Fall 2023

From model-based to model-free

Policy evaluation without knowing how the world works

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

Readings

1. NDP §5.1-5.3

2. Sutton & Barto (2018), §12.1-12.2

http://incompleteideas.net/book/the-book-2nd.html

Outline

1. RLvsDP

2. Model-free policy evaluation

Outline

1. RLvsDP

a. Model-based vs model-free
b. Why learning from samples?
c. Types of approximation

2. Model-free policy evaluation

Model-free vs model-based methods

So far (Part 1, Lectures 1-6),
our discussion has been

: No direct access to model P, r
: Yes direct access to model P, r

Recall: value iteration
Viel1(s) =TVi(s) = max + yE./_ [V;(s")] foralls
a

Recall (L1): Key challenge of huge decision spaces

Arcade Learning Environment (ALE) Game of Go
t
a; = left
Possible game states: 4299 ~ 10120 Possible game states: 319x19 ~ 10172

For reference:
There are between 1078 to 1082 Cannot only explore. Cannot only exploit.

atoms in the observable universe. Must trade off exploration and exploitation.

Wu

Learning from Samples

Dynamic programming algorithms require an explicit definition of:
transition probabilities p(:|s, a)
reward function r(s, a)

State spaces may be too large to compute.

This knowledge is often unavailable (i.e., wind intensity, human-
computer-interaction) or expensive.

Can we relax this assumption?

Can we solve a DP problem , as more knowledge
about p(:|s,a) and r(s, a) is uncovered?

Lay of the land .

6.7920: Reinforcement learning:
foundations and methods

Sampling-based
\ (large state space)

Methods for sequential

decision making

Policy
. N
improvement

Policy
evaluation
7/

Dynamic
programming
(small state space)

\ | . |
Dynamic programming Generalized policy
algorithm iteration

Special

structures

Multi-armed
bandits
(horizon =1)

Reinforcement

learning

(horizon = 1)

¥

[

(finite horizon) (infinite horizon)
1
| 1

Value Policy

iteration

iteration

[Model-Free RL

10

De-facto definition:

(—J

Reinforcement learning =
sampling-based policy improvement for

sequential decision making (horizon > 1)

Given the Model

v)
Policy Optimization { Q-Learning Learn the Model

Policy Gradient <«— (DQN
> DDPG F;

A2C/A3C [« C51

TD3
PPO < QR-DQN
J [ek d

TRPO

HER

World Models

AlphaZero

I2A
Ref (RL): OpenAl Spinning Up
MBMF

MBVE

From exact DP to approximate DP

Note: Different types of approximation!

updates for (today)
Techniques: Monte Carlo approximation, temporal differencing

updates for
e.g., Q-learning; technique: stochastic approximation

E.g., Approximate VI / Pl
approximation

E.g., Fitted Q iteration, DQN

E.g., Policy gradient methods

uolnewixosdde uoioun4

\

spoyiaw Jejngel

Sampling settings

. A black-box simulator f of the
environment is available. Given (s, a),

f(s,a) ={s',r} with s' ~p(-|s,a),r =r(s,a)

. Multiple can be repeatedly generated
from some initial states and terminating when a condition is

achieved:
n

(SO,i' S1,ir s STiri)i=1
. At each time t the agent is at state s;, it takes
action a;, it observes a transition to state s;, ¢, and it receives a

reward ;. We assume that s, ~ p(: |s;, a;) and r, = (s, a;) (i.e.,
MDP assumption). No reset.

Notice

From now on we typically work in the

episodic discounted setting.

Most results smoothly extend to other settings.

Assume: The value functions can be represented exactly (e.g. tabular setting).

13

Outline

1. RLvsDP

2. Model-free policy evaluation

Monte Carlo approximation
Convergence of random variables
Incremental Monte Carlo
Stochastic approximation of a mean
Temporal difference TD(0)

TD(A), eligibility traces

S o o 0 T w

14

Warm-up: recall policy evaluation

T
Ve(s) = E [z vir(se,m(sy))|sg = s;m
t=0

The RL Interaction Protocol

Policy Evaluation

Fixed policy

Fori=1,..,n
Sett =0
Set initial state s

While (s;; not terminal) [execute one trajectory]

Take action
Observe and
Sett=t+1

EndWhile
Endfor
Return: Estimate of the value function 17”(-)

Policy Evaluation
Approach #1: Utilize the definition of State Value Function

Cumulgtive sum of rewards
Ve(s) =E [z vir(se, m(sy))|se = s; n]
t=0
Return of trajectory i starting from s,

T
Ei(so) = Z)’tTt,i
t=0

Estimated value function

n
. 1 "
G(s0) = > Rilso)
i=1

Monte-Carlo Approximation of a Mean

Let X be a random variable with mean y = E[X] and variance 0% =
V(X) and x,~ X ben realizations of X. The

of the mean (i.e., the empirical mean) built on n i.i.d.
realizations is defined as:

Xi

=

1
n

i=1

Monte-Carlo Approximation: Properties

The returns used in the Monte-Carlo estimation starting from an initial
state s, are unbiased estimators of V'™

E[R;(so)| = E[ro + yry; + -+ yTirg,;] = V7 (so)

Furthermore, the Monte-Carlo estimator converges to the value
function

o~ a.s.
Vit (s0) — V™ (so)

It applies to any state s used as the beginning of a trajectory (sub-
trajectories could be used in practice)

Finite-sample guarantees are possible (after n trajectories)

Convergence of Random Variables

Let X be a random variable and {X,, },,eny @ sequence of random variables.

a.s.
{X,,} converges to X , Xy, — X, if:
P(lim X, = X)=1
P
{X,,} converges to X , X, = X, ifforany e > 0:
lim P[|X,, — X|>€] =0
n—->0oo
D
{X,,} converges to X , X,, = X, if for any bounded continuous function f:
lim E[f (X,)] = E[f (X))
Ll
{X,,} converges to X , X, = X, if:
lim E[X,] = E[X] o eoumteroamles
n—-oo

as. P D
Remark: X, = X = X, > X=X, =X

Monte-Carlo Approximation of a Mean

= Unbiased estimator: Then E[u,] = u (and V(uy,) = @)
P

= Weak law of large numbers: u, - u
a.s.

= Strong law of large numbers: u, — u

D
= Central limit theorem (CLT): vn (U, — p) = N(O, W(X))
= Finite sample guarantee:

p||2 N X, — E[X <2 2ne”

n; t [X1]| > € = exp((b—a)2>
T ' accuracy “ W y,
deviation confidence

1 n
P EZXt_E[Xl] >el<s
i=1

(b—a)? log(%)
2¢e?

If n >

Monte-Carlo Approximation: Extensions

Non-episodic problems:

Interrupt trajectories after H stepsl:q

ﬁi(so) = Z Vtrt,i
t=0

Every return is ignoring a term:
00)

Monte-Carlo Approximation: Properties

The Monte-Carlo estimator computed over H steps converges to a
biased value function

~ a.s. _
Vit (so) — Vi (So)
Such that

_ T
Vi (s0) = V™ (so)| < v" 1m_axy

Proof: by geometric series.

Monte-Carlo: an Incremental Implementation

Approach #2: Incremental version of state value function definition

Return of trajectory i starting from s,

Tl
ﬁi(so) = Z Vtrt,i
t=0

Estimated value function

n

. 1 .

Vit (sg) = r_zz R;(so) =
i=1

n—1

1.
+ —R
n " n(SO)

~ (1 — 77(7’1))‘77?_1(50) + ()R, (o)

Incremental Monte-Carlo Policy Evaluation

Fixed policy

Fori=1,..,n
Sett =0
Set initial state s

While (s; not terminal) [execute one trajectory]

Take action a, = 7(s;)
Observe next state x, ., and reward r, = r"(s;)

Sett=t+1
EndWhile

TD(A) = temporal differences

Update V" (s) using TD(1) approximation ith poramater 2

Endfor

Incremental Monte-Carlo: Properties

Let the Monte-Carlo estimator be computed using a
Iearnmg rate {n(n)}n such that

Zn@) = o znwz < oo

Then .
U (se) — V™(so)

Need some new mathematical tools
Incremental Monte-Carlo estimation converges to V™ for a wide range of
choices of learning rate schemes.

This scheme is often referred to as TD (1), for reasons that will be clear shortly.
Wu

Stochastic Approximation of a Mean

Let X be a random variable with mean ;. = E[X] and
X~ X ben realizations of X. The of
the mean is,

Un = (1- nn):un—l T NnXn
With u, = x; and where (1,,) is a sequence of

Stochastic Approximation of a Mean

If for any n,n,, = 0 are such that

znn=°° zn%<°°

n=0 n=0
Then
a.s.
Un — U
And we say that u,, is a estimator.

Remark: Whenn,, = %, this is the recursive (incremental) definition of
the empirical mean.

Intuition: Incremental updates

Consider a simple setting: mean of

a sequence of numbers
x = (x,) = (5,2,9,10,1,3)

— 5+2+9+10+1+3

Mean: X = - =5
Incremental mean:
Ho =0
Uns1 = (L — 100Uy, +
L L
Policy evaluation jncrement
— estimate
Hn+1 = Un + 170 (Xn—pn)
\—Y—J

error

S|k
Q)
l—\

N | =

Wl

R

Ho =0
1
Us :\%3.5 +-9 = 5333
3
He=5333+ 10=65
4
Ue = —5.4 + =5 <— Success!

6

Wu

Stochastic Approximation of a Mean

Ifnn'— thenﬁﬁl—'l i=1Xi-

Proof: Base case (n = 1): uy = x4 (given).

: 1
Induction step. Assume p, = — X

1 1
ﬂn+1“<1 T 1)ﬂn'+11+_1xn+1
(n

l

Un,

n

n 12
n xn+1

>ixl+

xn+1

=<

xn+1

S|k
Q)
l—\

N | =

Wl

R

Intuition: Incremental updates

= Consider a simple setting: mean of
a sequence of numbers

= x = (x,) = (52,910,1,3) Preview of upcoming lectures:
_ o 54249+410+1+3 _ Also works for !

Mean: x = p =5 i.e., (optimal) value functions
= |ncremental mean:

—0 Incremental update of a
(1)
Un+1 = (L —1)01p + i
L - Same basic idea

(Optimal) value Analysis is more involved

function estimate

L
Un+1 = Up T (xn_.un)
\—Y—}

increment

error

Temporal Difference TD(1): Extensions

Non-episodic problems: Truncated trajectories

Multiple sub-trajectories
Updates of all the states using sub-trajectories
State-dependent learning rate n; (x)
[is the index of the number of updates in that specific state

38

Incremental Monte-Carlo Policy Evaluation

Fixed policy

Fori=1,..,n
Sett =0
Set initial state s

While (s; not terminal) [execute one trajectory]

Take action a, = 7(s;)
Observe next state x, ., and reward r, = r"(s;)

Sett=t+1
EndWhile

TD(A) = temporal differences

Update V" (s) using TD(1) approximation it porameter 1

Endfor

Temporal-Difference TD(0) Estimation

Approach #3: Conduct incremental updates within trajectories,
leveraging the Bellman equation

Recall: The Bellman equation
V®(s) = r(s,n(s)) + YEs © p(sm(s)) [V (s)]

Incremental update: At each step t, observe s;,1¢, S;.1 and update
estimate V™ as

Vﬂ(st) =(1-)Vn(st) + (Tt + VVR(Stﬂ))

Temporal-Difference TD(0): Estimation
At each step t, observe s;,1;, ;. , and update estimate V™ as
V7 (s) = (1 =mP(s) + 71 (e + Y7 (504

Interpretation: moving average
Mix between old and new estimate of V™ (s;):
old estimate V" (s;) new estimate 7, + YV ™(s11)

V(s = V(s + (Tt + VVn(Stﬂ))

Temporal-Difference TD (0): Estimation

temporal difference (TD) error

Equivalently
V() = V7(s.) + 71 (7 + ¥V (s000) = V7 (s0))

Interpretation: temporal-difference error
of estimate V'™ w.r.t. transition (s;, 7¢, S¢41):
8 =1 + YV (5e41) — V7 (sp)
Bellman error for function ¥/ at state s:
B”(V; S) =TV (s) = V(s)
=17(s) + yEg 5|V ()] = V(s)
Conditioned on s, §; is an estimate of B™:
Erysen [8c15e] = 77(50) + VEgyy 15 [P (se)] = P7(s0) = BH(7™, 5¢)

Temporal-Difference TD(0): Properties

Let TD(0) run with learning rate n(Nt(st)) where N;(s;) is the number of

visits to the state s;. If all states are visited infinitely often and the learning
rate is set such that:

in(t) = in(t)2 < ©
t=0 t=0

Then for any state s € § e
V7 (s) — VT(s)

Temporal Difference TD(0)

Fori=1,..,n
Sett =0
Set initial state s,

While (s; not terminal) [execute one trajectory]
Take action a,; = (s, ;)
Observe next state s;4,; and reward 7, ; = (s, ;, a; ;)
Sett =t+1
Update V™ (s; ;) using TD(0) estimation

EndWhile
Update /" (s,) using incremental Monte-Carlo estimation
Endfor

44

45

Incremental Monte-Carlo as a “TD method”

Temporal difference 8 = 1 + yV™(sp41) — V(sy)

Incremental Monte-Carlo

Vi1 (so) = (1 = M DV (S0) + M1 Ruva (So)

= VT (So) + N1 (ﬁn+1(50) - I7”(50))

1 (So) + Mnsr (TOn +yrin +v? Tzn S P vn”(so))

" (so) + 77n+1(7”0n +yhr (51 n) U (so) =YVl (sin) + YT +V2ron +¥313, + -)
" (so) + 77n+1(50n YU (S1n) F VTin V210 +¥313, + -)
(s
(s
7 (

0) + nn+1(60,n + YT1in + VZV;;T(SZ,n) - VVnﬂ(Sl,n) - Vzv;ln(sz,n) + Vzrz,n + V3T3,n + -)
) + 77n+1(60n + V61 n - ZVH(SZ n) + Vzrz,n + V3T3,n + -)
SO) + nn+1(60n + V61n + V262 n .t VTn_15Tn,n)

I
>§> :S) :S) :S) :S)

n

Compare: TD(0)
07 (se) = V7(se) + 71 (1 + Y7 ™ (5041) = V7 (50)) = V7 (s) + 6,

Temporal Difference TD (A1)

Idea: Use the whole series of temporal differences to update V'™

of a function V™ for a transition (s;, 7}, Sp.41)
6 =1 + YV (Se41) — VT (st)
Estimated value function

T
P75 = 77 (s0) +1(s0)) (r)™™

weight given to

o the 3-step return total area =1
\ is (1— A)A2

decay by A
weight given to Welghtlng given in the A-return to
actual, final return

each of the n-step returns

is ALt

Time —

47

Comparison of TD(1) [Incremental MC] and TD(0)
Temporal difference 8§, = 1, + yV™(s;41) — V™(s,)
* Incremental Monte-Carlo, i.e. TD(1):
V™ (so) = V™(so) + nlo +v61 + .. +y"167]

— No bias, large variance [long trajectory]

= TD(0):
V7 (so) = V™(sp) + 16,
— Large bias [“bootstrapping” on wrong values], small variance

The 73" Bellman Operator

Given 4 < 1, then the Bellman operator 7" is:

T/ln — (1 _ A) z /lm(g-'n)m+1

m=0

Remark: Convex combination of the m-step Bellman operators (77™)™
weighted by a sequence of coefficients defined as a function of a A.

Estimated value function
T
P7(se) = P7(se) +n(se)) (Y76,
7=t

= Once again requires the whole trajectory before updating...

50

51

Temporal Difference TD(A): Eligibility Traces
= Eligibility traces z € R°. Short-term memory vector.
= At the start of the episode, reset the traces: 72 =0

= For every transition s; = S¢4q
1. Compute the temporal difference
8 = 1e(st) + YV (s¢41) — V™ (sp)
2. Update the eligibility traces
2(s) = { YAz(s) ?fS * St [decay the contribution]
1+yAz(s) ifs =s; [increment the contribution]
3. Forallstate s € § |all states are updated at each step]

VT(s) « V™(s) + n(s)z(s)é;

Sensitivity to 4

= A < 1:smallervariance w.r.t. A = 1 (= incremental Monte-Carlo)

= A > 0:faster propagation of rewards w.r.t. A =0

52

Example: Sensitivity to 4

Linear chain example

o} @3 @

~ ~ 2
Error) ccs (V”(s) — V”(s)) after n = 100 trajectories

Summary of methods

Dynamic Programming Monte Carlo

Model Free?
Non-episodic domains?
Non-Markovian domains?
Converges to true value
Unbiased Estimate
Variance

Table courtesy Youkow Homma, Emma Brunskill

No

Yes

No

Yes
N/A
N/A

Yes
No
Yes
Yes
Yes
High

Temporal Difference

Yes
Yes
No
Yes
No
Low

54

55

summary

= Reinforcement learning vs dynamic programming

= Learning = incremental updates. Also called bootstrapping

= Types of approximation in approximate dynamic programming
= Incremental mean: warm-up for stochastic approximation

= Policy evaluation: Monte-Carlo and Temporal Difference (definition,
methods, pros and cons)

References

1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lectures 2-3.

2. Sutton & Barto (2018). §12.1-12.2

56

