ar_; = —

Wu



Outline

1. Recap & roadmap
2. Template for structural DP arguments
3. Example: optimal stopping

4. Linear quadratic control (LQR)

a. Finite horizon LQR
b. Linear quadratic Gaussian & Certainty equivalence
c. Infinite horizon LQR & Algebraic Riccati Equations
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Notation “break”

In the following section, and in deference to the rich tradition in control
theory, we will be using standard control theory notation

x and u, in place of s and a, to denote state and the control

c(x,u) in place of r(s, a), to denote immediate cost or reward

r(s,a) = —c(x,u)

30
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Trajectory optimization

Synthesis of Complex Behaviors I
with
Online Trajectory Optimization [Russ Tedrake]

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference

on Intelligent Robots and Systems
2012

[Matthew Kelly]



Linear quadratic control

Assumptions: deterministic, finite horizon, discrete time

ho @ Desired height

The dynamics (discrete form) are governed by the equations of motion is:

1
hipr = he + Ave + EAZ(C(t - 9g)
Ve = Ve + A(ar — g)

where A = time step (sec)
Adapted from Kevin Jamieson

eig(A) < 1 — stable

Further reading:
Chen, Chi-Tsong. Linear system
theory and design. 1984.

S
Bl 4 g K
—~—

W_J

Ut

N

Xt+1 A Xt B
State space form
Xepr = fo,ue) = Ax, + Bu,

Linear time-invariant (LTI) system

w.l.o.g
h
h
_X'D = OD]



Linear quadratic control

Assumptions: deterministic, finite horizon, discrete time

ht+1] = ll A [ht]+ %AZ (at - g)
ho @ Desired height Wead 10 1 LV Al
Xt+1 A erj Y e
t
h
(excuse the max/min...)
Goal: minimize Finite horizon LQR: 74
T—1
u= min V(x,u =ZxT x, +ulRu, + xX0..x
V(xg;u) = thTth+utRut Uoyen U1 (%03 4) £ ¢ Qe + g Ky QQKZJ
t=0 . - . _ Terminal cost
0% 0,R>0 s.t. x4 = Ax; + Buy, t=0,1,.. T—-1

Adapted from Kevin Jamieson Wu
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' i ig(A — BK,) < 1 - stabl
Linear quadratic control e‘i( ) stable
t

Finite horizon LQR _
1 Xi+1 = Ax; + Bu,
u= min V(xgu) = E x? Qx¢ + ul Ruy + xXQrxr
Ug,.- - UT—1

t=0
S.t. Xt41 = Axt + But, t = O, 1, ,T -1

A

Optimal control law is a ' X¢pq1 = Axy + Bu; = (A — BK,)

Theorem (Finite horizon LQR)

The optimal cost-to-go and optimal control at time t are given by:
V*(xe) = xtTPtxt
Uy =
where
P, = Q + K{ RK, + (A — BK,)" P, .1 (A — BK,), Pr = Q7
K, =(R+B"P,.;B)"'BTP, A, te{0,..T—1}

Wu
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Proof (induction)

Base case (stage T):
V*(x) = x{ Pex,
= Pr = Qr
Special structure: V*(x;) = xLQrx; is convex.
Induction: assume P; holds & V*(x;) convex, show for t-1
Recall: 74 (x¢, up) = x! Qx; + usRu,

V*(xeq) = erin[xtT—1th—1 +u{_jRugq + V" (x,)]
-1

— inlT T T
= umm[xt—1th—1 + U Rug_q + x; Pex]
t—1

Finite horizon LQR: ,_, 36
u= min V(xgu)= Z x{ Qx; + ul Ru; + x1Qrxr
Ug,-»UT-1 =i

s.t. x¢p1 = Ax + Buy, t=01..,T—-1

Theorem (Finite horizon LQR)

The optimal cost-to-go and optimal control at time t are given by:
Vix) = xtTPtxt

u; = —Kx;
where
P, = Q + K/RK; + (A — BK,)"P,1(A — BKy), Pr = Qr
K: = (R+ BTP;1B) *BTP 1A, tefo0,..,T—1}

(principle of optimality)

(induction hypothesis)

= min[x/_;Qx;_; + ul_;Ru;_; + (Ax;_; + Bus_1)"Pe(Ax;_, + Bu,_;)] (system equations)

Ut—1

Vo, V' (xey) = 2u{_1R + 2(Ax¢—q + Bu;_1)"P.B = 0
ui—y = (R+B"PB) 'B"PAx,_1 = —K;_1%¢_1

(convexity)

(R > 0, derives K; for any t)

V*(xe—1) = x¢—1Qx¢—1 + il Rui_y + (Axe—q + Bu;_1)"P(Axe_1 + Bu;_,)
=x{_4 (Q + Ky RK;_1 + (A= BK;_1)"P.(A - BKt—l)) Xt-1 (derives Py_1)

_ T
= Xt—1Pr—1Xt—1



Linear quadratic control (stochastic)

Assumptions: deterministie, finite horizon, discrete time
Gaussian noise = Linear quadratic Gaussian (LQG) problem

Xep1 = f (X U, €0) = Axe + Buy + 6, €,~N(0,%)
Revised optimization problem:

u= min V(xyu)=E
Ug,..- - UT-1

T-1
Z x! Qx, + uRu; + x%QfxT]

t=0
subjectto x;,; = Ax; + Bu; + €;

Theorem (LQG)

The optimal cost-to-go and optimal control at time t are given by:

V*(xe) = x{ Py + % :
ur = : control as if

disturbances were known (deterministic)!
Py =Q+KLTRKt+(A_BKt)TPt+1(A_BKt); PT=Qf

K, = (R+BTP,,,B)"1BTP,.14, %,,=Tr(EP)+3%, Z;=0
te{0,..,T—1}

where

Intuition: noise terms are independent of actions = optimal actions don’t change.
Exercise: complete the proof!



Linear quadratic control (towards infinite horizon)

Assumptions: deterministic, finite-horizon, discrete time
Revised optimization problem:

T-1
u*= min V(xgu) = z x? Qx; + uRuy,
Ug,.-»UT-—1 =

subjectto x;,1 = Ax; + Bu,;
Before (finite horizon): finite horizon - finite sum.

Now, need some condition to keep sum finite.
System (4, B) is controllable if Ais full rank & A: = [B AB A?B .. A™ 1B]isfull rank (n).

Theorem (infinite horizon LQR)

If the system (4, B) is controllable, the optimal cost-to-go and optimal control
converges to

V*(x) = xTPx
u* = —Kx
where
P=Q+ ATPA — ATPB(R + BTPB)"'BTPA
K = (R+ BTPB)~'BTPA

Exercise: show that the expression is equivalent to before (in the limit).



Controllability (for linear systems)

System is controllable if A is full rank &
A=[B AB A?B .. A"™1B]is full rank (n).

Intuition: Can s’ be reached within n steps from any s?
xt+1 — Axt + But
= A(Axt_l + But_l) + But
= Azxt_l + ABut_l + But
— Agxt_z + AzBut_z ~+ ABut_l + But



Proof (intuition)

0 t—1 ¢t T (big)

For simplicity, take Pr = Q7 =0
xTPix < xTP,_yx (PSD)
As T — oo, xT Pyx must converge or go to infinity

— For every x, there is a sequence uy, ..., U,_1 (Where x €
R™) that drives x to 0.

After n steps, can set u;, = 0 for k = n.

Controllability
— xTPOx is bounded above, for any x
— P, converges to finite limit.
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LQR example (implementation)

xk+1) = [(1) } x(k) + (1’ u(k)
yk)y  =[1 0]x(k)
Let O = C'C = I, R = 0.3. Infinite horizon. Solve the optimal control.
Solve DARE
S=ATSA — ATSB(R + BTSB)"'BTSA+ O, K= — (R+ BTSB)"'B”SA
>s= [t

K =[-0.524, — 1.44]

Courtesy Ding Zhao (CMU) Wu



LQR example (implementation)

1 from _ future__ import division, print_function

2 import numpy as np

3 import scipy.linalg

4 def dlgr(A,B,Q,R):

5 """Solve the discrete time lgr controller.

6 x[k+1] = A x[k] +S B u[k]

7 cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]

3 wun

9 #ref Bertsekas, p.151
10 #first, try to solve the ricatti equation
11 S = np.matrix(scipy.linalg.solve_discrete_are(A, B, Q, R))
12 #compute the LQOR gain
13 K = -np.matrix(scipy.linalg.inv(B.T*S*B+R)*(B.T*S*A))
14 eigVals, eigVecs = scipy.linalg.eig(A+B*K)
15 return K, S, eigVals

1 A = np.array([[1,1],[0,1]])

2 B = np.array([[0],[1]])

3 Q = np.eye(2)

4 R=0.3

5

6 K,S,_ = dlqr(A,B,Q,R)

7 |print("sS:", S)

8 print("K:", K)

S: [[2.75078485 1.90801622]
[1.90801622 3.34052588]]
K: [[-0.52410456 -1.44169888]]

Courtesy Ding Zhao (CMU)
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Further reading & extensions

Further reading: 6.231 Sp22 Lecture 3 notes, Section 2 [N3 §2]
Excellent exposition, generally
Further discussion on observability
Stability
Loose ends (connections to other topics

Lots of extensions
Continuous time (Callier & Desoer)
Model estimation, via LS & recursive LS
Adaptive control (Abbasi-Yadkori, 2011)
Unknown models, robust LQR (Dean, 2017)
Time Varying Regression with Hidden Linear Dynamics (Mania, 2022)
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LQR — final notes

Iterative LQR remains a powerful
approach, e.g. in robotics.

Extensions
Iterative LQR (iLQR) (full implementation:
https://github.com/anassinator/ilqr)

Approximate a nonlinear system as
LQR using Taylor expansion

Take a step or three £
Rinse and repeat to update the  fpnen

. \
quadratic
approximation®,

-
-
)>
-
-
-
-
-
-

" first-order
approximation

¥ guess

next

model & objective guess

[Jonathan Hui, 2018]


https://github.com/anassinator/ilqr

And there you have it - iLQR

Synthesis of Complex Behaviors
with
Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference

on Intelligent Robots and Systems
2012
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Summary & takeaways

Certain DP problems admit , such as
and (LQR).
DP for problems with can be analyzed by

, by showing that the special structure holds from one
step to the previous, as well as for the terminal case. Special
structures include and

LQR exhibits : the optimal policy remains
the same when random disturbances are replaced with their
means (conditional expectation).
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