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1. NDP §5.1-5.3

2. Sutton & Barto (2018), §12.1-12.2

Readings

http://incompleteideas.net/book/the-book-2nd.html
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Outline
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1. RL vs DP

2. Model-free policy evaluation
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Outline
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1. RL vs DP
a. Model-based vs model-free
b. Why learning from samples?
c. Types of approximation

2. Model-free policy evaluation
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Model-free vs model-based methods

§ Model-free: No direct access to model P, r
§ Model-based: Yes direct access to model P, r
§ Recall: value iteration

𝑉!"# 𝑠 = 𝒯𝑉! 𝑠 = max
$∈&	

𝑟(𝑠, 𝑎) + 𝛾𝔼(!~	* ⋅ (,$) 𝑉! 𝑠. 	 for	all	𝑠

So far (Part 1, Lectures 1-6), 
our discussion has been 

model-based.
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Recall (L1): Key challenge of huge decision spaces

For reference: 
There are between 1078 to 1082 
atoms in the observable universe.

Cannot only explore. Cannot only exploit.
Must trade off exploration and exploitation.

8

Possible game states: 319𝑥19 ≈ 10!"#Possible game states: 4#$$ ≈ 10!#$

Arcade Learning Environment (ALE) Game of Go
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Learning from Samples
9

§ Dynamic programming algorithms require an explicit definition of:
• transition probabilities 𝑝 ⋅ 𝑠, 𝑎)
• reward function 𝑟(𝑠, 𝑎)

§ State spaces may be too large to compute.
§ This knowledge is often unavailable (i.e., wind intensity, human-

computer-interaction) or expensive.
§ Can we relax this assumption?
§ Can we solve a DP problem incrementally, as more knowledge 

about 𝑝 ⋅ 𝑠, 𝑎) and 𝑟(𝑠, 𝑎) is uncovered?
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Ref (RL): OpenAI Spinning Up

Lay of the land
10Methods for sequen?al 

decision making

Sampling-based
(large state space)

Policy 
improvement

Multi-armed 
bandits 

(horizon = 1)

Reinforcement 
learning

(horizon ≥ 1)

Policy 
evaluation

Dynamic 
programming 

(small state space)

Dynamic programming 
algorithm 

(finite horizon)

Generalized policy 
itera?on

(infinite horizon)

Value 
iteration

Policy 
iteration

Special 
structures

De-facto definition: 
Reinforcement learning = 

sampling-based policy improvement for 
sequential decision making (horizon ≥ 1)

Today

6.7920: Reinforcement learning: 
foundations and methods
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From exact DP to approximate DP
11

Note: Different types of approximation!
§ Model-free updates for policy evaluation (today)
• Techniques: Monte Carlo approximation, temporal differencing

§ Model-free updates for optimal value functions [“RL”]
• e.g., Q-learning; technique: stochastic approximation

§ Approximating value functions
• E.g., Approximate VI / PI

§ Finite sample approximation [“RL”]
• E.g., Fitted Q iteration, DQN

§ Approximating policies [“RL”]
• E.g., Policy gradient methods

Tabular m
ethodsFunction approxim

ation
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Sampling settings
12

§ Learning with generaZve model.  A black-box simulator 𝑓 of the 
environment is available. Given (𝑠, 𝑎),

𝑓 𝑠, 𝑎 = 𝑠., 𝑟 	 with	 𝑠.	~	𝑝 ⋅ 𝑠, 𝑎 , 𝑟 = 𝑟(𝑠, 𝑎)
§ Episodic learning.  MulZple trajectories can be repeatedly generated 

from some iniZal states and terminaZng when a reset condiZon is 
achieved:

𝑠/,! , 𝑠#,! , … , 𝑠0%,! !1#
2

§ Online learning.  At each Zme 𝑡 the agent is at state 𝑠3, it takes 
acZon 𝑎3, it observes a transiZon to state 𝑠3"#, and it receives a 
reward 𝑟3. We assume that 𝑠3"#~	𝑝 ⋅ 𝑠3 , 𝑎3  and 𝑟3 = 𝑟 𝑠3 , 𝑎3  (i.e., 
MDP assumpZon).  No reset.
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Notice

13

From now on we typically work in the
episodic discounted setting.

Most results smoothly extend to other settings.
Assume: The value functions can be represented exactly (e.g. tabular setting).
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Outline
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1. RL vs DP

2. Model-free policy evaluation
a. Monte Carlo approximation
b. Convergence of random variables
c. Incremental Monte Carlo
d. Stochastic approximation of a mean
e. Temporal difference TD(0)
f. TD(𝜆), eligibility traces
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Warm-up: recall policy evaluation

15

𝑉4 𝑠 = 𝔼 5
31/

0

𝛾3𝑟 𝑠3 , 𝜋 𝑠3 |𝑠/ = 𝑠; 𝜋
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The RL Interaction Protocol
16
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Policy Evaluation
17

Fixed policy 𝜋

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set initial state 𝑠$
3. While (𝑠%,' not terminal)   [execute one trajectory]

1. Take action 𝑎&,( = 𝜋 𝑠&,(
2. Observe next state 𝑠&)*,(  and reward 𝑟&)*,( = 𝑟 𝑠&,( , 𝑎&,(
3. Set 𝑡 = 𝑡 + 1

EndWhile
Endfor
Return: Estimate of the value function +𝑉((⋅)
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Policy Evaluation
18

Approach #1: Utilize the definition of State Value Function
Cumulative sum of rewards 

𝑉4 𝑠 = 𝔼 5
31/

0

𝛾3𝑟 𝑠3 , 𝜋 𝑠3 |𝑠/ = 𝑠; 𝜋

§ Return of trajectory 𝑖 starting from 𝑠/

;𝑅! 𝑠/ =5
31/

0

𝛾3𝑟3,!

§ Estimated value function

;𝑉24 𝑠/ =
1
𝑛
5
!1#

2

;𝑅! 𝑠/
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Monte-Carlo Approximation of a Mean
19

Definition
Let 𝑋 be a random variable with mean 𝜇 = 𝔼 𝑋  and variance 𝜎5 =
𝕍 𝑋  and 𝑥2~	𝑋 be 𝑛 i.i.d. realizations of 𝑋.  The Monte-Carlo 
approximation of the mean (i.e., the empirical mean) built on 𝑛 i.i.d. 
realizations is defined as:

𝜇2 =
1
𝑛
5
!1#

2

𝑥!
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Monte-Carlo Approximation: Properties
20

Theorem
The returns used in the Monte-Carlo estimation starting from an initial 
state 𝑠/ are unbiased estimators of 𝑉4

𝔼 ;𝑅! 𝑠/ = 𝔼 𝑟/ + 𝛾𝑟#,! +⋯+ 𝛾0%𝑟0%,! = 𝑉4 𝑠/
Furthermore, the Monte-Carlo estimator converges to the value 
function

;𝑉24 𝑠/
$.(.
	𝑉4 𝑠/

§ It applies to any state 𝑠 used as the beginning of a trajectory (sub-
trajectories could be used in practice)

§ Finite-sample guarantees are possible (after 𝑛 trajectories)



Wu

Convergence of Random Variables
21

Let 𝑋 be a random variable and 𝑋) )∈ℕ a sequence of random variables.

§ 𝑋)  converges to 𝑋 almost surely, 𝑋)
,...
𝑋, if:

ℙ lim
)→0

𝑋) = 𝑋 = 1

§ 𝑋)  converges to 𝑋 in probability, 𝑋)→
1
𝑋, if for any 𝜖 > 0:

lim
)→0

ℙ 𝑋) − 𝑋 > 𝜖 = 0

§ 𝑋)  converges to 𝑋 in law, 𝑋)→
2
𝑋, if for any bounded continuous function 𝑓:

lim
)→0

𝔼 𝑓 𝑋) = 𝔼 𝑓 𝑋

§ 𝑋)  converges to 𝑋 in expectation, 𝑋)→
3#
𝑋, if:

lim
)→0

𝔼 𝑋) = 𝔼 𝑋

Remark: 𝑋)
,...
𝑋 ⟹ 𝑋)→

1
𝑋 ⟹ 𝑋)→

2
𝑋

See HW0 for examples & 
counterexamples
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Monte-Carlo Approximation of a Mean
24

§ Unbiased estimator: Then 𝔼 𝜇+ = 𝜇 and	𝕍 𝜇+ = 𝕍(.)
+

§ Weak law of large numbers: 𝜇+→
0
	𝜇

§ Strong law of large numbers: 𝜇+
1.3.
	𝜇

§ Central limit theorem (CLT): 𝑛 𝜇+ − 𝜇 →
4
	𝒩 0, 𝕍 𝑋

§ Finite sample guarantee:

ℙ
1
𝑛
2
(5*

+

𝑋& − 𝔼 𝑋* > 	 𝜖	 ≤ 2 exp −
2𝑛𝜖6

𝑏 − 𝑎 6

ℙ
1
𝑛2
(5*

+

𝑋& − 𝔼 𝑋* > 𝜖 ≤ 𝛿

If 𝑛 ≥
781 , 9:; ,

-
6<,

accuracy

deviation confidence
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Monte-Carlo ApproximaJon: Extensions
25

Non-episodic problems: 
§ Interrupt trajectories after 𝐻 steps:

;𝑅! 𝑠/ =5
31/

7

𝛾3𝑟3,!

§ Every return is ignoring a term:

5
317"#

8

𝛾3𝑟3,!
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Monte-Carlo Approximation: Properties
27

Theorem
The Monte-Carlo estimator computed over 𝐻 steps converges to a 
biased value function

;𝑉24 𝑠/
$.(.
	 G𝑉74 𝑠/

Such that
G𝑉74 𝑠/ − 𝑉4 𝑠/ ≤ 𝛾7

𝑟9:; 	
1 − 𝛾

§ Proof: by geometric series.
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Monte-Carlo: an Incremental Implementation
28

§ Approach #2: Incremental version of state value function definition
§ Return of trajectory 𝑖 starting from 𝑠/

;𝑅! 𝑠/ =5
31/

0%

𝛾3𝑟3,!

§ Estimated value function

;𝑉24 𝑠/ =
1
𝑛5
!1#

2

;𝑅! 𝑠/ =
𝑛 − 1
𝑛

;𝑉2<#4 𝑠/ +
1
𝑛
;𝑅2 𝑠/

	 ≈ 1 − 𝜂 𝑛 ;𝑉2<#4 𝑠/ + 𝜂 𝑛 ;𝑅2 𝑠/
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Incremental Monte-Carlo Policy Evaluation
29

Fixed policy 𝜋

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set initial state 𝑠$
3. While (𝑠% not terminal)   [execute one trajectory]

1. Take action 𝑎& = 𝜋 𝑠&
2. Observe next state 𝑥&)* and reward 𝑟& = 𝑟= 𝑠&
3. Set 𝑡 = 𝑡 + 1

EndWhile
4. Update +𝑉'( 𝑠$  using 𝑇𝐷(1) approximation
Endfor
Collect trajectories and compute +𝑉)( 𝑠$ using Monte-Carlo approximation

TD(𝜆) = temporal differences 
with parameter 𝜆



Wu

Incremental Monte-Carlo: Properties
30

Theorem
Let the incremental Monte-Carlo estimator be computed using a 
learning rate 𝜂 𝑛 2 such that

5
!1/

8

𝜂 𝑖 = ∞	 5
!1/

8

𝜂 𝑖 5 < ∞	 [Robbins	Monro′s	condition]

Then
;𝑉24 𝑠/

$.(.
	𝑉4(𝑠/)

§ Need some new mathematical tools
§ Incremental Monte-Carlo estimation converges to 𝑉& for a wide range of 

choices of learning rate schemes.
§ This scheme is often referred to as 𝑇𝐷 1 , for reasons that will be clear shortly.
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Stochastic Approximation of a Mean
32

Definition
Let 𝑋 be a random variable bounded in [0,1] with mean 𝜇 = 𝔼 𝑋  and 
𝑥2~	𝑋 be 𝑛 i.i.d. realizations of 𝑋.  The stochastic approximation of 
the mean is,

𝜇2 = 1 − 𝜂2 𝜇2<# + 𝜂2𝑥2
With 𝜇# = 𝑥# and where 𝜂2  is a sequence of learning steps.
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Stochastic Approximation of a Mean
33

Proposition
If for any 𝑛, 𝜂2 ≥ 0 are such that

5
2=/

𝜂2 = ∞	 5
2=/

𝜂25 < ∞

Then
𝜇2

$.(.
	𝜇

And we say that 𝜇2 is a consistent estimator.

Remark: When 𝜂2 =
#
2

 , this is the recursive (incremental) definiZon of 
the empirical mean.
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Intuition: Incremental updates
§ Consider a simple setting: mean of 

a sequence of numbers
§ 𝑥	 = 	 (𝑥𝑛) 	= 	 (5, 2, 9, 10, 1, 3)

§ Mean: �̅� = >"5"?"#/"#"@
A

= 5 

§ Incremental mean:
𝜇/ = 0

𝜇2"# = 1 − 𝜂2 𝜇2 + 𝜂2𝑥2

𝜇2"# = 𝜇2 + 𝜂2(𝑥2−𝜇2)

Success!

𝜂2 =
#
2

  i.e., 1, #
5
, #
@
, #
B
 …

𝜇' =
4
56.5 +

1
51 = 5.4

𝜇( =
5
65.4 +

1
63 = 5

𝜇) =
3
45.333 +

1
410 = 6.5

𝜇* =
2
33.5 +

1
39 = 5.333

𝜇# =
1
25 +

1
22 = 3.5

𝜇! = 0 ⋅ 0 + 1 ⋅ 5
𝜇$ = 0

error

Policy evaluation 
estimate

increment
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Stochastic Approximation of a Mean
36

If 𝜂+ =
*
+

, then 𝜇+ =
*
+
∑(5*+ 𝑥(.

Proof: Base case (𝑛 = 1): 𝜇* = 𝑥* (given).
Induction step.  Assume 𝜇+ =

*
+
∑(5*+ 𝑥(.

𝜇+)* = 1	 −
1

𝑛 + 1 𝜇+ +
1

𝑛 + 1𝑥+)*

=
𝑛

𝑛 + 1 𝜇+ +
1

𝑛 + 1𝑥+)*

=
𝑛

𝑛 + 1
1
𝑛2
(5*

+

𝑥( +
1

𝑛 + 1𝑥+)*

=
1

𝑛 + 1
2
(5*

+

𝑥( +
1

𝑛 + 1
𝑥+)*

=
1

𝑛 + 1
2
(5*

+)*

𝑥(
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Intuition: Incremental updates
§ Consider a simple setting: mean of 

a sequence of numbers
§ 𝑥	 = 	 (𝑥𝑛) 	= 	 (5, 2, 9, 10, 1, 3)

§ Mean: �̅� = >"5"?"#/"#"@
A

= 5 

§ Incremental mean:
𝜇/ = 0

𝜇2"# = 1 − 𝜂2 𝜇2 + 𝜂2𝑥2

𝜇2"# = 𝜇2 + 𝜂2(𝑥2−𝜇2)

𝜂2 =
#
2

  i.e., 1, #
5
, #
@
, #
B
 …

error

(Optimal) value 
function estimate

increment

Preview of upcoming lectures:
Also works for Bellman operators!

i.e., (optimal) value functions

Incremental update of a fixed point

Same basic idea
Analysis is more involved
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Temporal Difference 𝑇𝐷(1): Extensions
38

§ Non-episodic problems: Truncated trajectories

§ Multiple sub-trajectories
• Updates of all the states using sub-trajectories
• State-dependent learning rate 𝜂+(𝑥)
• 𝑖 is the index of the number of updates in that specific state
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Incremental Monte-Carlo Policy Evaluation
39

Fixed policy 𝜋

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set initial state 𝑠$
3. While (𝑠% not terminal)   [execute one trajectory]

1. Take action 𝑎& = 𝜋 𝑠&
2. Observe next state 𝑥&)* and reward 𝑟& = 𝑟= 𝑠&
3. Set 𝑡 = 𝑡 + 1

EndWhile
4. Update +𝑉'( 𝑠$  using 𝑇𝐷(1) approximation
Endfor
Collect trajectories and compute +𝑉)( 𝑠$ using Monte-Carlo approximation

TD(𝜆) = temporal differences 
with parameter 𝜆
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Temporal-Difference 𝑇𝐷(0) Estimation
40

§ Approach #3: Conduct incremental updates within trajectories, 
leveraging the Bellman equation

§ Recall: The Bellman equation
𝑉4 𝑠 = 𝑟 𝑠, 𝜋 𝑠 + 𝛾𝔼(,~	* ⋅ (,4 ( ) 𝑉

4 𝑠.

§ Incremental update: At each step 𝑡, observe 𝑠3 , 𝑟3 , 𝑠3"# and update 
estimate ;𝑉4  as

;𝑉4 𝑠3 = 1 − 𝜂 ;𝑉4 𝑠3 + 𝜂 𝑟3 + 𝛾 ;𝑉4 𝑠3"#
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Temporal-Difference 𝑇𝐷(0): Estimation
41

§ At each step 𝑡, observe 𝑠3 , 𝑟3 , 𝑠3"# and update estimate ;𝑉4  as
;𝑉4 𝑠3 = 1 − 𝜂 ;𝑉4 𝑠3 + 𝜂 𝑟3 + 𝛾 ;𝑉4 𝑠3"#

§ Interpretation: moving average
• Mix between old and new estimate of 𝑉& 𝑠- :

old estimate =𝑉& 𝑠-  new estimate 𝑟- + 𝛾 =𝑉& 𝑠-.!
• Weighted average:

=𝑉& 𝑠- = 1 − 𝜂 =𝑉& 𝑠- + 𝜂 𝑟- + 𝛾 =𝑉& 𝑠-.!
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Temporal-Difference 𝑇𝐷(0): Estimation
42

§ Equivalently
;𝑉4 𝑠3 = ;𝑉4 𝑠3 + 𝜂 𝑟3 + 𝛾 ;𝑉4 𝑠3"# − ;𝑉4 𝑠3

§ Interpretation: temporal-difference error
• Temporal difference error of estimate =𝑉& w.r.t. transition 𝑠- , 𝑟- , 𝑠-.! :

𝛿- = 𝑟- + 𝛾 =𝑉& 𝑠-.! − =𝑉& 𝑠-
• Bellman error for function =𝑉 at state 𝑠:

ℬ& =𝑉; 𝑠 = 𝒯& =𝑉 𝑠 − =𝑉 𝑠
= 𝑟& 𝑠 + 𝛾𝔼/$|/ =𝑉 𝑠1 − =𝑉 𝑠 	 [ℬ& 𝑉&; 𝑠 = 0]

• Conditioned on 𝑠- , 𝛿- is an unbiased estimate of ℬ&:
𝔼2%,/%&# 𝛿- 𝑠- = 𝑟& 𝑠- + 𝛾𝔼/%&#|/% =𝑉

& 𝑠-.! − =𝑉& 𝑠- = ℬ& =𝑉&, 𝑠-

temporal difference (TD) error
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Temporal-Difference 𝑇𝐷(0): Properties
43

Theorem
Let 𝑇𝐷(0) run with learning rate 𝜂 𝑁% 𝑠%  where 𝑁% 𝑠%  is the number of 
visits to the state 𝑠%.  If all states are visited infinitely often and the learning 
rate is set such that:

@
%5$

0

𝜂 𝑡 = ∞	 @
%5$

0

𝜂 𝑡 6 < ∞	 Robbins	Monro′s	condition

Then for any state 𝑠 ∈ 𝒮
+𝑉( 𝑠

,...
	𝑉( 𝑠



Wu

Temporal Difference 𝑇𝐷(0)
44

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set initial state 𝑠/ 
3. While (𝑠3  not terminal)   [execute one trajectory]

1. Take action 𝑎-,+ = 𝜋 𝑠-,+
2. Observe next state 𝑠-.!,+  and reward 𝑟-,+ = 𝑟 𝑠-,+ , 𝑎-,+
3. Set 𝑡 = 𝑡 + 1
4. Update =𝑉&(𝑠-,+) using 𝑇𝐷(0) estimation

EndWhile
4. Update ;𝑉!4 𝑠/  using incremental Monte-Carlo estimation
Endfor
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Incremental Monte-Carlo as a “TD method”
45

Temporal difference 𝛿' = 𝑟' + 𝛾 H𝑉( 𝑠')* 	− H𝑉((𝑠')

Incremental Monte-Carlo
H𝑉+)*( 𝑠, = 1 − 𝜂+)* H𝑉+( 𝑠, + 𝜂+)* H𝑅+)* 𝑠,
= H𝑉+( 𝑠, + 𝜂+)* H𝑅+)* 𝑠, − H𝑉+( 𝑠,
= H𝑉+( 𝑠, + 𝜂+)* 𝑟,,+ + 𝛾𝑟*,+ + 𝛾.𝑟.,+ + 𝛾/𝑟/,+ +⋯− H𝑉+( 𝑠,
= H𝑉+( 𝑠, + 𝜂+)* 𝑟,,+ + 𝛾 H𝑉+( 𝑠*,+ − H𝑉+( 𝑠, − 𝛾 H𝑉+((𝑠*,+) + 𝛾𝑟*,+ + 𝛾.𝑟.,+ + 𝛾/𝑟/,+ +⋯	
= H𝑉+( 𝑠, + 𝜂+)* 𝛿,,+ − 𝛾 H𝑉+((𝑠*,+) + 𝛾𝑟*,+ + 𝛾.𝑟.,+ + 𝛾/𝑟/,+ +⋯	
= H𝑉+( 𝑠, + 𝜂+)* 𝛿,,+ + 𝛾𝑟*,+ + 𝛾. H𝑉+( 𝑠.,+ − 𝛾 H𝑉+( 𝑠*,+ − 𝛾. H𝑉+((𝑠.,+) + 𝛾.𝑟.,+ + 𝛾/𝑟/,+ +⋯	
= H𝑉+( 𝑠, + 𝜂+)* 𝛿,,+ + 𝛾𝛿*,+ − 𝛾. H𝑉+((𝑠.,+) + 𝛾.𝑟.,+ + 𝛾/𝑟/,+ +⋯	
= H𝑉+( 𝑠, + 𝜂+)* 𝛿,,+ + 𝛾𝛿*,+ + 𝛾.𝛿.,+ +	 …+ 𝛾0!1*𝛿0!,+

Compare: TD(0)
H𝑉( 𝑠' = H𝑉( 𝑠' + 𝜂 𝑟' + 𝛾 H𝑉( 𝑠')* − H𝑉( 𝑠' = H𝑉( 𝑠' + 𝜂𝛿'
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Temporal Difference 𝑇𝐷 𝜆
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Idea: Use the whole series of temporal differences to update ;𝑉4

§ Temporal difference of a function ;𝑉4  for a transition 𝑠3 , 𝑟3 , 𝑠3"#
𝛿3 = 𝑟3 + 𝛾 ;𝑉4 𝑠3"# − ;𝑉4 𝑠3

§ Estimated value function

;𝑉4 𝑠3 = ;𝑉4 𝑠3 + 𝜂 𝑠3 5
R13

0

𝛾𝜆 R<3𝛿R

Weighting given in the 𝜆-return to 
each of the n-step returns 
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Comparison of 𝑇𝐷 1 	[Incremental MC] and 𝑇𝐷 0
47

Temporal difference 𝛿3 = 𝑟3 + 𝛾 ;𝑉4 𝑠3"# 	− ;𝑉4(𝑠3)
§ Incremental Monte-Carlo, i.e. 𝑇𝐷(1):

;𝑉4 𝑠/ = ;𝑉4 𝑠/ + 𝜂 𝛿/ + 𝛾𝛿# +	…+ 𝛾0<#𝛿0
⟹ No bias, large variance [long trajectory]

§ 𝑇𝐷(0): 
;𝑉4 𝑠/ = ;𝑉4 𝑠/ + 𝜂𝛿/

⟹ Large bias [“bootstrapping” on wrong values], small variance
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The 𝒯!
" Bellman Operator

48

Definition
Given 𝜆 < 1, then the Bellman operator 𝒯S

4  is:

𝒯S
4 = 1 − 𝜆 5

T=/

𝜆T 𝒯4 T"#

Remark: Convex combination of the 𝑚-step Bellman operators 𝒯4 T  
weighted by a sequence of coefficients defined as a function of a 𝜆.
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Temporal Difference 𝑇𝐷 𝜆

50

Estimated value function

;𝑉4 𝑠3 = ;𝑉4 𝑠3 + 𝜂 𝑠3 5
R13

0

𝛾𝜆 R<3𝛿R

⟹ Once again requires the whole trajectory before updating…
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Temporal Difference 𝑇𝐷 𝜆 : Eligibility Traces
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§ Eligibility traces 𝓏 ∈ ℝU. Short-term memory vector.
§ At the start of the episode, reset the traces: 𝓏 = 0
§ For every transition 𝑠3 → 𝑠3"#

1. Compute the temporal difference
𝛿- = 𝑟- 𝑠- + 𝛾 =𝑉& 𝑠-.! − =𝑉& 𝑠-

2. Update the eligibility traces

𝓏 𝑠 = 	 K 𝛾𝜆𝓏 𝑠
1 + 𝛾𝜆𝓏 𝑠 Kif	𝑠 ≠ 𝑠-

if	𝑠 = 𝑠-
3. For all state 𝑠 ∈ 𝑆 [all states are updated at each step]

=𝑉& 𝑠 ← =𝑉& 𝑠 + 𝜂 𝑠 𝓏 𝑠 𝛿-

[decay the contribution]
[increment the contribution]
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Sensitivity to 𝜆
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§ 𝜆 < 1: smaller variance w.r.t. 𝜆 = 1	(≈ incremental Monte-Carlo)
§ 𝜆 > 0: faster propagation of rewards w.r.t. 𝜆 = 0
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Linear chain example

Error ∑(∈U ;𝑉4 𝑠 − ;𝑉4 𝑠
5

 after 𝑛 = 100 trajectories

Example: Sensitivity to 𝜆

0 0.2 0.4 0.6 0.8 1 l

0 1 2 3 4 5 0
-1 0 0 0 1
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Summary of methods

Table courtesy Youkow Homma, Emma Brunskill 
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§ Reinforcement learning vs dynamic programming
§ Learning = incremental updates. Also called bootstrapping
§ Types of approximation in approximate dynamic programming
§ Incremental mean: warm-up for stochastic approximation
§ Policy evaluation: Monte-Carlo and Temporal Difference (definition, 

methods, pros and cons)

Summary
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