Fall 2024

From model-based to model-free

Policy evaluation without knowing how the world works

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

Readings

NDP §5.1-5.3

Sutton & Barto (2018)

Chapter 5: Monte Carlo Methods. §5.1
Chapter 6: Temporal-Difference Learning. §6.1-6.4
Chapter 12: Eligibility Traces. §12.1-12.2

http://incompleteideas.net/book/the-book-2nd.html

Outline

1. RLvsDP

2. Model-free policy evaluation

Outline

1. RLvsDP

a. Model-based vs model-free
b. Why learn from samples?
c. Sampling settings

2. Model-free policy evaluation

Model-free vs model-based methods

So far (Part 1, Lectures 1-7),
our discussion has been

: No direct access to model P, r
: Yes direct access to model P, r

Recall: value iteration
Viel1(s) =TVi(s) = max + yE./_ [V;(s")] foralls
a

Recall (L1): Key challenge of huge decision spaces

Arcade Learning Environment (ALE) Game of Go
t
a; = left
Possible game states: 384%84 ~ 1(3366 Possible game states: 319x19 = 10172

For reference:
There are between 1078 to 1082 Cannot only explore. Cannot only exploit.

atoms in the observable universe. Must trade off exploration and exploitation.

Wu

Lay of the land .----_

Methods for sequential

decision making

6.7920: Reinforcement learning:
foundations and methods

Sampling-based

\ (large state space)

Dynamic
programming

(small state space)
\ I

\ | |
Policy Policy Dynamllc prgghrammmg Gene‘rallze‘d policy Special
improvem}nt evaluation algorithm Iteration structures
’ (finite horizon) (infinite horizon)

Multi-armed
bandits
(horizon =1)

learning

Reinforcement

(horizon = 1)

¥

[

- I

Value

Policy

iteration

iteration

[Model-Free RL

De-facto definition:

Learn the policy (—J Learn the

Reinforcement learning =
sampling-based policy improvement for

sequential decision making (horizon > 1)

Given the Model

¢) value function
Policy Optimization { Q-Learning Learn the Model
Policy Gradient <«— (DQN
> DDPG ie
A2C/A3C [« C51
TD3
PPO < QR-DQN
J [e & d

TRPO HER

World Models

AlphaZero

I2A
Adapted from: OpenAl Spinning Up
MBMF

MBVE

=

Sampling settings

. A black-box simulator f of the
environment is available. Given (s, a),

f(s,a) ={s',r} with s' ~p(-|s,a),r =r(s,a)

. Multiple can be repeatedly generated
from some initial states and terminating when a condition is

achieved:
n

(SO,i' S1,ir s STiri)i=1
. At each time t the agent is at state s;, it takes
action a;, it observes a transition to state s;,, and it receives a

reward ;. We assume that s, ~ p(: |s;, a;) and r, = (s, a;) (i.e.,
MDP assumption). No reset.

Notice

From now on we typically work in the

episodic discounted setting.

Most results smoothly extend to other settings.

Assume: The value functions can be represented exactly (e.g. tabular setting).

11

Outline

RL vs DP

Model-free policy evaluation

Monte Carlo approximation
Incremental Monte Carlo, i.e. TD(1)
Stochastic approximation of a mean
Temporal difference TD(0)

TD(A), eligibility traces

® oo oD

Note on terminology:

In the Sutton & Barto text,
policy evaluation is referred
to as prediction; whereas
policy improvement is
referred to as control. For
example, Monte Carlo
prediction vs Monte Carlo
control (§5.1)

12

Warm-up: recall policy evaluation

T
Ve(s) = E [z vir(se,m(sy))|sg = s;m
t=0

The RL Interaction Protocol

Policy Evaluation

Fixed policy

Fori =1,...,n [each of n episodes]
Sett =0
Set initial state s

While (s;; not terminal) [execute one trajectory]

Take action
Observe and
Sett=t+1

EndWhile
Endfor
Return: Estimate of the value function 17”(-)

Policy Evaluation
Approach #1: Utilize the definition of State Value Function

Cumulgtive sum of rewards
Ve(s) =E [z vir(se, m(sy))|se = s; n]
t=0
Return of trajectory i starting from s,

T
Ei(so) = Z)’tTt,i
t=0

Estimated value function

n
. 1 "
G(s0) = > Rilso)
i=1

Monte-Carlo Approximation of a Mean

Let X be a random variable with mean y = E[X] and variance 0% =
V(X) and x,~ X ben realizations of X. The

of the mean (i.e., the empirical mean) built on n i.i.d.
realizations is defined as:

Xi

=

1
n

i=1

Monte-Carlo Approximation: Properties

The returns used in the Monte-Carlo estimation starting from an initial
state s, are unbiased estimators of V™ (s;)

E[R;(so)| = E[ro + yry; + -+ yTirg,;] = V7 (so)

Furthermore, the Monte-Carlo estimator converges to the value
function

~ a.s.
Vit (so) — V™(so)
Proof: Strong law of large numbers

It applies to any state s used as the beginning of a trajectory (sub-
trajectories could be used in practice)

Finite-sample guarantees are possible (after n trajectories)

Reminders: Convergence of Random Variables

Let X be a random variable and {X,, },,eny @ sequence of random variables.

a.s.
{X,,} converges to X , Xy, — X, if:
P(lim X, = X)=1
P
{X,,} converges to X , X, = X, ifforany e > 0:
lim P[|X,, — X|>€] =0
n—->0oo
D
{X,,} converges to X , X,, = X, if for any bounded continuous function f:
lim E[f (X,)] = E[f (X))
Ll
{X,,} converges to X , X, = X, if:
lim E[X,] = E[X] o eoumteroamles
n—-oo

as. P D
Remark: X, = X = X, > X=X, =X

Reminders: Monte-Carlo Approximation of a Mean

If n >

Unbiased estimator: Then E[u,] = u (and V(uy,) = @)
P
Weak law of large numbers: u, = u

a.s.
Strong law of large numbers: u, — u

D
Central limit theorem (CLT): ym (U, —) = N(O, W(X))
Finite sample guarantee:

p||2 N X, — E[X <2 2ne”

n; t [X1]| > € = exp((b—a)2>
- ' accuracy “ o y,
deviation confidence

1 n
P EZXt_E[Xl] >el<s
i=1

(b—a)? log(%)

22

Monte-Carlo Approximation: Extensions

Non-episodic problems:

Interrupt trajectories after H stepsl:q

ﬁi(so) = Z Vtrt,i
t=0

Every return is ignoring a term:
00)

Monte-Carlo Approximation: Properties

The Monte-Carlo estimator computed over H steps converges to a
biased value function

~ a.s. _
Vit (so) — Vi (So)
Such that

_ T
Vi (s0) = V™ (so)| < v" 1m_axy

Proof: by geometric series.

Monte-Carlo: an Incremental Implementation

Approach #2: Incremental version of state value function definition

Return of trajectory i starting from s,

Tl
ﬁi(so) = Z Vtrt,i
t=0

Estimated value function

n

. 1 .

Vit (sg) = r_zz R;(so) =
i=1

n—1

1.
+ —R
n " n(SO)

~ (1 — 77(7’1))‘77?_1(50) + ()R, (o)

Incremental Monte-Carlo Policy Evaluation

Fixed policy

Fori=1,..,n
Sett =0
Set initial state s

While (s; not terminal) [execute one trajectory]

Take action a, = 7(s;)
Observe next state x, ., and reward r, = r"(s;)

Sett=t+1
EndWhile

TD(A) = temporal differences

Update V" (s) using TD(1) approximation with parameter A

(to be explained later)

Endfor

Incremental Monte-Carlo: Properties

Let the Monte-Carlo estimator be computed using a
Iearnmg rate {n(n)}n such that

Zn@) = o znwz < oo

Then .
U (se) — V™(so)

Need some new mathematical tools
Incremental Monte-Carlo estimation converges to V™ for a wide range of
choices of learning rate schemes.

This scheme is often referred to as TD (1), for reasons that will be clear shortly.
Wu

Stochastic Approximation of a Mean

Let X be a random variable with mean ;. = E[X] and
X~ X ben realizations of X. The of
the mean is,

Un = (1- nn):un—l T NnXn
With u, = x; and where (1,,) is a sequence of

Stochastic Approximation of a Mean

If for any n,n,, = 0 are such that

znn=°° zn%<°°

n=0 n=0
Then
a.s.
Un — U
And we say that u,, is a estimator.

Remark: Whenn,, = %, this is the recursive (incremental) definition of
the empirical mean.

Intuition: Incremental updates

Consider a simple setting: mean of

a sequence of numbers
x = (x,) = (5,2,9,10,1,3)

— 5+2+9+10+1+3

Mean: X = - =5
Incremental mean:
Ho =0
Uns1 = (L — 100Uy, +
L L
Policy evaluation jncrement
— estimate
Hn+1 = Un + 170 (Xn—pn)
\—Y—J

error

S|k
Q)
l—\

N | =

Wl

R

Ho =0
1
Us :\%3.5 +-9 = 5333
3
He=5333+ 10=65
4
Ue = —5.4 + =5 <— Success!

6

Wu

Stochastic Approximation of a Mean

Ifnn'— thenﬁﬁl—'l i=1Xi-

Proof: Base case (n = 1): uy = x4 (given).

: 1
Induction step. Assume p, = — X

1 1
ﬂn+1“<1 T 1)ﬂn'+11+_1xn+1
(n

l

Un,

n

n 12
n xn+1

>ixl+

xn+1

=<

xn+1

S|k
Q)
l—\

N | =

Wl

R

Intuition: Incremental updates

= Consider a simple setting: mean of
a sequence of numbers

= x = (x,) = (52,910,1,3) Preview of upcoming lectures:
_ o 54249+410+1+3 _ Also works for !

Mean: x = p =5 i.e., (optimal) value functions
= |ncremental mean:

—0 Incremental update of a
(1)
Un+1 = (L —1)01p + i
L - Same basic idea

(Optimal) value Analysis is more involved

function estimate

L
Un+1 = Up T (xn_.un)
\—Y—}

increment

error

Temporal Difference TD(1): Extensions

Non-episodic problems: Truncated trajectories

Multiple sub-trajectories
Updates of all the states using sub-trajectories
State-dependent learning rate n; (x)
[is the index of the number of updates in that specific state

Note on terminology:

In the Sutton & Barto text, updating the policy
evaluation estimate using sub-trajectories but for
only the first visit to a state s is called first-visit
Monte Carlo (§5.1). The use of multiple sub-
trajectories, i.e., every visit to a state s, is called
every-visit Monte Carlo.

34

Incremental Monte-Carlo Policy Evaluation

Fixed policy

Fori=1,..,n
Sett =0
Set initial state s

While (s; not terminal) [execute one trajectory]

Take action a, = 7(s;)
Observe next state x, ., and reward r, = r"(s;)

Sett=t+1
EndWhile

TD(A) = temporal differences

Update V" (s) using TD(1) approximation with parameter A

(to be explained later)

Endfor

Temporal-Difference TD(0) Estimation

Approach #3: Conduct incremental updates within trajectories,
leveraging the Bellman equation

Recall: The Bellman equation
V®(s) = r(s,n(s)) + YEs © p(sm(s)) [V (s)]

Incremental update: At each step t, observe s;,1¢, S;.1 and update
estimate V™ as

Vﬂ(st) =(1-)Vn(st) + (Tt + VVR(Stﬂ))

Temporal-Difference TD(0): Estimation
At each step t, observe s;,1;, ;. , and update estimate V™ as
V7 (s) = (1 =mP(s) + 71 (e + Y7 (504

Interpretation: moving weighted average
Mix between old and new estimate of V™ (s;):
old estimate V" (s;) new estimate 7, + YV ™(s11)

V(s = V(s + (Tt + VVn(Stﬂ))

Temporal-Difference TD (0): Estimation

temporal difference (TD) error &;

Equivalently
V() = V7(s.) + 71 (7 + ¥V (s000) = V7 (s0))

Interpretation: temporal-difference error
of estimate V'™ w.r.t. transition (s;, 7¢, S¢41):
8 =1 + YV (5e41) — V7 (sp)
Bellman error for function ¥/ at state s:
B”(V; S) =TV (s) = V(s)
=17(s) + yEg 5|V ()] = V(s)
Conditioned on s, §; is an estimate of B™:
Erysen [8c15e] = 77(50) + VEgyy 15 [P (se)] = P7(s0) = BH(7™, 5¢)

Temporal-Difference TD(0): Properties

Let TD(0) run with learning rate n(Nt(st)) where N;(s;) is the number of

visits to the state s;. If all states are visited infinitely often and the learning
rate is set such that:

in(t) = in(t)2 < ©
t=0 t=0

Then for any state s € § e
V7 (s) — VT(s)

Temporal Difference TD(0)

Fori=1,..,n
Sett =0
Set initial state s,

While (s; not terminal) [execute one trajectory]
Take action a,; = (s, ;)
Observe next state s;4,; and reward 7, ; = (s, ;, a; ;)
Sett =t+1
Update V™ (s; ;) using TD(0) estimation

EndWhile
Update /" (s,) using incremental Monte-Carlo estimation
Endfor

40

Incremental Monte-Carlo as a “TD method”

Temporal difference 6, = 17, + yV™(s141) — V(s;)

Incremental Monte-Carlo, i.e., TD(1), can be expanded as...
Vr?ﬂ(so) = (1 — N+)V (o) + Mnt1Rn+1(S0)
= Vnn(SO) + 77n+1(+ y51,n + V252,n + ...t yTn_15Tn,n)

Compare: TD(0)
V7 (se) = V7(se) + 1 (re + Y7 ™ (s041) = V7(s0)) = P™(s) + 1

Temporal Difference TD (A1)

Idea: Use the whole series of temporal differences to update V'™

of a function V™ for a transition (s;, 7}, Sp.41)
6 =1 + YV (Se41) — VT (st)
Estimated value function

T
VT (sp) =V (sp) +n(se)) (P46,

weight given to

o the 3-step return total area =1
\ is (1— A)A2

decay by A
weight given to Welghtlng given in the A-return to
actual, final return

each of the n-step returns

is ALt

Time —

44

Comparison of TD(1) [Incremental MC] and TD(0)
Temporal difference 8§, = 1, + yV™(s;41) — V™(s,)
* Incremental Monte-Carlo, i.e. TD(1):
V™ (so) = V™(so) + nlo +v61 + .. +y"167]

— No bias, large variance [long trajectory]

= TD(0):
V7 (so) = V™(sp) + 16,
— Large bias [“bootstrapping” on wrong values], small variance

The 73" Bellman Operator

Given 4 < 1, then the Bellman operator 7" is:

T/ln — (1 _ A) z /lm(g-'n)m+1

m=0

Remark: Convex combination of the m-step Bellman operators (77™)™
weighted by a sequence of coefficients defined as a function of a A.

Same contraction properties as before.

Temporal Difference TD (A1)

= Estimated value function

V(s = V(s +1(s0)) ()76,

— Once again requires the whole trajectory before updating...

= Eligibility Traces: book keeping to track which states need to be
updated and by how much (due to discounting) as data comes in

47

48

Temporal Difference TD(A): Eligibility Traces
= Eligibility traces z € R°. Short-term memory vector.
= At the start of the episode, reset the traces: 72 =0

= For every transition s; = S¢4q
1. Compute the temporal difference
8 = 1e(st) + YV (s¢41) — V™ (sp)
2. Update the eligibility traces
2(s) = { YAz(s) ?fS * St [decay the contribution]
1+yAz(s) ifs =s; [increment the contribution]
3. Forallstate s € § |all states are updated at each step]

VT(s) « V™(s) + n(s)z(s)é;

Sensitivity to 4

= A < 1:smallervariance w.r.t. A = 1 (= incremental Monte-Carlo)

= A > 0:faster propagation of rewards w.r.t. A =0

49

Example: Sensitivity to 4

Linear chain example

o} @3 @

~ ~ 2
Error) ccs (V”(s) — V”(s)) after n = 100 trajectories

51

Summary of methods

TD(1) TD(0)
Dynamic Programming Monte Carlo Temporal Difference
Model Free? No Yes Yes
Non-episodic domains? Yes No Yes
Non-Markovian domains? No Yes No
Converges to true value Yes Yes Yes
Unbiased Estimate N/A Yes No
Variance N/A High Low

Table courtesy Youkow Homma, Emma Brunskill Wu

52

summary

= Reinforcement learning vs dynamic programming
= Learning = incremental updates
= Incremental mean: warm-up for stochastic approximation theory

= Policy evaluation: Monte-Carlo and Temporal Difference (definition,
methods, pros and cons)

References

1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lectures 2-3.

2. Sutton & Barto (2018). Chapter 12: Eligibility Traces. §12.1-
12.2

