Fall 2023

From model-based to model-free

Policy evaluation without knowing how the world works

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

- 1. NDP §5.1-5.3
- 2. Sutton & Barto (2018), <u>§12.1-12.2</u>

Outline

- 1. RL vs DP
- 2. Model-free policy evaluation

Outline

1. RL vs DP

- a. Model-based vs model-free
- b. Why learning from samples?
- c. Types of approximation
- 2. Model-free policy evaluation

Model-free vs model-based methods

- Model-free: **No** direct access to model *P*, *r*
- Model-based: Yes direct access to model P, r

So far (Part 1, Lectures 1-6), our discussion has been model-based.

• Recall: value iteration $V_{i+1}(s) = \mathcal{T}V_i(s) = \max_{a \in A} r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} [V_i(s')]$ for all s

Recall (L1): Key challenge of huge decision spaces

t

Arcade Learning Environment (ALE)

 $a_t = \text{left}$

Possible game states: $4^{200} \approx 10^{120}$

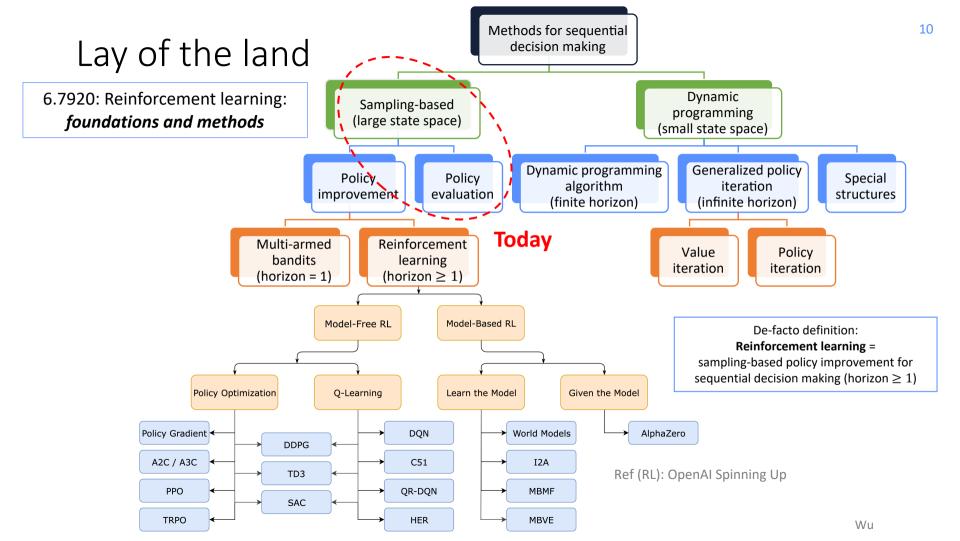
For reference: There are between 10⁷⁸ to 10⁸² atoms in the observable universe. Possible game states: $3^{19x19} \approx 10^{172}$

Cannot only explore. Cannot only exploit. Must trade off exploration and exploitation. 8

Game of Go

Learning from Samples

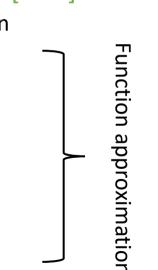
- Dynamic programming algorithms require an explicit definition of:
 - transition probabilities $p(\cdot|s, a)$
 - reward function r(s, a)
- State spaces may be too large to compute.
- This knowledge is often unavailable (i.e., wind intensity, humancomputer-interaction) or expensive.
- Can we relax this assumption?
- Can we solve a DP problem *incrementally*, as more knowledge about $p(\cdot|s, a)$ and r(s, a) is uncovered?



From exact DP to approximate DP

Note: Different types of approximation!

- Model-free updates for policy evaluation (today)
 - Techniques: Monte Carlo approximation, temporal differencing
- Model-free updates for optimal value functions ["RL"]
 - e.g., Q-learning; technique: stochastic approximation
- Approximating value functions
 - E.g., Approximate VI / PI
- Finite sample approximation ["RL"]
 - E.g., Fitted Q iteration, DQN
- Approximating policies ["RL"]
 - E.g., Policy gradient methods



11

Sampling settings

- Learning with generative model. A black-box simulator f of the environment is available. Given (s, a), $f(s, a) = \{s', r\}$ with $s' \sim p(\cdot | s, a), r = r(s, a)$
- Episodic learning. Multiple trajectories can be repeatedly generated from some initial states and terminating when a reset condition is achieved:

$$(s_{0,i}, s_{1,i}, \dots, s_{T_i,i})_{i=1}^n$$

• Online learning. At each time t the agent is at state s_t , it takes action a_t , it observes a transition to state s_{t+1} , and it receives a reward r_t . We assume that $s_{t+1} \sim p(\cdot | s_t, a_t)$ and $r_t = r(s_t, a_t)$ (i.e., MDP assumption). No reset.

Notice

From now on we typically work in the episodic discounted setting.

Most results smoothly extend to other settings.

Assume: The value functions can be represented exactly (e.g. tabular setting).

Outline

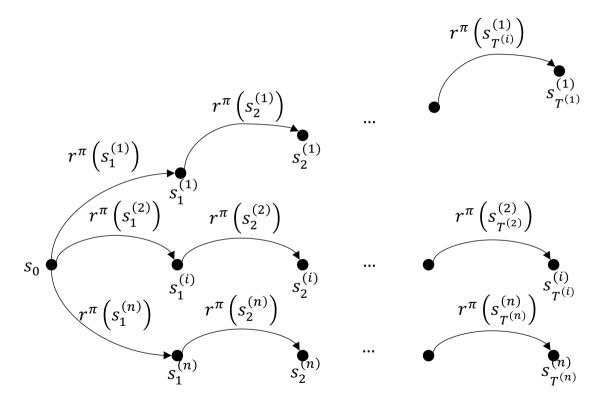
1. RL vs DP

2. Model-free policy evaluation

- a. Monte Carlo approximation
- b. Convergence of random variables
- c. Incremental Monte Carlo
- d. Stochastic approximation of a mean
- e. Temporal difference TD(0)
- f. TD(λ), eligibility traces

Warm-up: recall policy evaluation
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, \pi(s_{t})) | s_{0} = s; \pi\right]$$

The RL Interaction Protocol



Policy Evaluation

Fixed policy π

For $i = 1, \ldots, n$

- **1**. Set t = 0
- 2. Set initial state s_0
- **3.** While $(s_{t,i} \text{ not terminal})$ [execute one trajectory]
 - **1**. Take action $a_{t,i} = \pi(s_{t,i})$
 - 2. Observe next state $s_{t+1,i}$ and reward $r_{t+1,i} = r(s_{t,i}, a_{t,i})$
 - 3. Set t = t + 1

EndWhile

Endfor

Return: Estimate of the value function $\hat{V}^{\pi}(\cdot)$

Policy Evaluation

Approach #1: Utilize the definition of State Value Function

Cumulative sum of rewards

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, \pi(s_{t})) | s_{0} = s; \pi\right]$$

Return of trajectory *i* starting from s₀

$$\widehat{R}_i(s_0) = \sum_{t=0}^{I} \gamma^t r_{t,i}$$

Estimated value function

$$\hat{V}_n^{\pi}(s_0) = \frac{1}{n} \sum_{i=1}^n \hat{R}_i(s_0)$$

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean $\mu = \mathbb{E}[X]$ and variance $\sigma^2 = \mathbb{V}(X)$ and $x_n \sim X$ be *n i.i.d.* realizations of X. The Monte-Carlo approximation of the mean (i.e., the empirical mean) built on *n* i.i.d. realizations is defined as:

$$u_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Monte-Carlo Approximation: Properties

Theorem

The returns used in the Monte-Carlo estimation starting from an initial state s_0 are unbiased estimators of V^{π}

$$\mathbb{E}[\hat{R}_i(s_0)] = \mathbb{E}[r_0 + \gamma r_{1,i} + \dots + \gamma^{T_i} r_{T_i,i}] = V^{\pi}(s_0)$$

Furthermore, the Monte-Carlo estimator converges to the value function

$$\hat{V}_n^{\pi}(s_0) \xrightarrow{a.s.} V^{\pi}(s_0)$$

- It applies to any state s used as the beginning of a trajectory (subtrajectories could be used in practice)
- Finite-sample guarantees are possible (after *n* trajectories)

Convergence of Random Variables

Let X be a random variable and $\{X_n\}_{n \in \mathbb{N}}$ a sequence of random variables.

• $\{X_n\}$ converges to X almost surely, $X_n \xrightarrow{a.s.} X$, if:

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1$$

- { X_n } converges to X in probability, $X_n \xrightarrow{P} X$, if for any $\epsilon > 0$: $\lim_{n \to \infty} \mathbb{P}[|X_n - X| > \epsilon] = 0$
- { X_n } converges to X in law, $X_n \xrightarrow{D} X$, if for any bounded continuous function f: $\lim_{n \to \infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$

• { X_n } converges to X in expectation, $X_n \xrightarrow{L^1} X$, if: $\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X]$

Remark: $X_n \xrightarrow{a.s.} X \Longrightarrow X_n \xrightarrow{P} X \Longrightarrow X_n \xrightarrow{D} X$

See HW0 for examples & counterexamples

Monte-Carlo Approximation of a Mean

- Unbiased estimator: Then $\mathbb{E}[\mu_n] = \mu$ (and $\mathbb{V}(\mu_n) = \frac{\mathbb{V}(X)}{n}$)
- Weak law of large numbers: $\mu_n \xrightarrow{1} \mu$
- Strong law of large numbers: $\mu_n \xrightarrow{a.s.} \mu$
- Central limit theorem (CLT): $\sqrt{n} (\mu_n \mu) \xrightarrow{D} \mathcal{N}(0, \mathbb{V}(X))$
- Finite sample guarantee:

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{t} - \mathbb{E}[X_{1}]\right| > \underbrace{\epsilon}_{accuracy}\right] \leq 2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)$$

$$\underbrace{deviation}_{confidence}$$

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{t} - \mathbb{E}[X_{1}]\right| > \epsilon\right] \leq \delta$$
If $n \geq \frac{(b-a)^{2}\log\left(\frac{2}{\delta}\right)}{2\epsilon^{2}}$

Monte-Carlo Approximation: Extensions

Non-episodic problems:

Interrupt trajectories after H steps:

$$\widehat{R}_i(s_0) = \sum_{t=0}^n \gamma^t r_{t,i}$$

Every return is ignoring a term:

$$\sum_{t=H+1} \gamma^t r_{t,i}$$

Monte-Carlo Approximation: Properties

Theorem

The Monte-Carlo estimator computed over *H* steps converges to a **biased** value function

$$\widehat{V}_n^{\pi}(s_0) \xrightarrow{a.s.} \overline{V}_H^{\pi}(s_0)$$

Such that

$$|\overline{V}_H^{\pi}(s_0) - V^{\pi}(s_0)| \le \gamma^H \frac{r_{\max}}{1 - \gamma}$$

Proof: by geometric series.

Monte-Carlo: an Incremental Implementation

- Approach #2: Incremental version of state value function definition
- Return of trajectory *i* starting from s₀

$$\widehat{R}_i(s_0) = \sum_{t=0}^{T_i} \gamma^t r_{t,i}$$

Estimated value function

$$\hat{V}_n^{\pi}(s_0) = \frac{1}{n} \sum_{i=1}^n \hat{R}_i(s_0) = \frac{n-1}{n} \hat{V}_{n-1}^{\pi}(s_0) + \frac{1}{n} \hat{R}_n(s_0)$$

$$\approx \left(1 - \eta(n)\right) \widehat{V}_{n-1}^{\pi}(s_0) + \eta(n) \widehat{R}_n(s_0)$$

Incremental Monte-Carlo Policy Evaluation

Fixed policy $\boldsymbol{\pi}$

For $i = 1, \ldots, n$

- **1**. Set t = 0
- 2. Set initial state s_0
- **3.** While (*s*_t not terminal) [execute one trajectory]
 - 1. Take action $a_t = \pi(s_t)$
 - 2. Observe next state x_{t+1} and reward $r_t = r^{\pi}(s_t)$
 - 3. Set t = t + 1

EndWhile

4. Update $\hat{V}_i^{\pi}(s_0)$ using TD(1) approximation

 $TD(\lambda)$ = temporal differences with parameter λ

Endfor

Collect trajectories and compute $\hat{V}^{\pi}_{n}(s_{0})$ -using Monte-Carlo approximation

Incremental Monte-Carlo: Properties

Theorem

Let the incremental Monte-Carlo estimator be computed using a learning rate $\{\eta(n)\}_n$ such that

$$\sum_{i=0}^{\infty} \eta(i) = \infty \qquad \sum_{i=0}^{\infty} \eta(i)^2 < \infty \qquad [Robbins Monro's condition]$$
hen

$$\hat{V}_n^{\pi}(s_0) \xrightarrow{a.s.} V^{\pi}(s_0)$$

- Need some new mathematical tools
- Incremental Monte-Carlo estimation converges to V^π for a wide range of choices of learning rate schemes.
- This scheme is often referred to as TD(1), for reasons that will be clear shortly.

Stochastic Approximation of a Mean

Definition

Let X be a random variable bounded in [0,1] with mean $\mu = \mathbb{E}[X]$ and $x_n \sim X$ be n *i.i.d.* realizations of X. The stochastic approximation of the mean is,

$$\mu_{\mathbf{n}} = (1 - \eta_n)\mu_{\mathbf{n-1}} + \eta_n \mathbf{x}_{\mathbf{n}}$$

With $\mu_1 = x_1$ and where (η_n) is a sequence of learning steps.

Stochastic Approximation of a Mean

Proposition

If for any $n, \eta_n \ge 0$ are such that

$$\eta_n = \infty \qquad \sum_{n \ge 0} \eta_n^2 < \infty$$

Then

 $\mu_n \xrightarrow{a.s.} \mu$

And we say that μ_n is a consistent estimator.

Remark: When $\eta_n = \frac{1}{n}$, this is the recursive (incremental) definition of the empirical mean.

Intuition: Incremental updates

 Consider a simple setting: mean of a sequence of numbers

•
$$x = (x_n) = (5, 2, 9, 10, 1, 3)$$

• Mean: $\bar{x} = \frac{5+2+9+10+1+3}{6} = 5$

Incremental mean:

$$\mu_{0} = 0$$

$$\mu_{n+1} = (1 - \eta_{n})\mu_{n} + \eta_{n}x_{n}$$
Policy evaluation increment
$$\mu_{n+1} = \mu_{n}^{estimate} + \eta_{n}(x_{n} - \mu_{n})$$

error

 $\eta_n = \frac{1}{n}$ i.e., $1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}$... $\mu_0 = 0$ $\mu_1 = 0 \cdot 0 + 1 \cdot 5$ $\mu_2 = \frac{1}{\lambda}5 + \frac{1}{\lambda}2 = 3.5$ $\mu_3 = \frac{2}{3}3.5 + \frac{1}{2}9 = 5.333$ $\mu_4 = \frac{3}{4}5.333 + \frac{1}{4}10 = 6.5$ $\mu_5 = \frac{4}{5}6.5 + \frac{1}{5}1 = 5.4$ Wu

Stochastic Approximation of a Mean

lf

If
$$\eta_n = \frac{1}{n}$$
, then $\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$.
Proof: Base case $(n = 1)$: $\mu_1 = x_1$ (given).
Induction step. Assume $\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$.
 $\mu_{n+1} = \left(1 - \frac{1}{n+1}\right) \mu_n + \frac{1}{n+1} x_{n+1}$
 $= \left(\frac{n}{n+1}\right) \mu_n + \frac{1}{n+1} x_{n+1}$
 $= \left(\frac{n}{n+1}\right) \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n+1} x_{n+1}$
 $= \left(\frac{1}{n+1}\right) \sum_{i=1}^n x_i + \frac{1}{n+1} x_{n+1}$
 $= \left(\frac{1}{n+1}\right) \sum_{i=1}^n x_i + \frac{1}{n+1} x_{n+1}$

Wu

Intuition: Incremental updates

 Consider a simple setting: mean of a sequence of numbers

•
$$x = (x_n) = (5, 2, 9, 10, 1, 3)$$

• Mean: $\bar{x} = \frac{5+2+9+10+1+3}{6} = 5$

Incremental mean:

$$\mu_{0} = 0$$

$$\mu_{n+1} = (1 - \eta_{n})\mu_{n} + \eta_{n}x_{n}$$
(Optimal) value increment
function estimate
$$\mu_{n+1} = \mu_{n} + \eta_{n}(x_{n} - \mu_{n})$$
error

Preview of upcoming lectures: Also works for Bellman operators! i.e., (optimal) value functions

Incremental update of a fixed point

Same basic idea Analysis is more involved

$$\eta_n = \frac{1}{n}$$
 i.e., $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$...

Temporal Difference TD(1): Extensions

- Non-episodic problems: Truncated trajectories
- Multiple sub-trajectories
 - Updates of all the states using sub-trajectories
 - State-dependent learning rate $\eta_i(x)$
 - *i* is the index of the number of updates in that specific state

Incremental Monte-Carlo Policy Evaluation

Fixed policy $\boldsymbol{\pi}$

For $i = 1, \ldots, n$

- 1. Set t = 0
- 2. Set initial state s_0
- **3.** While (s_t not terminal) [execute one trajectory]
 - 1. Take action $a_t = \pi(s_t)$
 - 2. Observe next state x_{t+1} and reward $r_t = r^{\pi}(s_t)$
 - 3. Set t = t + 1

EndWhile

4. Update $\hat{V}_i^{\pi}(s_0)$ using TD(1) approximation

 $TD(\lambda)$ = temporal differences with parameter λ

Endfor

Collect trajectories and compute $\hat{V}^{\pi}_{n}(s_{0})$ -using Monte-Carlo approximation

Temporal-Difference TD(0) Estimation

- Approach #3: Conduct incremental updates <u>within trajectories</u>, leveraging the Bellman equation
- Recall: The Bellman equation $V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))}[V^{\pi}(s')]$
- Incremental update: At each step t, observe s_t, r_t, s_{t+1} and update estimate \hat{V}^{π} as

$$\widehat{V}^{\pi}(s_t) = (1 - \eta)\widehat{V}^{\pi}(s_t) + \eta\left(r_t + \gamma\widehat{V}^{\pi}(s_{t+1})\right)$$

Temporal-Difference TD(0): Estimation

- At each step *t*, observe s_t, r_t, s_{t+1} and update estimate \hat{V}^{π} as $\hat{V}^{\pi}(s_t) = (1 - \eta)\hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)$
- Interpretation: moving average
 - Mix between old and new estimate of $V^{\pi}(s_t)$: old estimate $\hat{V}^{\pi}(s_t)$ new estimate $r_t + \gamma \hat{V}^{\pi}(s_{t+1})$
 - Weighted average:

$$\hat{V}^{\pi}(s_t) = (1 - \eta)\hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)$$

Temporal-Difference TD(0): Estimation

• Equivalently $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t) \right)$

Interpretation: temporal-difference error

- Temporal difference error of estimate \hat{V}^{π} w.r.t. transition (s_t, r_t, s_{t+1}) : $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$
- Bellman error for function \hat{V} at state s:

$$\begin{aligned} &\mathcal{B}^{\pi}\big(\hat{V};s\big) = \mathcal{T}^{\pi}\hat{V}(s) - \hat{V}(s) \\ &= r^{\pi}(s) + \gamma \mathbb{E}_{s'|s}\big[\hat{V}(s')\big] - \hat{V}(s) \qquad [\mathcal{B}^{\pi}(V^{\pi};s) = 0] \end{aligned}$$

• Conditioned on s_t , δ_t is an unbiased estimate of \mathcal{B}^{π} :

$$\mathbb{E}_{r_{t},s_{t+1}}[\delta_{t}|s_{t}] = r^{\pi}(s_{t}) + \gamma \mathbb{E}_{s_{t+1}|s_{t}}[\hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_{t}) = \mathcal{B}^{\pi}(\hat{V}^{\pi},s_{t})$$

Temporal-Difference TD(0): Properties

Theorem

Let TD(0) run with learning rate $\eta(N_t(s_t))$ where $N_t(s_t)$ is the number of visits to the state s_t . If all states are visited infinitely often and the learning rate is set such that:

$$\sum_{t=0}^{\infty} \eta(t) = \infty \qquad \sum_{t=0}^{\infty} \eta(t)^2 < \infty \qquad [1]$$

[Robbins Monro's condition]

Then for any state $s \in S$

 $\widehat{V}^{\pi}(s) \xrightarrow{a.s.} V^{\pi}(s)$

Temporal Difference TD(0)

- For $i = 1, \ldots, n$
- 1. Set t = 0
- 2. Set initial state s_0
- **3.** While (s_t not terminal) [execute one trajectory]
 - **1**. Take action $a_{t,i} = \pi(s_{t,i})$
 - 2. Observe next state $s_{t+1,i}$ and reward $r_{t,i} = r(s_{t,i}, a_{t,i})$
 - 3. Set t = t + 1
 - 4. Update $\hat{V}^{\pi}(s_{t,i})$ using TD(0) estimation

EndWhile

4. Update $\hat{V}_i^{\pi}(s_0)$ using incremental Monte-Carlo estimation **Endfor**

Incremental Monte-Carlo as a "TD method"

Temporal difference $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$

Incremental Monte-Carlo

$$\hat{V}_{n+1}^{\pi}(s_0) = (1 - \eta_{n+1})\hat{V}_n^{\pi}(s_0) + \eta_{n+1}\hat{R}_{n+1}(s_0)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}\left(\hat{R}_{n+1}(s_0) - \hat{V}_n^{\pi}(s_0)\right)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}\left(r_{0,n} + \gamma r_{1,n} + \gamma^2 r_{2,n} + \gamma^3 r_{3,n} + \dots - \hat{V}_n^{\pi}(s_0)\right)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}(r_{0,n} + \gamma \hat{V}_n^{\pi}(s_{1,n}) - \hat{V}_n^{\pi}(s_0) - \gamma \hat{V}_n^{\pi}(s_{1,n}) + \gamma r_{1,n} + \gamma^2 r_{2,n} + \gamma^3 r_{3,n} + \dots)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}\left(\delta_{0,n} - \gamma \hat{V}_n^{\pi}(s_{1,n}) + \gamma r_{1,n} + \gamma^2 r_{2,n} + \gamma^3 r_{3,n} + \dots \right)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}\left(\delta_{0,n} + \gamma r_{1,n} + \gamma^2 \hat{V}_n^{\pi}(s_{2,n}) - \gamma \hat{V}_n^{\pi}(s_{1,n}) - \gamma^2 \hat{V}_n^{\pi}(s_{2,n}) + \gamma^2 r_{2,n} + \gamma^3 r_{3,n} + \dots \right)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}\left(\delta_{0,n} + \gamma \delta_{1,n} - \gamma^2 \hat{V}_n^{\pi}(s_{2,n}) + \gamma^2 r_{2,n} + \gamma^3 r_{3,n} + \dots \right)$$

$$= \hat{V}_n^{\pi}(s_0) + \eta_{n+1}\left(\delta_{0,n} + \gamma \delta_{1,n} - \gamma^2 \hat{V}_n^{\pi}(s_{2,n}) + \gamma^2 r_{2,n} + \gamma^3 r_{3,n} + \dots \right)$$

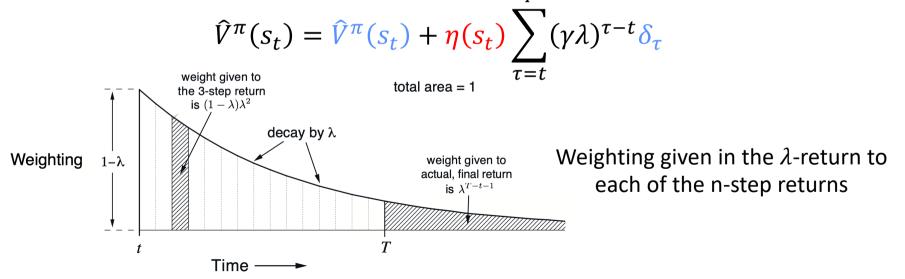
Compare: TD(0)

$$\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t) \right) = \hat{V}^{\pi}(s_t) + \eta \delta_t$$

Temporal Difference $TD(\lambda)$

Idea: Use the whole series of temporal differences to update \hat{V}^{π}

- Temporal difference of a function \hat{V}^{π} for a transition $\langle s_t, r_t, s_{t+1} \rangle$ $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$
- Estimated value function



Comparison of TD(1) [Incremental MC] and TD(0)

Temporal difference $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$

■ Incremental Monte-Carlo, i.e. TD(1): $\hat{V}^{\pi}(s_0) = \hat{V}^{\pi}(s_0) + \eta [\delta_0 + \gamma \delta_1 + ... + \gamma^{T-1} \delta_T]$ \Rightarrow No bias, large variance [long trajectory]

• *TD*(0):

$$\hat{V}^{\pi}(s_0) = \hat{V}^{\pi}(s_0) + \eta \boldsymbol{\delta_0}$$

⇒ Large bias ["bootstrapping" on wrong values], small variance

The
$$\mathcal{T}^{\pi}_{m{\lambda}}$$
 Bellman Operator

Definition

Given
$$\lambda < 1$$
, then the Bellman operator $\mathcal{T}_{\lambda}^{\pi}$ is:
$$\mathcal{T}_{\lambda}^{\pi} = (1 - \lambda) \sum_{m \ge 0} \lambda^{m} (\mathcal{T}^{\pi})^{m+1}$$

Remark: Convex combination of the *m*-step Bellman operators $(\mathcal{T}^{\pi})^m$ weighted by a sequence of coefficients defined as a function of a λ .

Temporal Difference $TD(\lambda)$

Estimated value function $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \eta(s_t) \sum_{\tau=t}^{T} (\gamma \lambda)^{\tau-t} \delta_{\tau}$

 \Rightarrow Once again requires the whole trajectory before updating...

Temporal Difference $TD(\lambda)$: Eligibility Traces

- Eligibility traces $z \in \mathbb{R}^S$. Short-term memory vector.
- At the start of the episode, reset the traces: z = 0
- For every transition $s_t \rightarrow s_{t+1}$
 - 1. Compute the temporal difference

$$\delta_t = r_t(s_t) + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$$

2. Update the eligibility traces

$$z(s) = \begin{cases} \gamma \lambda z(s) & \text{if } s \neq s_t \\ 1 + \gamma \lambda z(s) & \text{if } s = s_t \end{cases} \quad [\text{decay the contribution}] \\ [\text{increment the contribution}] \end{cases}$$

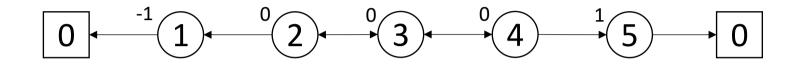
3. For all state $s \in S$ [all states are updated at each step] $\hat{V}^{\pi}(s) \leftarrow \hat{V}^{\pi}(s) + \eta(s)z(s)\delta_t$

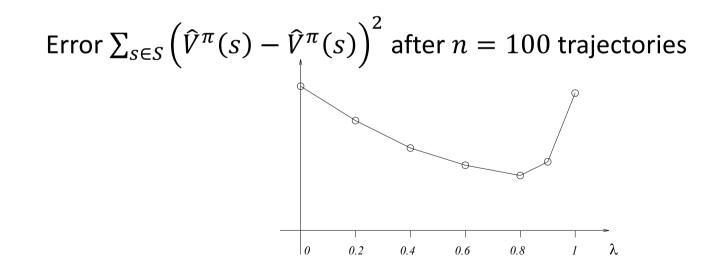
Sensitivity to λ

- $\lambda < 1$: smaller variance w.r.t. $\lambda = 1$ (\approx incremental Monte-Carlo)
- $\lambda > 0$: faster propagation of rewards w.r.t. $\lambda = 0$

Example: Sensitivity to λ

Linear chain example





53

Summary of methods

	Dynamic Programming	Monte Carlo	Temporal Difference
Model Free?	No	Yes	Yes
Non-episodic domains?	Yes	No	Yes
Non-Markovian domains?	No	Yes	No
Converges to true value	Yes	Yes	Yes
Unbiased Estimate	N/A	Yes	No
Variance	N/A	High	Low

Summary

- Reinforcement learning vs dynamic programming
- Learning = incremental updates. Also called bootstrapping
- Types of approximation in approximate dynamic programming
- Incremental mean: warm-up for stochastic approximation
- Policy evaluation: Monte-Carlo and Temporal Difference (definition, methods, pros and cons)

References

- 1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017, Lectures 2-3.
- 2. Sutton & Barto (2018). §12.1-12.2