Fall 2024

From model-based to model-free

Policy evaluation without knowing how the world works

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

Readings

- 1. NDP *§*5.1-5.3
- 2. [Sutton & Barto \(2018\)](http://incompleteideas.net/book/the-book-2nd.html)
	- Chapter 5: Monte Carlo Methods. §5.1
	- Chapter 6: Temporal-Difference Learning. §6.1-6.4
	- Chapter 12: Eligibility Traces. §12.1-12.2

Outline

- 1. RL vs DP
- 2. Model-free policy evaluation

Outline

1. RL vs DP

- a. Model-based vs model-free
- b. Why learn from samples?
- c. Sampling settings

2. Model-free policy evaluation

Model-free vs model-based methods

- Model-free: **No** direct access to model *P, r*
- Model-based: Yes direct access to model P, r

So far (Part 1, Lectures 1-7), our discussion has been model-based.

• Recall: value iteration

 $V_{i+1}(s) = TV_i(s) = \max_{s \in A}$ $\max_{a \in A} r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_i(s') \right] \quad \text{for all } s$

Recall (L1): Key challenge of huge decision spaces

 \overline{t}

Arcade Learning Environment (ALE) Game of Go

 $a_t = \text{left}$

Possible game states: $3^{84\times84} \approx 10^{3366}$ Possible game states: $3^{19x19} \approx 10^{172}$

For reference: There are between 10^{78} to 10^{82} atoms in the observable universe.

Cannot only explore. Cannot only exploit. Must trade off exploration and exploitation.

Sampling settings

- E Learning with generative model. A black-box simulator f of the environment is available. Given (s, a) , $f(s, a) = \{s', r\}$ with $s' \sim p(\cdot | s, a), r = r(s, a)$
- Episodic learning. Multiple trajectories can be repeatedly generated from some initial states and terminating when a reset condition is achieved:

$$
\left(s_{0,i},s_{1,i},\ldots,s_{T_i,i}\right)_{i=1}^n
$$

• Online learning. At each time t the agent is at state s_t , it takes action a_t , it observes a transition to state s_{t+1} , and it receives a reward r_t . We assume that $s_{t+1} \sim p(\cdot | s_t, a_t)$ and $r_t = r(s_t, a_t)$ (i.e., MDP assumption). No reset.

Notice

From now on we typically work in the

episodic discounted setting.

Most results smoothly extend to other settings.

Assume: The value functions can be represented exactly (e.g. tabular setting).

Outline

1. RL vs DP

2. Model-free policy evaluation

- a. Monte Carlo approximation
- b. Incremental Monte Carlo, i.e. TD(1)
- c. Stochastic approximation of a mean
- d. Temporal difference TD(0)
- e. TD(λ), eligibility traces

Note on terminology: In the Sutton & Barto text, policy evaluation is referred to as *prediction*; whereas policy improvement is referred to as *control*. For example, Monte Carlo prediction vs Monte Carlo control (§5.1)

Warm-up: recall policy evaluation

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, \pi(s_{t}))|s_{0} = s; \pi\right]
$$

The RL Interaction Protocol

Policy Evaluation

Fixed policy π

- For $i = 1, ..., n$ [each of *n* episodes]
- 1. Set $t=0$
- 2. Set initial state s_0
- **3. While** ($s_{t,i}$ not terminal) [execute one trajectory]
	- 1. Take action $a_{t,i} = \pi(s_{t,i})$
	- 2. Observe next state $s_{t+1,i}$ and reward $r_{t+1,i} = r(s_{t,i}, a_{t,i})$
	- 3. Set $t = t + 1$

EndWhile

Endfor

Return: Estimate of the value function $\hat{V}^{\pi}(\cdot)$

Policy Evaluation

Approach #1: Utilize the definition of **State Value Function**

Cumulative sum of rewards

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r(s_t, \pi(s_t)) | s_0 = s; \pi\right]
$$

Return of trajectory *i* starting from s_0

$$
\widehat{R}_i(s_0) = \sum_{t=0}^T \gamma^t r_{t,i}
$$

■ Estimated value function

$$
\widehat{V}_n^{\pi}(s_0) = \frac{1}{n} \sum_{i=1}^n \widehat{R}_i(s_0)
$$

2

Monte-Carlo Approximation of a Mean

Definition

Let X be a random variable with mean $\mu = \mathbb{E}[X]$ and variance $\sigma^2 =$ $\mathbb{V}(X)$ and $x_n \sim X$ be *n i.i.d.* realizations of X. The Monte-Carlo approximation of the mean (i.e., the empirical mean) built on n i.i.d. realizations is defined as:

$$
\mu_n = \frac{1}{n} \sum_{i=1}^n x_i
$$

Monte-Carlo Approximation: Properties

Theorem

The returns used in the Monte-Carlo estimation starting from an initial state s_0 are unbiased estimators of $V^{\pi}(s_0)$ $\mathbb{E}[\hat{R}_i(s_0)] = \mathbb{E}[r_0 + \gamma r_{1,i} + \cdots + \gamma^{T_i} r_{T_i,i}] = V^{\pi}(s_0)$

Furthermore, the Monte-Carlo estimator converges to the value function

$$
\hat{V}_n^{\pi}(s_0) \xrightarrow{a.s.} V^{\pi}(s_0)
$$

- § Proof: Strong law of large numbers
- It applies to any state s used as the beginning of a trajectory (subtrajectories could be used in practice)
- Finite-sample guarantees are possible (after n trajectories)

Reminders: Convergence of Random Variables

Let X be a random variable and $\{X_n\}_{n\in\mathbb{N}}$ a sequence of random variables.

■ ${X_n}$ converges to X almost surely, X_n $a.s.$ X , if:

$$
\mathbb{P}\left(\lim_{n\to\infty} X_n = X\right) = 1
$$

- ${X_n}$ converges to X in probability, $X_n \rightarrow$ X, if for any $\epsilon > 0$: $\lim_{n\to\infty}$ $\mathbb{P}[|X_n - X| > \epsilon] = 0$ $n\rightarrow\infty$
- ${X_n}$ converges to X in law, $X_n \to$ \boldsymbol{D} X , if for any bounded continuous function f : lim $\lim_{n\to\infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$

■ ${X_n}$ converges to X in expectation, $X_n \to$ L^1 X , if: $\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$ $n\rightarrow\infty$

Remark: X_n $a.s.$ $X \Longrightarrow X_n \rightarrow$ \boldsymbol{P} $X \Longrightarrow X_n \rightarrow$ \boldsymbol{D} \overline{X} See HW0 for examples & counterexamples

Reminders: Monte-Carlo Approximation of a Mean

- Unbiased estimator: Then $\mathbb{E}[\mu_n] = \mu \left(\text{and } \mathbb{V}(\mu_n) = \frac{\mathbb{V}(X)}{n} \right)$
- Weak law of large numbers: $\mu_n \rightarrow$ \boldsymbol{P} μ
- Strong law of large numbers: $\mu_n \longrightarrow \mu$ \overline{a} .s.
- Central limit theorem (CLT): $\sqrt{n} (\mu_n \mu) \rightarrow$ \overline{D} $\mathcal{N}\big(\, 0, \mathbb{V}(X$
- § Finite sample guarantee:

If $n \geq$

$$
\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right| > \underbrace{\epsilon}_{\text{accuracy}}\right] \leq 2\exp\left(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\right)
$$
\n
$$
\underbrace{\text{deviation}}_{2\epsilon^{2}} \mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right| > \epsilon\right] \leq \delta
$$

ノ

Monte-Carlo Approximation: Extensions

Non-episodic problems:

Interrupt trajectories after H steps:

$$
\hat{R}_i(s_0) = \sum_{t=0}^H \gamma^t r_{t,i}
$$

■ Every return is ignoring a term: ∞

$$
\sum_{t=H+1} \gamma^t r_{t,i}
$$

Monte-Carlo Approximation: Properties

Theorem

The Monte-Carlo estimator computed over H steps converges to a biased value function

$$
\hat{V}_n^{\pi}(s_0) \xrightarrow{a.s.} \overline{V}_H^{\pi}(s_0)
$$

Such that

$$
|\bar{V}_H^{\pi}(s_0) - V^{\pi}(s_0)| \le \gamma^H \frac{r_{\max}}{1 - \gamma}
$$

Proof: by geometric series.

Monte-Carlo: an Incremental Implementation

- Approach #2: Incremental version of state value function definition
- **Return of trajectory i starting from** s_0

$$
\widehat{R}_i(s_0) = \sum_{t=0}^{T_i} \gamma^t r_{t,i}
$$

Estimated value function

$$
\widehat{V}_n^{\pi}(s_0) = \frac{1}{n} \sum_{i=1}^n \widehat{R}_i(s_0) = \frac{n-1}{n} \widehat{V}_{n-1}^{\pi}(s_0) + \frac{1}{n} \widehat{R}_n(s_0)
$$

$$
\approx (1 - \eta(n))\hat{V}_{n-1}^{\pi}(s_0) + \eta(n)\hat{R}_n(s_0)
$$

27

Incremental Monte-Carlo Policy Evaluation

Fixed policy π

For $i = 1, ..., n$

- 1. Set $t=0$
- 2. Set initial state s_0
- **3. While** (s_t not terminal) [execute one trajectory]
	- 1. Take action $a_t = \pi(s_t)$
	- 2. Observe next state x_{t+1} and reward $r_t = r^{\pi}(s_t)$
	- 3. Set $t = t + 1$

EndWhile

4. Update $\widehat{V}^{\pi}_i(s_0)$ using $TD(1)$ approximation

Endfor

Collect trajectories and compute $\hat{V}^{\text{\#}}_{\text{\#}}(s_{\text{\#}})$ -using Monte-Carlo approximation

 $TD(\lambda)$ = temporal differences with parameter λ (to be explained later)

Incremental Monte-Carlo: Properties

Theorem

Let the incremental Monte-Carlo estimator be computed using a learning rate $\{\eta(n)\}_n$ such that ∞

$$
\sum_{i=0}^{\infty} \eta(i) = \infty \quad \sum_{i=0}^{\infty} \eta(i)^2 < \infty \quad \text{[Robbins Monroe's condition]}
$$
\nThen

$$
\widehat{V}_n^{\pi}(s_0) \xrightarrow{a.s.} V^{\pi}(s_0)
$$

- § Need some new mathematical tools
- Incremental Monte-Carlo estimation converges to V^{π} for a wide range of choices of learning rate schemes.
- This scheme is often referred to as $TD(1)$, for reasons that will be clear shortly.

Stochastic Approximation of a Mean

Definition

Let X be a random variable bounded in [0,1] with mean $\mu = \mathbb{E}[X]$ and $x_n \sim X$ be *n i.i.d.* realizations of X. The stochastic approximation of the mean is,

$$
\mu_n = (1 - \eta_n)\mu_{n-1} + \eta_n x_n
$$

With $\mu_1 = x_1$ and where (η_n) is a sequence of learning steps.

Stochastic Approximation of a Mean

 η_n

Proposition

If for any $n, \eta_n \geq 0$ are such that

$$
\lambda_{\mu} = \infty \qquad \sum_{n \geq 0} \eta_n^2 < \infty
$$

Then

 μ_n $a.s.$ μ

And we say that μ_n is a consistent estimator.

 \sum

 $n\geq 0$

Remark: When $\eta_n = \frac{1}{n}$ $\frac{1}{n}$, this is the recursive (incremental) definition of the empirical mean.

30

Intuition: Incremental updates

■ Consider a simple setting: **mean of a sequence of numbers**

\n- $$
x = (x_n) = (5, 2, 9, 10, 1, 3)
$$
\n- Mean: $\bar{x} = \frac{5 + 2 + 9 + 10 + 1 + 3}{6} = 5$
\n

■ Incremental mean:

$$
\mu_0 = 0
$$

\n
$$
\mu_{n+1} = (1 - \eta_n)\mu_n + \eta_n x_n
$$

\n
$$
\mu_{n+1} = \mu_n + \eta_n (x_n - \mu_n)
$$

\n
$$
\mu_{n+1} = \mu_n + \eta_n (x_n - \mu_n)
$$

error

Wu $\mu_6 = -5.4 + -3 = 5$ \leftarrow Success! $\eta_n = \frac{1}{n}$ \boldsymbol{n} i.e., $1, \frac{1}{2}, \frac{1}{3}$ @ , 1 $\frac{1}{4}$... $\mu_5 =$ 4 $\frac{1}{5}$ 6.5 + 1 $\frac{1}{5}$ 1 = 5.4 5 $\frac{6}{6}$ 5.4 + 1 $\frac{1}{6}$ 3 = 5 $\mu_4 =$ 3 $\frac{1}{4}$ 5.333 + 1 $\frac{1}{4}$ 10 = 6.5 $\mu_3 =$ 2 $\frac{1}{3}$ 3.5 + 1 $\frac{2}{3}$ 9 = 5.333 $\mu_2 =$ $\overline{1}$ $\frac{1}{2}$ 5 + $\overline{1}$ $\frac{1}{2}$ 2 = 3.5 $\mu_1 = 0 \cdot 0 + 1 \cdot 5$ $\mu_0 = 0$

Stochastic Approximation of a Mean

If
$$
\eta_n = \frac{1}{n}
$$
, then $\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$.
\nProof: Base case $(n = 1)$: $\mu_1 = x_1$ (given).
\nInduction step. Assume $\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$.
\n
$$
\mu_{n+1} = \left(1 - \frac{1}{n+1}\right) \mu_n + \frac{1}{n+1} x_{n+1}
$$
\n
$$
= \left(\frac{n}{n+1}\right) \mu_n + \frac{1}{n+1} x_{n+1}
$$
\n
$$
= \left(\frac{n}{n+1}\right) \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n+1} x_{n+1}
$$
\n
$$
= \left(\frac{1}{n+1}\right) \sum_{i=1}^n x_i + \frac{1}{n+1} x_{n+1}
$$
\n
$$
= \left(\frac{1}{n+1}\right) \sum_{i=1}^{n} x_i + \frac{1}{n+1} x_{n+1}
$$
\n
$$
= \left(\frac{1}{n+1}\right) \sum_{i=1}^{n+1} x_i
$$

Wu

Intuition: Incremental updates

■ Consider a simple setting: **mean of a sequence of numbers**

\n- $$
x = (x_n) = (5, 2, 9, 10, 1, 3)
$$
\n- Mean: $\bar{x} = \frac{5 + 2 + 9 + 10 + 1 + 3}{6} = 5$
\n

 $6\overline{6}$ § Incremental mean:

$$
\mu_0 = 0
$$

\n
$$
\mu_{n+1} = (1 - \eta_n)\mu_n + \eta_n x_n
$$

\n(Optimal) value
\nfunction estimate
\n
$$
\mu_{n+1} = \mu_n + \eta_n (x_n - \mu_n)
$$
error

Preview of upcoming lectures: **Also works for Bellman operators!** i.e., (optimal) value functions

Incremental update of a **fixed point**

Same basic idea Analysis is more involved

$$
\eta_n = \frac{1}{n} \text{ i.e., } 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots
$$

Temporal Difference $TD(1)$: Extensions

- § Non-episodic problems: Truncated trajectories
- Multiple sub-trajectories
	- Updates of all the states using sub-trajectories
	- State-dependent learning rate $\eta_i(x)$
	- \cdot *i* is the index of the number of updates in that specific state

Note on terminology:

In the Sutton & Barto text, updating the policy evaluation estimate using sub-trajectories but for only the first visit to a state *s* is called *first-visit* Monte Carlo (§5.1). The use of multiple subtrajectories, i.e., every visit to a state s , is called *every-visit* Monte Carlo.

35

Incremental Monte-Carlo Policy Evaluation

Fixed policy π

For $i = 1, ..., n$

- 1. Set $t=0$
- 2. Set initial state s_0
- **3. While** (s_t not terminal) [execute one trajectory]
	- 1. Take action $a_t = \pi(s_t)$
	- 2. Observe next state x_{t+1} and reward $r_t = r^{\pi}(s_t)$
	- 3. Set $t = t + 1$

EndWhile

4. Update $\widehat{V}^{\pi}_i(s_0)$ using $TD(1)$ approximation

Endfor

Collect trajectories and compute $\hat{V}^{\text{\#}}_{\text{\#}}(s_{\text{\#}})$ -using Monte-Carlo approximation

 $TD(\lambda)$ = temporal differences with parameter λ (to be explained later)

Temporal-Difference $TD(0)$ Estimation

- § Approach #3: Conduct **incremental updates** *within trajectories*, leveraging the **Bellman equation**
- Recall: The Bellman equation $V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))}[V^{\pi}(s')]$
- Incremental update: At each step t, observe S_t , r_t , S_{t+1} and update estimate \hat{V}^{π} as

$$
\hat{V}^{\pi}(s_t) = (1 - \eta)\hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)
$$

Temporal-Difference $TD(0)$: Estimation

- At each step t, observe S_t , r_t , S_{t+1} and update estimate \hat{V}^{π} as $\hat{V}^{\pi}(s_t) = (1 - \eta) \hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)$
- **Interpretation: moving weighted average**
	- Mix between old and new estimate of $V^{\pi}(s_t)$: old estimate $\hat{V}^{\pi}(s_t)$ new estimate $r_t + \gamma \hat{V}^{\pi}(s_{t+1})$
	- Weighted average:

$$
\hat{V}^{\pi}(s_t) = (1 - \eta)\hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)
$$

Temporal-Difference $TD(0)$: Estimation

- **Equivalently** $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \eta \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t) \right)$ temporal difference (TD) error δ_t
- Interpretation: temporal-difference error
	- Temporal difference error of estimate \hat{V}^{π} w.r.t. transition (s_t, r_t, s_{t+1}) : $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$
	- Bellman error for function \hat{V} at state s:

$$
\mathcal{B}^{\pi}(\hat{V}; s) = \mathcal{T}^{\pi} \hat{V}(s) - \hat{V}(s)
$$

= $r^{\pi}(s) + \gamma \mathbb{E}_{s'|s} [\hat{V}(s')] - \hat{V}(s) \qquad [\mathcal{B}^{\pi}(V^{\pi}; s) = 0]$

• Conditioned on s_t , δ_t is an unbiased estimate of \mathcal{B}^{π} :

$$
\mathbb{E}_{r_t, s_{t+1}}[\delta_t | s_t] = r^{\pi}(s_t) + \gamma \mathbb{E}_{s_{t+1} | s_t}[\hat{V}^{\pi}(s_{t+1})] - \hat{V}^{\pi}(s_t) = \mathcal{B}^{\pi}(\hat{V}^{\pi}, s_t)
$$

38

Temporal-Difference $TD(0)$: Properties

Theorem

Let $TD(0)$ run with learning rate $\eta(N_t(s_t))$ where $N_t(s_t)$ is the number of visits to the state s_t . If all states are visited infinitely often and the learning rate is set such that:

$$
\sum_{t=0}^{\infty} \eta(t) = \infty \qquad \sum_{t=0}^{\infty} \eta(t)^2 < \infty
$$

Robbins Monro's condition

Then for any state $s \in \mathcal{S}$

 $\widehat{V}^{\pi}(s) \stackrel{a.s.}{\rightarrow} V^{\pi}(s)$

Temporal Difference $TD(0)$

- **For** $i = 1, ..., n$
- 1. Set $t=0$
- 2. Set initial state s_0
- **3. While** (s_t not terminal) [execute one trajectory]
	- 1. Take action $a_{t,i} = \pi(s_{t,i})$
	- 2. Observe next state $s_{t+1,i}$ and reward $r_{t,i} = r(s_{t,i}, a_{t,i})$
	- 3. Set $t = t + 1$
	- 4. Update $\hat{V}^{\pi}(s_{t,i})$ using $TD(0)$ estimation

EndWhile

4. Update $\widehat{V}^{\pi}_i(s_0)$ using incremental Monte-Carlo estimation **Endfor**

Incremental Monte-Carlo as a "TD method"

Temporal difference $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$

Incremental Monte-Carlo, i.e., TD(1), can be expanded as… $\hat{V}_{n+1}^{\pi}(s_0) = (1 - \eta_{n+1})\hat{V}_n^{\pi}(s_0) + \eta_{n+1}\hat{R}_{n+1}(s_0)$ $= \hat{V}_n^{\pi}(s_0) + \eta_{n+1} (\delta_{0,n} + \gamma \delta_{1,n} + \gamma^2 \delta_{2,n} + \dots + \gamma^{T_n-1} \delta_{T_n,n})$

Compare: TD(0) $\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \eta (r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)) = \hat{V}^{\pi}(s_t) + \eta \delta_t$

Temporal Difference $TD(\lambda)$

Idea: Use the whole series of temporal differences to update \hat{V}^{π}

- **Example 3** Temporal difference of a function \hat{V}^{π} for a transition $\langle s_t, r_t, s_{t+1} \rangle$ $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$
- § Estimated value function

Comparison of $TD(1)$ [Incremental MC] and $TD(0)$

Temporal difference $\delta_t = r_t + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)$

• Incremental Monte-Carlo, i.e. $TD(1)$: $\hat{V}^{\pi}(s_0) = \hat{V}^{\pi}(s_0) + \eta [\delta_0 + \gamma \delta_1 + \dots + \gamma^{T-1} \delta_{T}]$ \Rightarrow No bias, large variance [long trajectory]

 \blacksquare $TD(0)$:

$$
\hat{V}^{\pi}(s_0) = \hat{V}^{\pi}(s_0) + \eta \delta_0
$$

 \Rightarrow Large bias ["bootstrapping" on wrong values], small variance

The
$$
\mathcal{T}_{\lambda}^{\pi}
$$
 Bellman Operator

Definition

Given $\lambda < 1$, then the Bellman operator $\mathcal{T}_{\lambda}^{\pi}$ is: $\mathcal{T}_{\lambda}^{\pi} = (1 - \lambda) \sum_{\lambda} \lambda^{m} (\mathcal{T}^{\pi})^{m+1}$ $m\geq 0$

Remark: Convex combination of the m-step Bellman operators $(T^{\pi})^m$ weighted by a sequence of coefficients defined as a function of a λ .

Same contraction properties as before.

Temporal Difference $TD(\lambda)$

E Estimated value function

$$
\hat{V}^{\pi}(s_t) = \hat{V}^{\pi}(s_t) + \eta(s_t) \sum_{\tau=t}^{T} (\gamma \lambda)^{\tau-t} \delta_{\tau}
$$

- \Rightarrow Once again requires the whole trajectory before updating...
- § Eligibility Traces: book keeping to track which states need to be updated and by how much (due to discounting) as data comes in

47

Temporal Difference $TD(\lambda)$: Eligibility Traces

- Eligibility traces $z \in \mathbb{R}^S$. Short-term memory vector.
- At the start of the episode, reset the traces: $z = 0$
- For every transition $s_t \rightarrow s_{t+1}$
	- 1. Compute the temporal difference

$$
\delta_t = r_t(s_t) + \gamma \hat{V}^{\pi}(s_{t+1}) - \hat{V}^{\pi}(s_t)
$$

2. Update the eligibility traces

$$
z(s) = \begin{cases} \gamma \lambda z(s) & \text{if } s \neq s_t \\ 1 + \gamma \lambda z(s) & \text{if } s = s_t \end{cases} \quad \text{[decay the contribution]}
$$

3. For all state $s \in S$ [all states are updated at each step] $\hat{V}^{\pi}(s) \leftarrow \hat{V}^{\pi}(s) + n(s)z(s)\delta_t$

Sensitivity to λ

- λ < 1: smaller variance w.r.t. $\lambda = 1$ (\approx incremental Monte-Carlo)
- $\lambda > 0$: faster propagation of rewards w.r.t. $\lambda = 0$

Example: Sensitivity to λ

Linear chain example

Error
$$
\sum_{s \in S} \left(\hat{V}^{\pi}(s) - \hat{V}^{\pi}(s) \right)^2
$$
 after $n = 100$ trajectories

\n

Summary of methods

Summary

- § Reinforcement **learning** vs dynamic programming
- § **Learning = incremental updates**
- **Incremental mean:** warm-up for stochastic approximation theory
- § Policy evaluation: **Monte-Carlo** and **Temporal Difference** (definition, methods, pros and cons)

References

- 1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017, Lectures 2-3.
- 2. Sutton & Barto (2018). Chapter 12: Eligibility Traces. §12.1- 12.2