Fall 2023

Value-based reinforcement learning

All about “Q”
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Readings

1. Neuro-dynamic Programming (NDP). Ch 3-5 (esp. §5.6, §4.1-
4.3, §6.1-6.2).

2. DPOC2 §6.3



Outline

1. Policy learning

2. Stochastic approximation of a fixed point
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From exact DP to approximate DP

Note: Different types of approximation!

updates for
Techniques: Monte Carlo approximation, temporal differencing

updates for (today)
e.g., Q-learning; technique: stochastic approximation

\

E.g., Approximate VI / Pl

approximation
E.g., Fitted Q iteration, DQN

E.g., Policy gradient methods
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Outline

1. Policy learning

State-action value function
SARSA
Q-Learning

Q 0 T w

Preview of stochastic approximation of a fixed point

2. Stochastic approximation of a fixed point



Policy Learning

Learn optimal policy "

Fori=1,..,n
Sett =0
Set initial state s
While (s;; not terminal) [execute one trajectory]

Observe next state s, ; and reward 1y ; = 7(s;;, az ;)
Sett =t+1

EndWhile
Endfor
Return:



State-Action Value Function (“Q”)

In discounted infinite horizon problems, for any policy m, the state-action value

function (or Q-function) Q™ : SXA » R is
Q™(s,a) = E [Z vir(se, al)|so = s, a9 = a,a; = w(se),Vt = 1
t=0

The optimal Q-function is

Q*(s,@) = max Q" (s, )

and the optimal policy can be obtained as

n*(s) = arg max Q*(s,a)



State-Action Value Function Operators™

T"Q(s,a) =r(s,a) +y Xy p(s'ls,a)Q(s’,m(s))
TQ(s,a) =7(s,a) +y Xy p(s'ls,a) max Q(s’, a’)

Still true:
Q" = T™QT™

*Abuse of notation for the operators



State-Action and State Value Function
Q"(s,a) =r(s,a) +y Xap(s'ls,a)V(s’)
VT(s) = Q”(s,ﬂ(s))

Q*(s,a) =7r(s,a) +y Xap(s'ls,a)V*(s’)
Ve(s) = Q (s, m*(s)) = max Q" (s, a)



Q-value lteration

Q-iteration:
Let 0, be any Q-function

At each iteration k =1,2, ..., K
CompLIte Qk+1 = TQI{

Return the greedy polic
J yP 7¥K(s) € arg max Qx(s,a)

Discuss: Why is it desirable to work with Q-value function, rather than state value
function, when designing a model-free method?

Comparison with value iteration

Bonus: complutlng the greedy policy from the Q-function does not
require the

Increased space to O(SA), same time complexity at O(S2A)
Reduced time complexity to compute the greedy policy O(SA)



Policy Iteration (w/ Q-value function)

Let Ty be stationary policy

At each iterationk =1, 2, ..., K
. given 1, compute Q™
: compute the greedy policy
Ti+1(s) € argmax Qi (s, )

Return the last policy
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Value iteration

Policy iteration

Recall:

(3) value iteration starts with an
arbitrary value function and has a

truncated pol icy evaluation step.

— Policy iteration consists of o full
convergence of iterative policy evaluation
alkerm’dns with Sreeda polic5 improvement.

SARSA

Monte Carlo control

(3) MC control estimates a. Q-function, has a 1 (4) SARSA has pretty much the same
truncated MC prediction phase followed by as MC control except a truncated
an epsilon-greedy policy-improvement step. TO prediction for policy evaluation.

Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.



SARSA

Idea: Alternate and (both model-free!)

Issue: greedy policy might not visit states needed to improve Q-value function

Approach: Define a policy with temperature

oxp (25:2)

T

e (15)

The higher Q(x, a), the more probability to take action a in state s.

Compute the on the trajectory (s¢, a¢, 1, Sg41, Ary1) (With
actions chosen according to m, (als))

8 = 1e +¥Q(Sp41, Apy1) — Q(sp ar)
Update the estimate of Q as
Qs ar) = +1(s¢, ar)6¢

mo(als) =



SARSA: Properties (Informal)

The TD updates make Q converge to Q™

The update of 1, allows improvement of
the policy

A decreasing temperature allows us to
become more and more greedy

= If T = 0 with a proper rate,
thenQ » Q" andmy » 1"



SARSA: Limitations

The actions a; need to be selected according to the current Q

— On-policy learning



The Optimal Bellman Equation

The optimal value function Q” (i.e. Q* = max Q™) is the solution to
y[A
the

CEO =164y ) pEIsOn 0 6 e)



Learning the Optimal Policy
Fori=1,..,n
Sett =0
Set initial state s
While (s; not terminal)
Take action a; according to a suitable exploration policy

argmax Q(s;,1,a’) w.p.1—¢

ng(als) = a (e-greedy policy)
Unif (A) W.p. €
eXp(Q(ia))
ng(als) = G (soft-max policy)
Zal exp(—{_)

Observe next state s;,; and reward 7;

Compute the temporal difference
6 =1 +¥Q(Ses1, ) — Q(se, ae) (SARSA)

Update the Q-function  _ A
Q(se,ar) = Q(sy, ap) + (s, ap)d;
Sett=t+1

EndWhile
Endfor

For convergence, €, T
may need to be decayed
appropriately.



When should you use Q-learning?

Lea rﬂlng the Optlmal PO“CV Small state space problems — why?

Fori=1,..,n But larger state spaces than for
value/policy iteration are OK — why?

Sett =20

Set initial state So Wher;]you dlon t:ave a model (P, r) l
. . Wort tryl E iterati i t

While (St not terminal) Chz;p'a ry! Each iteration is extremely

Take action a; according to a suitable exploration policy

argmax Q(s;,1,a’) w.p.1—¢

ng(als) = a (e-greedy policy)
Unif (A) W.p. €
eXp(Q(ia))
ng(als) = G (soft-max policy)
Zal exp(—{_)

Observe next state s;,; and reward 7;
Compute the temporal difference
8 =1 + Y0 (Sp i1, ) —Q(sy ar) (SARSA) Idea (Q-learning [Watkins, 1992]):

S, =1+7y O(ser1,0) — Qs a.)  (Q—learning) Comptfte TD error based on the
optimal Bellman operator.

Update the Q-function  _ A
Q(se,ar) = Q(sy, ap) + (s, ap)d;
Sett=t+1

EndWhile
Endfor Wu



Learning the Optimal Policy

Terminology: on-policy vs off-policy learning

Fori=1,..,n Two uses of policies
Sett =0 Behavior policy: Policy used for
(collecting data)
Set initial state sg Target policy: Policy used for
While (s, not terminal) Q-learning
) ) ) ) ) Interacting policy: e-greedy
Take action a; according to a suitable exploration policy Learning policy:
argmax Q(St+1; a) w. p.1—¢ Different = off-policy
ng(als) = a’ (e-greedy policy) SARSA
Unif(A) W.p. € Interacting policy: e-greedy
0(s,@) Learning policy: e-greedy
eXp(T) : Same - on-polic
my(als) = ) (soft-max policy) policy
X eXp(—;) Off-policy = “learning from others”
Observe next state St+1 and reward 1 On-policy = “learning from oneself”

Compute the temporal difference
6y =1 + VQ(SHEJ ) — Q(-S;t; as) (SARSA)
6 =1ty Q(s¢41,a") — Q(s,a.)  (Q—learning)

Update the Q-function  _ A
Q(se,ar) = Q(sy, ap) + (s, ap)d;
Sett=t+1

EndWhile
Endfor Wu
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Q-learning

= Key idea: incrementally obtain new data and update Q function

Q-learning

Q-value iteration

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Temporal-difference (TD) error A / A
6; =1 +ymaxQ(sg4q,a’) — Qs ar)
L a Y J \—Y—}

TD target Current guess of value  wu

Recall: V*(s) = maxr(s,a) + YEg_ p(s a) V*(s")
a€Ai ’



Q_ Le a rn I n g . P ro p e rt I es Understanding this Proposition is the

main subject of today + next time.

If the learning rate satisfies the Robbins-Monro conditions in all states

s,a € SXA . .
znt(s,a) = 00 zn?(s,a) < o
i=0 1=0

And all state-action pairs are tried infinitely often, then for all s,a € §
XA

0(s, @) — Q*(s, a)

Remark: “infinitely often” requires a steady exploration policy.



Preview: Stochastic Approximation of a Fixed Point

Let T:RY - RY be a in some norm ||-|| with

V. For any function W and state s, a TV'(s) =
TV'(s) + w(s) is available. Foranys € S = {1, ..., N}, we defined the

stochastic approximation:
Va1 (8) = (1 = (D) (8) + 10(5) TV, () )
= (1 = 10())Va(8) + 1 ($) TV (5) + wrr)
Where 7,, is a sequence of

Recall: stochastic approximation of a
Mean i = E[X] and x,~ X be n realizations of random variable X

= (1—1ny,) + Ny



Preview: Stochastic Approximation of a Fixed Point

Let F, = {V,, ..., Vi, Wy, o.., Wy,_1, N, .., Ny } the filtration of the
algorlthm and assume that:

Elw,(s)|F]l =0 and E[w;(s)|F,] < A4+ BlIV,I?
For constants 4, B.

If the learning rates n,,(s) are positive and satisfy the stochastic
approximation conditions:

Then for any S € S: Terminology: Filtration F,
(probability theory) can be

VTl (S) CE) V (S) thought of as history up to time n.



Outline

1. Policy learning

2. Stochastic approximation of a fixed point

a. Stochastic approximation
b. Fixed points

tl;dr: TD(0) & Q-learning are stochastic approximation of fixed
points

Max norm contraction analysis
(Quadratic) Lyapunov function analysis

31



Stochastic Approximation

. Earlier: Wanted iterates p; to get closer and closer to
some u = E[X], so that we could evaluate a policy using Monte Carlo samples. (The data we
get is noisy, u + wy.)

. Now, more generally: Want iterates x; to get
closer and closer to some fixed point x* that is a solution to H(x) = x. (The data we get is
noisy, H(x;) + wy.)

Application: Exploit the to a policy as soon as new information is available.
Application: Exploit to a policy as soon as new information is
available.

Hope (and actuality):

ter1 = (L —ndue + (e + wy)

Xep1 = (1= ne)xe + ne(H(xe) + wy)
converge to the desired quantity, under appropriate conditions.

Generalization to component-wise updates:
xe41(8) = (1 = n)xe(s) + ne(Hx)(s) + we(s)) Vs €S



33

Fixed Point

We are interested in solving a system of (possibly nonlinear) equations
H(x) =x

where H is a mapping from R™ — R" (into itself).

H is some operator that returns an object in the same space!
Example (Linear, Bellman operator): H(V) = T™(V)
Example (Nonlinear, Optimal Bellman operator): H(V) := T (V)
Both take in value functions and return value functions.

A solution x* € R™ which satisfies H(x*) = x* is called a fixed point of H.
Example (Linear, Bellman operator): V* = T7*V ™
Example (Nonlinear, Optimal Bellman operator): V* = JTV*



Example: Simple fixed point equations

= Vean. Consider H(x) := u, where u can be treated as simply some
constant.
* Recall: u :== E[X] =), p(x)x’

= Stochastic gradient descent. Consider H(x) := x — Vf(x) for some
cost function f.

* In this case, the system H(x) = x is of the form Vf(x) = 0, which is closely
related to finding the minimum of a convex function.

Possible algorithms:
= x « H(x)
= x « (1 —n)x+nH(x) (small steps version)

= x < (A -—n)x+n(H()+w) (since H(x) is not precisely known;
this is a stochastic approximation algorithm)

Wu
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Stochastic Approximation of a Fixed Point

Summary of results: two kinds of norms, two kinds of analysis

As is the case with Bellman operators.

Enables analysis of TD, Q-learning.

Use where the expected update directions at each iteration are descent directions
corresponding to a

Enables analysis of the mean, stochastic gradient descent, and TD (1) with linear
approximation (sorta).

Relevance to Q-learning: Above analysis uses this analysis as a sub-routine!

Under these contractive norms, with some additional assumptions, x; = x* a.s.



Max Norm Convergence Result (Prop 4.4, NDP)

Let x; be the sequence generated by the iteration
Xe1(8) = (1 = n)xe(8) + 0 (H(x)(5) + we(s)) t=0,1,...

The step sizes 7, = 0 and are such that

Zm=°°: 2n?<°°

t=0 t=0
For every s, t we have zero-mean noise E[w,(s)|F;] = 0.

Given any norm ||:|| on R", there exist constants A and B such that the
variance of the noise is bounded as
E[wZ(s)| Fr] < A+ B ||x]|%, Vs, t
. . Terminology: Filtration F,
The mapping H is a max norm contraction. (probability theory) can be

Then, x; converges to x* with probability 1. thought of as history up to time ¢.

Related result for contractions w.r.t. the Euclidean norm (later)



Discuss

Why do we need these extra assumptions on noise?
Why not just apply the law of large numbers for the noise term w,(s)?
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Terminology: Referred to

Example for max norm: TD(0) e sttt 10(0) 1588,

= TD(0) update (for tth trajectory t,):
Vie1(s) = Vi (s) + n:6:(s), VsES

With temporal difference §;(s)
6:(s) =r(s,s") +yV.(s') —V.(s) whens € 1, otherwise 0
= Need to show assumptions for Prop. 4.4 are met.

* (Condition b) Equivalently (construct w; s.t. it is zero mean):
Vey1(s) = (1 —n)Ve(s) + Ut(]E[5t(5)] + Vt(S)) + 1 (8:(s) — E[6:(s)])

J

v v
- Thus, H(V;)(s) we(S)
Elw:(s)| F:] = 0, Vs, t
= Discuss: Is H(V,)(s) a max norm contraction?
= Discuss: Where does the noise come from?

41



Terminology: Referred to

Example for max norm: TD(0) e sttt 10(0) 1588,

= TD(0) update (for tth trajectory t,):
Vie1(s) = Vi (s) + n:6:(s), VsES

With temporal difference §;(s)
6:(s) =r(s,s") +yV.(s') —V.(s) whens € 1, otherwise 0

= Need to show assumptions for Prop. 4.4 are met.

* (Condition c¢) Need to confirm that TD(0) has bounded variance. Recall:

TD(0) is low variance (but high bias).
V(8¢ (s) — E[6:(s)]| Fr) = V(6:(s)| Fr)

!/ !/ 2
V(8,(5)| Fo) < E[(r(s,s") +vV(s) = V()| 7]
< (fax + ZIIthlozo)2
< 37max T 6llIV:ll%
Since 2xy < x2 4+ y2. v
A B

42



Similarly for Q-Learning (see HW)

Recall:

Compute the (optimal) temporal difference on the trajectory (s¢, as, 1, Sg4+1)
Op =1tV max Q(st41,a’) — Q(sp ar)

Then, update the estimate of Q as
Q(x¢, ar) = + 1(s¢, ar) 6

If the learning rate satisfies the Robbins-Monro conditions in all states s,a €

SxA _ _
ZUt(s,a) = o0 Enﬁ(s,a) < o
i=0 =0

And all state-action pairs are tried infinitely often, then for all s,a € SXA

0(s, @) — 0*(s, a)



Summary of Q-learning analysis

Max Norm

Convergence

(HW)

Q-learning

47




Peeling back the onion for Q-learning
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Max Norm Convergence Result (Prop 4.4, NDP)

Let x; be the sequence generated by the iteration
Xe1(8) = (1 = n)xe(8) + 0 (H(x)(5) + we(s)) t=0,1,...

The step sizes 7, = 0 and are such that

Zm=°°: 2n?<°°

t=0 t=0
For every s, t we have zero-mean noise E[w,(s)|F;] = 0.

Given any norm ||:|| on R", there exist constants A and B such that the
variance of the noise is bounded as
E[w(s)| Fel < A+ B |lx %, Vs, t

The mapping H is a max norm contraction.

Then, x; converges to x™ with probability 1.



Summary of Q-learning analysis

Supermartingale

Convergence
Theorem

Quadratic
Lyapunov

(Special case)

Lyapunov

Function =
Analysis

Function
Analysis

|
Handle stochastic correlated noise

Max Norm
Convergence

Bellman

Operator Theory

Handles deterministic progress

= Q-learning
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Proof: Max Norm Contraction Analysis (Prop 4.4)

SkEtCh: For Q-learning, let x; == Q,
Overall proof strategy: show that

Qt(S” a’)
V||Qt||

1|01

Note: w.l.0.g. assume that x* = 0
Can translate the origin of the coordinate system.

Assume that x; is bounded.
This can be shown precisely (see NDP Prop 4.7). .

0(= Q* A
The upper bound can be decomposed into a (=D Q:(s,a)
and a

component.

The deterministic component

The noise component
Therefore, the overall x; contracts.



Proof: Max Norm Contraction Analysis (Prop 4.4)

: Since For Q-learning, let x, := 0
X; is bounded, there exists some D, s.t.
|x: |l < Dy, Vt. We define: Q,(s’,a")
= YU, k=0 V||Qt||

Clearly, D, converges to zero. ~

For TD(0), can think of D, as upper bound on ||Qt||

HV)(s) = E[r(s,s") + yV:(s")]. (T
Proof idea (by induction): suppose there Qc(s, a)

exists some ¢, s.t.
It lleo < Dy, VE = &
Then, there exists some later time t;,; s.t.
1xelloo < VE =ty



Proof: Max Norm Contraction Analysis (Prop 4.4)

= For the stochastic part of the upper bound,
define (need to confirm):
Wo(s) = 0;
Wip1(s) = (1 =)W (s) + newe(s)

= Since x; is bounded, so is the conditional
variance of w,(s). Then, as a result of the

For Q-learning, let x; == Q,

Qt(sli Cl’)

/.~

V||Qt||

1|01

Supermartingale Convergence Theorem,
and Lyapunov Function Analysis (NDP Prop
4.1) (discussed later),

L}im W.(s) =0
a.s.

= That is, the noise averages out to zero.

0(=Q7)

Qt (Sr Cl)
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Recall: x;11(s) = (1 —np)x(s) + nt(H(xt)(s) + wt(s)) t=0,1,..
Proof: Max Norm Contraction Analysis (Prop 4.4)

Define combined upper bound (need to confirm) (for all t = t):
Y, (s) = D + Wy, (s); ¥ Dk

Confirm combined upper bound via induction:
Suppose |x;(s)| < Y;:(s), Vs, forsome t > t;,. We then have:

Xer1(8) = (1 —np)x(s) + Ut(H(xt)(S) + Wt(S))
<A —n)Y:(s) + Ut(H(xt)(S) + Wt(S))
<A —n)Y:(s) + Ut()’Dk + Wt(S))

=Yi41(5)
Where the last inequality is due to |H(x,.)(s)| < yllx;|| < ¥D,.
Since ).°n; = oo and , Y; convergestoyDj, ast — o a.s.

This yields:
limsupllx;|| < yDy =: Dy41

t—oo

Therefore, there exists some time ty 41 S.t. ||x¢]|| < Dyyq, VE = tgi1.



Deterministic-only upper bound

Corresponds to convergence analysis for asynchronous value iteration!

Q-learning as noisy extension of value iteration.

Wu



Now for the noise

The remainder of the discussion is about noise.

We used two not-yet-justified tools:
1. Supermartingale Convergence Theorem
2. Lyapunov Function Analysis (NDP Prop 4.1)

56



Summary of Q-learning analysis

Supermartingale

Convergence
Theorem

Quadratic
Lyapunov

(Special case)

Lyapunov

Function =
Analysis

Function
Analysis

|
Handle stochastic correlated noise

Max Norm
Convergence

Bellman

Operator Theory

Handles deterministic progress

= Q-learning
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Proof: Max Norm Contraction Analysis (Prop 4.4)

= For the stochastic part of the upper bound,
define:
Wo(s) = 0;
Wip1(s) = (1 =)W (s) + newe(s)

= Since x; is bounded, so is the conditional
variance of w,(s). Then, as a result of the

For Q-learning, let x; == Q,

Qt(sli Cl’)

/.~

V||Qt||

1|01

Supermartingale Convergence Theorem,
and Lyapunov Function Analysis (NDP Prop
4.1),

L}im W.(s) =0
a.s.

= That is, the noise averages out to zero.

0(=Q7)

Qt (Sr Cl)
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To Complete the Max Norm Analysis

Wis1(s) = (1 = np)W(s) + newe(s) (1)

Interpretation: {IW;(s)} as along a
(Lyapunov) function

(take H(x) == x — Vf(x)):
Xep1 = (L=n)xe+n: (xe — VI (x) + we)
= x; + 0 (e — Vf(x) — x¢ + wy)
= x¢ + N (=Vf(xe) + wy)
Corresponds to taking Lyapunov function f(x) = %xz
Take x, := W,(s) to recover stochastic approximation update for W, ,(s)
Thatis, —Vf(x,) = x, = W,(s) recovers (1)
To show that W,(s) — 0, sufficient to show that f(x;) — 0.

Key fact: f(x;) turns out to be .
Martingale noise corresponds to a :
Consequently, martingale noise :

Wu



Quadratic Lyapunov function (special case of NDP Prop 4.1)

Let x; be the sequence generated by the iteration
— — Interpretati isy descent direction:
xt+1(s) — xt -|— 77t t — 0, 1, nterpretation as noisy descent direction

. gt = ~Vf ) +we = —lIr — 1l + we
Suppose f(r) =~ |Ir — r*||% satisfies:
Jc such that cf (x;) < —Vf (x)TE[g:|Fe]
3Ky, K; such that E[|lg¢[I5|F¢] < K + Ko f (x,)
Then ifn, > 0 with Y5271 = 0 and X.i2 7 < o

Xp =17, w.p.1
Consequence of conditions (1) and (2) is that f (x;) is a /
Note: Prop 4.1 will generalize f(r) to general Ve

Lyapunov functions (conditions (a) and (b)).



(General) Lyapunov Function Analysis Setup

(take H(x) = x — Vf(x)):
X1 = (L= n)xe+n.(x — V() + wy)
= x¢ + N (e — VF(xe) — ¢ +wy)
= x¢ + N (=Vf(xp) + wy)
= Xt )

Slight re-write:
Xer1(8) = (1 —n)x(s) + Ut(H(xt)(S) + Wt(S)) t=20,1,..
= x:(5) + e (H(xe)(5) = 2 (5) + we(s))

Xe41 = Xp T nt(\H(xt) — X t Wt)

=Xt T+ 1¢



Supermartingale Convergence Theorem/ﬂ

Generalization to a of the fact that

Proposition (Supermartingale convergence theorem (Neveu, 1975, p33))

Let X;,Y,and 7, t = 0,1, 2, ..., be three sequences of random variables.
Furthermore, let F;,t = 0, 1, 2, ..., be sets of random variables such that ¥, C
Fiiq1, Vt. Suppose that:

The random variables X, Y;, and /, are nonnegative, and
are functions of the random variables in F;.

For each t, we have E[V,,1|F] <V, — X, +

There holds
Then,
Y; converges to a limit with probability 1,
with probability 1.

2.
Vi « W& Fp < 14
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Proof: quadratic Lyapunov function
Key idea: show that f(x;) is a supermartingale, so f (x;) converges. Then show converges to zero w.p. 1.
* ElfCesDIF]=E [1 g1 — 7”*||2|T't]

=E [2 (xe +1ege — )T O +1ege — 1 )|~7:t] (gt g(xe, Wt))

1
= _(xt —r )T (e =) +ne(xe — 1 )TE[gtlf't] +nt Elgf g¢|F:]

77
= [ () +1eCe — 7)TE[ge|Fe] + tE PAHEA

= Since f(x;) = z IIxt — 115, Vf(xy) = x — 1. Then.
= E[f(er)IFel = ) +meV/ ) ElgeFel + -5 i3 E[”gtllzlj:t
< flxe) — necf () i (K1 + Kzf(xt)) (P4.1 conditions 1 & 2)

< flx) — (Utc - 1eKs fx t) . K1 (SCT condition b)

Correspondence to noise upper bound \ N
(intuition)

Yt<_Wt Fr <1 Yt Xt Zt

Xy < nWE; Ze < ngV(wy)

Y




Proof: quadratic Lyapunov function

ZK 2
E[f (er DIF] < fxe) — (Utc - 77t2 2>f(xt) +U_£K1
—— U v J
Ye Xt Zy

= Sincen, > 0and Y2 ,n? < o, then X, = 0 for large enough t (SCT condition a)
=  Moreover: Y027, = %Z,‘?":Onf < oo (SCT condition c)

=  Therefore, by Supermartingale convergence theorem:

f(x;) converges w.p. 1, and z <mc — mz 2> f(x;) < oo,wp. 1

t=0
= Suppose that f(x;) = € > 0. Then, by hypothesis that {2 ,n, = o and Y72, n? < o, we must have:

z C_’??Kz
Ul >

t=0
=  Which is a contradiction. Therefore:

>f(xt) =

1
tlimf(xt) = L}im > lx, —r*|I5=0 wp.1 = x,->r* wp.1



Lyapunov Function Analysis (NDP Prop 4.1)

Let x; be the sequence generated by the iteration
Xep1(S) =x. +1:g: t=0,1,..
If the stepsizes 17, = 0 and are such that Y;»077¢ = ; Y4502 < o, and there exists a function f: R" —» R",
with:
f(x) =0,vx € R.
The function f is continuously differentiable and there exists some constant L
such that
IVF () = VFEDI < Lllx —=x"ll,  vx,x" €R"

There exists a positive constant ¢ such that
cllVF(xp)ll? < =Vf (x)"Elg|F,], vt
There exists positive constants K, K, s.t. -
Elllgcl?1F] < Ky + K lIVF(e)ll?, vt
Then, with probability 1, we have

The sequence f(x;) converges. o .
We have tlim Vf(x,) = 0. Note: This holds for contractions

imit poi i : - w.r.t. the Euclidean norm.
Every limit point of x, is a stationary point of f. t. the Euclidean no

We proved the convergence for the special case where f(r) = %llr — r*||3 for some r* (sufficient for Qslearning).



Summary of Q-learning analysis

Supermartingale

Convergence
Theorem

Quadratic
Lyapunov

(Special case)

Lyapunov

Function =
Analysis

Function
Analysis

|
Handle stochastic correlated noise

Max Norm
Convergence

Bellman

Operator Theory

Handles deterministic progress

= Q-learning
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Summary of Q-learning analysis  contraction  noise
Xe+1(8) = (1 —n)xe(s) + nt(H(xt)(S) + Wt(S))

(2) Will the noise accumulate?
Noise is zero-mean, so the

means will not. How about the Supermartinga|e
variance? The variance of the

bootstrap samples eventually Convergence Max N
smooths out to 0, since Y., n? Theorem ax Norm

< o, so it does not aversely Convergence
affect convergence.

= Q-learning

ﬂ (1) With enough updates, will eventually

. i ke progress (contract), since ),; n; = oo.
(Special case) Quadratic make prog ¢ Mt
Lyapupov Lyapunov
Function Function Analysis Bellman

Analysis Operator Theory

T is max norm

W) = Iw,l|;

|

, , Handles deterministic progress
Handle stochastic correlated noise



Summary

Policy learning: SARSA and Q-learning (definition, guarantees)

Stochastic approximation of fixed points (results, contractive norms,
analyses)
TD and Q-learning as stochastic approximation methods
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