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1. 6.231 Sp22 Lecture 3 notes, Section 2 [N3 §2]

2. DPOC vol 1, 3.1 (LQR), 3.3-3.4

3. (Optional) MIT Underactuated Robotics, Chapter 10 
Trajectory Optimization [link]

Readings

http://underactuated.mit.edu/trajopt.html
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2. Template for structural DP arguments

3. Example: optimal stopping

4. Linear quadratic control (LQR)
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So far: sequential decision making is hard
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“Roadmap”
This time: What makes some sequential decision problems easy?

Next time [3x]: Why is there still hope of solving sequential decision problems? 
(general solutions for small-state problems)

Next next time [8x]: Why is there still hope of solving large-state problems?
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1. Recap & roadmap

2. Template for structural DP arguments
a. Convexity, monotonicity

3. Example: optimal stopping

4. Linear quadratic control (LQR)
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Template for Structural DP Arguments
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1. Recognize that the terminal reward/cost-to-go function 𝑉!∗ has a 
nice property (base case in induction proof).

§ Example: convexity or monotonicity

2. Then, argue that this property implies that the policy 𝝅!#𝟏∗  has 
some nice structure.

§ Example: a threshold policy is optimal

3. Extend this with an induction step: we show that if a reward-to-go 
function 𝑉 satisfies the property, then the “next” reward-to-go 
function:

𝑉# 𝑥 = m𝑎𝑥
%∈' (

𝔼 𝑔 𝑠, 𝑎, 𝑤 + 𝑉 𝑓 𝑠, 𝑎, 𝑤
that is generated by a step of the DP algorithm will also satisfy this 
property.
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Operations that Preserve Convexity
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§ Comes in handy in showing the convexity of reward-to-go functions.
§ Non-negative weighted sums:
• If 𝑓!, … , 𝑓": 𝒟 → ℝ are convex and 𝑤!, … , 𝑤" ≥ 0, then 𝑤!𝑓! +	…+ 𝑤"𝑓" 

is convex.
• For some 𝑓:𝒳×𝒴 → ℝ, the expectation 𝑔:𝒳 → ℝ defined as 

𝑔 𝑥 = ∫ 𝑓 𝑥, 𝑦 𝑤 𝑦 𝑑𝑦
is convex if 𝑤 𝑦 ≥ 0 and the mapping 𝑥	 ⟼ 𝑓 𝑥, 𝑦  is convex for all 𝑦 ∈ 𝒴.

§ Composition with an affine map:
• 𝑔(𝑥) 	= 	𝑓(𝐴𝑥	 + 	𝑏) is convex if 𝑓 is convex.

§ Point-wise supremum: 
• 𝑔 𝑥 = sup

#∈𝒴
𝑓 𝑥, 𝑦  is convex if 𝑥 ⟼ 𝑓 𝑥, 𝑦  is convex for all 𝑦 ∈ 𝒴.

Further reading: For a detailed treatment, please refer to the book Convex Optimization by Boyd and Vandenberghe.
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Asset Selling With Irrevocable Decisions
§ Discrete time setting, 𝑡 = 0, 1, … , 𝑇 − 1
§ Problem: you have an asset to sell by time 𝑇.
• At each epoch

§ You receive an offer 𝑤! drawn independently from some distribution 𝑊 (bounded).
§ You must either accept the offer and invest the money at a fixed interest rate 𝑟 > 0 or 

reject and wait for the next offer.

• Goal: maximize the expected final revenue.  

§ Notes:
• Continuous state problem!
• Assume that a rejected offer is lost.
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Asset Selling With Irrevocable Decisions
§ State 𝑠!

𝑠!"# =	$
sold	 if	𝐴! = Accept	or	𝑠! = sold
𝑤!	 𝑜. 𝑤.	

∀ 𝑡 = 0,…𝑇 − 1 .
• Set 𝑠! = 0 as a dummy variable.
• The state space is 𝑆 ⊂ ℝ ∪ sold .  

§ Action space:

𝐴! 𝑠! =	$
∅	 if	𝑠! = sold
Accept,	Reject 	 𝑜. 𝑤.	

§ The revenue for each period is defined as:

g! 𝑠!, 𝑢!, 𝑤! =	$
0	 if	𝑢!	 ≠ Accept
1 + 𝑟 $%!𝑠!	 if	𝑢! = Accept

with the revenue for the final state being:

g$ 𝑠$ =	$0	 if	𝑠$ = sold
𝑠$	 𝑜. 𝑤.	
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DP recursion & opBmal policy
§ Following the DP algorithm described in the previous section, set 𝑉"∗ 𝑠 = 𝑔" 𝑠 .  

For 𝑡 = 𝑇 − 1, 𝑇 − 2,… , 0 , set:

𝑉!∗ 𝑠 = 	:max 1 + 𝑟 "$!𝑠, 𝔼 𝑉!%&∗ 𝑤! 	 if	𝑠 ≠ sold
0	 if	𝑠	=	sold

§ Given the structure of the value-to-go functions, 𝑉!∗ 𝑠 , 
the optimal policy can be easily computed as the following threshold policy:

𝜋!∗ 𝑠! | 𝑠! ≠ sold = :
Accept	 if	𝑠! ≥ 𝛼!
Reject	 if	𝑠! ≤ 𝛼!

where the thresholds, 𝛼! =
𝔼 (!"#∗ )!
&%* %&! , depend on time 𝑡.  

§ We remark that 𝛼!’s obey their own recursion.  Since we must accept the last offer, 𝛼" = −∞.  
For 𝑡 = 𝑇 − 1,… , 0

𝛼! =
1

1 + 𝑟
𝔼 max 𝑤! , 𝛼!%&

§ Remark (infinite horizon version): With i.i.d. offers, the optimal policy is stationary and the 
optimal threshold 𝛼∗ is the solution to the fixed point equation:

𝛼 =
1

1 + 𝑟
𝔼 max 𝑤, 𝛼

It is the maximum of 
the termination 

value 1 + 𝑟 !"#𝑠 
and the continuation 

value 𝔼 𝑉#$%∗ 𝑤#

Proof: By induction.

In plain English: Accept the offer if it’s better to invest 
now than wait for a slightly better offer in the future, 
which loses out on factor(s) of the interest rate.
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Asset Selling With Offers Retained
§ Now consider the se]ng:
• The offers 𝑤&, … , 𝑤'(! are i.i.d., non-negaIve, bounded.
• The rejected offers are not lost.  At any period 𝑡, we can choose the highest 

offer received so far.

§ To accommodate this se]ng, we define the state such that

𝑠TUV =	5
sold	 if	𝐴T = Accept	or	𝑠T = sold
max 𝑠T , 𝑤T 	 𝑜. 𝑤.	

∀𝑡 = 0,… , 𝑇 − 1 .
§ The ac_on space and func_ons 𝑔T’s stay the same.
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Optimal policy
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Proposition

An optimal policy for asset selling with offers retained is a stationary 
policy 𝜋∗ = 𝜇∗, 𝜇∗, … , 𝜇∗ , where for 𝑠 ≠ sold, 

𝜋T∗ 𝑠 = K Accept	 if	𝑠 ≥
1

1 + 𝑟 𝔼W max 𝑠,𝑤

	 Reject	 𝑜. 𝑤.	
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Proof (ProposiBon)
1. Monotonicity:  For 𝑠 ≠ sold, we can set 𝑉'∗ 𝑠 = 𝑠.  For 𝑡 = 𝑇 − 1 and 𝑠 ≠ sold, 

𝑉'(!∗ 𝑠 = max 1 + 𝑟 𝑠, 𝔼 max 𝑤'(!, 𝑠
	 ≥ 1 + 𝑟 𝑠
	 = 1 + 𝑟 𝑉'∗ 𝑠

2. By induction, assume that 𝑉*+!∗ 𝑠 ≥ 1 + 𝑟 𝑉*+,∗ 𝑠 .  Then
𝑉*∗ 𝑠 = max 1 + 𝑟 '(*𝑠, 𝔼 𝑉*+!∗ max 𝑠, 𝑤*
	 ≥ max 1 + 𝑟 '(*𝑠, 1 + 𝑟 𝔼 𝑉*+,∗ max 𝑠, 𝑤*
	 = 1 + 𝑟 max 1 + 𝑟 '((*+!)𝑠, 𝔼 𝑉*+,∗ max 𝑠, 𝑤*
	 = 1 + 𝑟 𝑉*+!∗ (𝑠)

3. Optimal stopping set: 𝑆*∗: = 𝑠 𝑠 ≥ 𝛼* ≔ 1 + 𝑟 ( '(* 𝔼 𝑉*+!∗ max 𝑠, 𝑤*
4. Convergence: thresholds 𝛼* converge (backwards) because:

• Thresholds 𝛼! are monotonically increasing (backwards)
𝑎' ≥ 𝛼'() → 𝑆'∗ ⊆ 𝑆'()∗

• Thresholds 𝛼! are bounded above (bounded offers)
• Thresholds 𝛼! →

&
&%*

𝔼) max 𝑠, 𝑤 , since 1) 𝑆!∗ ⊇ 𝑆!%&∗ , 2) 𝑎"$& =
&
&%*

𝔼) max 𝑠, 𝑤



Wu

Outline
29

1. Recap & roadmap

2. Template for structural DP arguments

3. Example: optimal stopping

4. Linear quadratic control (LQR)
a. Finite horizon LQR
b. Linear quadratic Gaussian & Certainty equivalence
c. Infinite horizon LQR & Algebraic Riccati Equations
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Notation “break”
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In the following section, and in deference to the rich tradition in control 
theory, we will be using standard control theory notation

• 𝑥 and 𝑢, in place of 𝑠 and 𝑎, to denote state and the control
• 𝑐(𝑥, 𝑢) in place of 𝑟(𝑠, 𝑎), to denote immediate cost or reward
• 𝑟(𝑠, 𝑎) = −𝑐(𝑥, 𝑢)
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Trajectory opBmizaBon
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[Russ Tedrake]

[Matthew Kelly]
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Linear quadratic control
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Linear time-invariant (LTI) system

State space form

Assumptions: deterministic, finite horizon, discrete time

w.l.o.g.

Desired height

Further reading:
Chen, Chi-Tsong. Linear system 
theory and design. 1984.

Adapted from Kevin Jamieson 

eig 𝐴 ≤ 1 → stable

ℎ*+!
𝑣*+!

= 1 Δ
0 1

ℎ*
𝑣*

+ 
!
,
Δ,

Δ
𝛼* − 𝑔

𝑥*+! 𝐴 𝑥* 𝐵 𝑢*

𝑥*+! = 𝑓 𝑥, 𝑢* = 𝐴𝑥* + 𝐵𝑢*

𝑥* ≔
ℎ*
𝑣*

− 𝑥5

𝑥5 ≔
ℎ5
0

The dynamics (discrete form) are governed by the equations of motion is:

ℎ!"# = ℎ! + Δ𝑣! +
1
2Δ

& 𝛼! − 𝑔
𝑣!"# = 𝑣! + Δ 𝛼! − 𝑔
where Δ = 'me step (sec)
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Linear quadratic control
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Assumptions: deterministic, finite horizon, discrete time

Desired height

Goal: minimize Finite horizon LQR:

(excuse the max/min…)

Adapted from Kevin Jamieson 

𝑉 𝑥&; 𝑢 = X
*6&

'(!

𝑥*'𝑄𝑥* + 𝑢*𝑅𝑢*

𝑄 ≽ 0, 𝑅 ≻ 0

𝑢 = min
71,…,7234

𝑉 𝑥&; 𝑢 = X
*6&

'(!

𝑥*'𝑄𝑥* + 𝑢*'𝑅𝑢* + 𝑥''𝑄'𝑥'

s.t.	 𝑥*+! = 𝐴𝑥* + 𝐵𝑢* , 	𝑡 = 0, 1, … , 𝑇 − 1	
Terminal cost 

ℎ*+!
𝑣*+!

= 1 Δ
0 1

ℎ*
𝑣*

+ 
!
,
Δ,

Δ
𝛼* − 𝑔

𝑥*+! 𝐴 𝑥* 𝐵 𝑢*
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Linear quadratic control
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Theorem (Finite horizon LQR)
The optimal cost-to-go and optimal control at time t are given by:

𝑉∗ 𝑥T = 𝑥T!𝑃T𝑥T
𝑢T∗ = −𝐾T𝑥T

where
𝑃T = 𝑄 + 𝐾T!𝑅𝐾T + 𝐴 − 𝐵𝐾T !𝑃TUV 𝐴 − 𝐵𝐾T , 	 𝑃! = 𝑄!
𝐾T = 𝑅 + 𝐵!𝑃TUV𝐵 #V𝐵!𝑃TUV𝐴, 	 𝑡 ∈ 0,… , 𝑇 − 1

OpImal control law is a linear feedback controller: 𝑥*+! = 𝐴𝑥* + 𝐵𝑢* = 𝐴 − 𝐵𝐾* 𝑥*

Finite horizon LQR

𝑢 = min
'",…,'#$%

𝑉 𝑥*; 𝑢 = P
!+*

$%#

𝑥!$𝑄𝑥! + 𝑢!$𝑅𝑢! + 𝑥$$𝑄$𝑥$

s.t.	 𝑥!"# = 𝐴𝑥! + 𝐵𝑢!, 	𝑡 = 0, 1, … , 𝑇 − 1	

𝑥*+! = 𝐴𝑥* + 𝐵𝑢*

𝐾*

𝑢* 𝑥*

eig 𝐴 − 𝐵𝐾* ≤ 1 → stable
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§ Base case (stage T):
𝑉∗ 𝑥' = 𝑥'(𝑃'𝑥'
⇒ 𝑃( = 𝑄(

§ Special structure: 𝑉∗ 𝑥( = 𝑥((𝑄(𝑥( 	is convex.
§ Induc=on: assume 𝑃! holds & 𝑉∗ 𝑥! 	convex, show for t-1
Recall: 𝑟! 𝑥! , 𝑢! ≔ 𝑥!"𝑄𝑥! + 𝑢!𝑅𝑢!
𝑉∗ 𝑥!$& = min

5!&#
𝑥!$&" 𝑄𝑥!$& + 𝑢!$&" 𝑅𝑢!$& + 𝑉∗ 𝑥!

	 = min
5!&#

𝑥!$&" 𝑄𝑥!$& + 𝑢!$&" 𝑅𝑢!$& + 𝑥!"𝑃!𝑥!

	 = min
5!&#

𝑥!$&" 𝑄𝑥!$& + 𝑢!$&" 𝑅𝑢!$& + 𝐴𝑥!$& + 𝐵𝑢!$& "𝑃! 𝐴𝑥!$& + 𝐵𝑢!$&

∇5!&#𝑉
∗ 𝑥!$& = 2𝑢!$&" 𝑅 + 2 𝐴𝑥!$& + 𝐵𝑢!$& "𝑃!𝐵 = 0

𝑢!$&∗ = 𝑅 + 𝐵"𝑃!𝐵 $&𝐵"𝑃!𝐴𝑥!$& = −𝐾!$&𝑥!$&
𝑉∗ 𝑥!$& = 𝑥!$&" 𝑄𝑥!$& + 𝑢!$&∗" 𝑅𝑢!$&∗ + 𝐴𝑥!$& + 𝐵𝑢!$&∗ "𝑃! 𝐴𝑥!$& + 𝐵𝑢!$&∗

	 = 𝑥!$&" 𝑄 + 𝐾!$&" 𝑅𝐾!$& + 𝐴 − 𝐵𝐾!$& "𝑃! 𝐴 − 𝐵𝐾!$& 𝑥!$&
	 = 𝑥!$&" 𝑃!$&𝑥!$&

36

Proof (induction)
Finite horizon LQR:
𝑢 = min

!!,…,!"#$
𝑉 𝑥$; 𝑢 = =

%&$

'()

𝑥%'𝑄𝑥% + 𝑢%'𝑅𝑢% + 𝑥''𝑄'𝑥'

s.t.	 𝑥%*) = 𝐴𝑥% + 𝐵𝑢%, 	𝑡 = 0, 1, … , 𝑇 − 1	

(principle of optimality)

(induction hypothesis)

(system equations)

(𝑅 ≻ 0,	derives 𝐾'  for any 𝑡)

(derives 𝑃')*)

(convexity)
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Linear quadratic control (stochastic)
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Theorem (LQG)

The optimal cost-to-go and optimal control at time t are given by:
𝑉∗ 𝑥! = 𝑥!"𝑃!𝑥! + Σ!
𝑢!∗ = −𝐾!𝑥!

where
𝑃! = 𝑄 + 𝐾!"𝑅𝐾! + 𝐴 − 𝐵𝐾! "𝑃!%& 𝐴 − 𝐵𝐾! , 	 𝑃" = 𝑄L
𝐾! = 𝑅 + 𝐵"𝑃!%&𝐵 $&𝐵"𝑃!%&𝐴, 	 Σ!$& = 𝑇𝑟 Σ𝑃! + Σ! , Σ" = 0
𝑡 ∈ 0,… , 𝑇 − 1

§ Intui=on: noise terms are independent of acQons à opQmal acQons don’t change.
§ Exercise: complete the proof!

certainty equivalence: control as if 
disturbances were known (deterministic)!

§ Assumptions: deterministic, finite horizon, discrete time
§ Gaussian noise à Linear quadratic Gaussian (LQG) problem

𝑥!%& = 𝑓 𝑥! , 𝑢! , 𝜖! = 𝐴𝑥! + 𝐵𝑢! + 𝜖!					𝜖!~𝒩 0, Σ
§ Revised optimization problem:

𝑢 = min
5*,…,5%&#

𝑉 𝑥M; 𝑢 = 𝔼 m
!NM

"$&

𝑥!"𝑄𝑥! + 𝑢!𝑅𝑢! + 𝑥""𝑄L𝑥"

subject	to	 𝑥!%& = 𝐴𝑥! + 𝐵𝑢! + 𝜖!
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Linear quadratic control (towards infinite horizon)
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Theorem (infinite horizon LQR)

If the system (𝐴, 𝐵) is controllable, the optimal cost-to-go and optimal control 
converges to

𝑉∗ 𝑥 = 𝑥"𝑃𝑥
𝑢∗ = −𝐾𝑥

where
𝑃 = 𝑄 + 𝐴"𝑃𝐴	 − 𝐴"𝑃𝐵 𝑅 + 𝐵"𝑃𝐵 $&𝐵"𝑃𝐴

𝐾 = 𝑅 + 𝐵"𝑃𝐵 $&𝐵"𝑃𝐴

§ AssumpFons: determinisFc, finite horizon, discrete Fme
§ Revised opFmizaFon problem:

𝑢∗ = min
'",…,'#$%

𝑉 𝑥*; 𝑢 = lim
$→.

P
!+*

$%#

𝑥!$𝑄𝑥! + 𝑢!𝑅𝑢!

subject	to	 𝑥!"# = 𝐴𝑥! + 𝐵𝑢!
§ Before (finite horizon): finite horizon à finite sum.
§ Now, need some condiFon to keep sum finite.

• System (𝐴, 𝐵) is controllable if A is full rank & 𝐴̅: = 𝐵	 𝐴𝐵	 𝐴+𝐵	 …	 𝐴,)*𝐵  is full rank (n).

No “final step”

Later: infinite horizon problems

Algebraic Riccati Equation (ARE) 

§ Exercise: show that the expression is equivalent to before (in the limit).
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Controllability (for linear systems)
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§ System is controllable if A is full rank & 
𝐴̅ = 𝐵	 𝐴𝐵	 𝐴p𝐵	 …	 𝐴q#V𝐵  is full rank (n).

§ Intui&on: Can s’ be reached within n steps from any s?
𝑥TUV = 𝐴𝑥T + 𝐵𝑢T

	 = 𝐴 𝐴𝑥T#V + 𝐵𝑢T#V + 𝐵𝑢T
                                                            = 𝐴p𝑥T#V + 𝐴𝐵𝑢T#V + 𝐵𝑢T
	 = 𝐴r𝑥T#p + 𝐴p𝐵𝑢T#p + 𝐴𝐵𝑢T#V + 𝐵𝑢T

…
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Proof (intuition)

For simplicity, take 𝑃? = 𝑄? = 0
§ 𝑥?𝑃@𝑥 ≤ 𝑥?𝑃@AB𝑥
§ As 𝑇 → ∞, 𝑥?𝑃C𝑥 must converge or go to infinity
§ Controllability → For every 𝑥, there is a sequence 𝑢C, … , 𝑢DAB (where 𝑥 ∈
ℝD) that drives 𝑥 to 0.

§ After 𝑛 steps, can set 𝑢E = 0 for 𝑘 ≥ 𝑛.
§ Controllability 

• → 𝑥$𝑃*𝑥 is bounded above, for any 𝑥
• → 𝑃* converges to finite limit.

𝑡 − 1 𝑡

(PSD)

𝑇 (big)0

𝑉 𝑥* = 𝑥*'𝑃*𝑥*
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LQR example (implementation)

Courtesy Ding Zhao (CMU)
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LQR example (implementaBon)

Courtesy Ding Zhao (CMU)
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Further reading & extensions
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§ Further reading: 6.231 Sp22 Lecture 3 notes, Section 2 [N3 §2]
• Excellent exposition, generally
• Further discussion on observability
• Stability
• Loose ends (connections to other topics

§ Lots of extensions
• Continuous time (Callier & Desoer)
• Model estimation, via LS & recursive LS
• Adaptive control (Abbasi-Yadkori, 2011)
• Unknown models, robust LQR (Dean, 2017)
• Time Varying Regression with Hidden Linear Dynamics (Mania, 2022)
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LQR – final notes
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§ Itera&ve LQR remains a powerful 
approach, e.g. in robo&cs.

§ Extensions
• Itera_ve LQR (iLQR) (full implementaFon: 

hKps://github.com/anassinator/ilqr)
1. Approximate a nonlinear system as 

LQR using Taylor expansion
2. Take a step or three
3. Rinse and repeat to update the 

model & objecIve
[Jonathan Hui, 2018]

https://github.com/anassinator/ilqr
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And there you have it - iLQR
48
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Summary  & takeaways
§Certain DP problems admit closed form solutions, such as 

optimal stopping and linear quadratic control (LQR).
§DP for problems with special structures can be analyzed by 

induction, by showing that the special structure holds from one 
step to the previous, as well as for the terminal case. Special 
structures include convexity and monotonicity.

§LQR exhibits certainty equivalence: the optimal policy remains 
the same when random disturbances are replaced with their 
means (conditional expectation).

49
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1. 6.231 Sp22 Lecture 3 notes, Section 2 [N3 §2]

2. DPOC vol 1, 3.1 (LQR), 3.3-3.4

3. Some material adapted from:

• Daniel Russo (Columbia)
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