Fall 2024

Value-based reinforcement learning

Policy learning without knowing how the world works

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

- 1. Neuro-dynamic Programming (NDP). §5.6, §4.1-4.3, §6.1-6.2. Skim Ch 3-5 as needed.
- 2. DPOC2 §6.3

Outline

- 1. Policy learning
- Convergence analysis stochastic approximation of a fixed point

Outline

1. Policy learning

- a. State-action value function
- b. Q-iteration
- c. Q-learning
- d. On-policy vs off-policy learning
- Convergence analysis stochastic approximation of a fixed point

Policy Learning

Learn optimal policy π^*

- For i = 1, ..., n [each of n episodes]
- 1. Set t = 0
- 2. Set initial state s_0
- **3.** While $(s_{t,i} \text{ not terminal})$ [execute one trajectory]
 - **1.** Take action $a_{t,i}$ [Compare Policy Evaluation: Take action $a_{t,i} = \pi(s_{t,i})$]
 - 2. Observe next state $s_{t+1,i}$ and reward $r_{t,i} = r(s_{t,i}, a_{t,i})$
 - 3. Set t = t + 1

EndWhile

Endfor

Return: Estimate of the value function $\hat{\pi}^*$

State-Action Value Function ("Q")

Definition

In discounted infinite horizon problems, for any policy π , the state-action value

function (or Q-function) $Q^{\pi} : S \times A \mapsto \mathbb{R}$ is

$$Q^{\pi}(\boldsymbol{s},\boldsymbol{a}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(\boldsymbol{s}_{t},\boldsymbol{a}_{t}) | \boldsymbol{s}_{0} = \boldsymbol{s}, \boldsymbol{a}_{0} = \boldsymbol{a}, \boldsymbol{a}_{t} = \pi(\boldsymbol{s}_{t}), \forall t \geq 1\right]$$

The optimal Q-function is

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

and the optimal policy can be obtained as

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

• Recall: definition of value function, $V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, \pi(s_{t})) | s_{0} = s; \pi\right]$

State-Action Value Function Operators*

•
$$\mathcal{T}^{\pi}Q(s, a) \coloneqq r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)}[Q(s', \pi(s))]$$

• Compare: $\mathcal{T}^{\pi}V(s) \coloneqq r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))}[V(s')]$
• $\mathcal{T}Q(s, a) \coloneqq r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)}\left[\max_{a'}Q(s', a')\right]$
• Compare: $\mathcal{T}V(s) \coloneqq \max_{a \in A} r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)}V(s')$

Still true:

•
$$Q^* = \mathcal{T}Q^*$$

•
$$Q^{\pi} = \mathcal{T}^{\pi} Q^{\pi}$$

Note: Abuse of notation for the operators

State-Action and State Value Function

- $Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[V^{\pi}(s')]$
- $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$

•
$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[V^*(s')]$$

• $V^*(s) = Q^*(s,\pi^*(s')) = \max_{a \in A} Q^*(s,a)$

Q-value Iteration

- **1.** Let $Q_0(s, a)$ be any Q-function $Q_0: S \times A \to \mathbb{R}$
- **2.** At each iteration $k = 1, 2, \dots, K$
 - Compute $Q_{k+1} = \mathcal{T}Q_k$
- 3. Terminate when Q_k stops improving
 - e.g. when $\max_{s} |Q_{k+1}(s) Q_k(s)|$ is small.
- 4. Return the greedy policy $\pi_K(s) \in \arg \max_{a \in A} Q_K(s, a)$

Compare: Value iteration algorithm

- **1.** Let $V_0(s)$ be any function $V_0: S \to \mathbb{R}$.
- 2. At each iteration $k = 1, 2, \dots, K$
 - Compute $V_{k+1} = \mathcal{T}V_k$
- 3. Terminate when V_k stops improving
 - e.g. when $\max_{s} |V_{k+1}(s) V_k(s)|$ is small.
- 4. Return the greedy policy

 $\pi_{K}(s) \in \arg \max_{a \in A} r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V_{K}(s')$

The Grid-World Problem

State: agent location

Example: Winter parking (with ice and potholes)

- Simple grid world with a *goal state* (green, desired parking spot) with reward (+1), a *"bad state"* (red, pothole) with reward (-100), and all other states neural (+0).
- *Omnidirectional vehicle (agent)* can head in any direction. Actions move in the desired direction with probably 0.8, in one of the perpendicular directions with.
- Taking an action that would bump into a wall leaves agent where it is.

[Source: adapted from Kolter, 2016]

Example: value iteration

Running value iteration with $\gamma=0.9$

Original reward function

(a)

Running value iteration with $\gamma=0.9$

2.686	3.527	4.402	5.812
2.021		1.095	-98.82
1.390	0.903	0.738	0.123
\hat{V} at 10 iterations			
(d)			

Running value iteration with $\gamma = 0.9$

(b)

Running value iteration with $\gamma=0.9$

5.470	6.313	7.190	8.669
4.802		3.347	-96.67
4.161	3.654	3.222	1.526
\hat{V} :	at 1000) iteratio	ons
(e)			

Running value iteration with $\gamma=0.9$

0.809	1.598	2.475	3.745
0.268		0.302	-99.59
0	0.034	0.122	0.004
\hat{V} at five iterations			
(C)			

Running value iteration with $\gamma=0.9$

Resulting policy after 1000 iterations

(f)

а

State-Action Value Function ("Q table")

Action = north

 $P = 0.1 \longleftarrow$

P = 0.8

Example: Winter parking (with ice and potholes)

0	0	0	1
0		0	-100
0	0	0	0

It is convenient to keep track of not only the long term value of a state, but also the state, jointly with the next action.

Running value iteration with $\gamma = 0$).9
---	-----

 $\rightarrow P = 0.1$

Q(s,a)

S

2.1 3.0 0.1	2.0 1.2 1.5	3.7 3.2 0.1	3.1 2.7 1.0
2.1	2.0	3.7	3.1
2.1	2.0	3.7	3.1
4.2	2.1	3.2	3.7
-180	-172	-99.7	-150
1.0	3.0	3.3	1.2
4.8	2.5	3.5	4.2
8.7	3.4	2.0	8.0
5.2	4.2	5.5	7.2
1.0	3.2	5.1	6.3
		5.2	5.4

18

Convenient for selecting next action!

Action = north

 $P = 0.1 \longleftarrow$

P = 0.8

 $\rightarrow P = 0.1$

Winter parking (with ice and potholes)

Before

2.5	1.4	3.2	5.4
1.0	3.2	5.1	6.3
5.2	4.2	5.5	7.2
8.7	3.4	2.0	8.0
4.8	2.5	3.5	4.2
1.0	3.0	3.3	1.2
-180	-172	-99.7	-150
-180 4.2	-172 2.1	-99.7 3.2	-150 3.7
-180 4.2 2.1	-172 2.1 2.0	-99.7 3.2 3.7	-150 3.7 3.1
-180 4.2 2.1 3.0	-172 2.1 2.0 1.2	-99.7 3.2 3.7 3.2	-150 3.7 3.1 2.7
-180 4.2 2.1 3.0 0.1	-172 2.1 2.0 1.2 1.5	-99.7 3.2 3.7 3.2 0.1	-150 3.7 3.1 2.7 1.0

Wu

а

Q(s,a)

S

19

Policy Iteration (w/ Q-value function)

- 1. Let π_0 be any stationary policy
- 2. At each iteration k = 1, 2, ..., K
 - Policy evaluation: given π_k , compute Q^{π_k}
 - Policy improvement: compute the greedy policy $\pi_{k+1}(s) \in \arg \max_{a \in A} Q_k^{\pi}(s, a)$
- 3. Stop if $Q^{\pi_k} = Q^{\pi_{k-1}}$
- 4. Return the last policy π_K

Compare: Policy Iteration

- 1. Let π_0 be any stationary policy
- **2**. At each iteration $k = 1, 2, \dots, K$
 - Policy evaluation: given π_k , compute V^{π_k}
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(s) \in \arg\max_{a \in A} \left[r(s,a) + \gamma \sum_{s'} p(s'|s,a) V^{\pi_k}(s') \right]$$

- 1. Stop if $V^{\pi_k} = V^{\pi_{k-1}}$
- 2. Return the last policy π_K

л.

Q-Learning (Watkins, 1992)

- Model-free algorithm for learning the optimal policy
- Stochastic approximation lens
 - Model-free Q-function improvement via incremental updates
 - Compute TD error for the optimal Bellman operator (compare: Bellman operator)
 - Use *e*-greedy policy to collect data, to ensure that all state-actions are visited enough (for convergence)
 - With probability 1ϵ , choose the best predicted action $\underset{a'}{\operatorname{argmax}} \hat{Q}(s_{t+1}, a')$
 - With probability ϵ , choose an action uniformly at random.
- Intuition
 - Use ε-greedy policy for data collection (exploration)
 - But use greedy policy for learning (exploitation)

Recall: Temporal Difference TD(0)

For i = 1, ..., n [each of n episodes]

1. Set t = 0

- 2. Set initial state s_0
- **3.** While (s_t not terminal) [execute one trajectory]
 - **1**. Take action $a_{t,i} = \pi(s_{t,i})$
 - 2. Observe next state $s_{t+1,i}$ and reward $r_{t,i} = r(s_{t,i}, a_{t,i})$
 - 3. Set t = t + 1
 - 4. Update $\hat{V}^{\pi}(s_{t,i})$ using TD(0) estimation

EndWhile

4. Update $\hat{V}_i^{\pi}(s_0)$ using incremental Monte-Carlo estimation **Endfor**

Learning the Optimal Policy

For $i = 1, \ldots, n$

- 1. Set t = 0; Set initial state s_0
- **2. While** (s_t not terminal)
 - 1. Take action a_t according to a suitable exploration policy

$$\pi_{\hat{Q}}(a|s) = \begin{cases} \operatorname{argmax} \hat{Q}(s_{t+1}, a') & w. p. \ 1 - \epsilon \\ unif(A) & w. p. \ \epsilon \end{cases}$$
 (\$\epsilon\$-greedy policy)
$$\pi_{\hat{Q}}(a|s) = \frac{\exp(\frac{\hat{Q}(s,a)}{\tau})}{\sum_{a'} \exp(\frac{\hat{Q}(s,a')}{\tau})}$$
 (soft-max policy)

- 1. Observe next state s_{t+1} and reward r_t , take action a_{t+1} according to a suitable exploration policy (if needed)
- 2. Compute the temporal difference δ_t

$$\delta_t = r_t + \gamma \hat{Q}(s_{t+1}, a_{t+1}) - \hat{Q}(s_t, a_t)$$
 (SARSA)

$$\delta_t = r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t) \quad (\text{Q-learning})$$

1. Update the Q-function

$$\hat{Q}(s_t, a_t) = \hat{Q}(s_t, a_t) + \eta(s_t, a_t)\delta_t$$

2. Set t = t + 1

EndWhile

Endfor

Terminology: on-policy vs off-policy learning

- Two uses of policies
 - Behavior policy: Policy used for interacting (collecting data)
 - Target policy: Policy used for learning
- Q-learning
 - Interacting policy: ϵ -greedy
 - Learning policy: greedy
 - Different → off-policy
 - SARSA

.

- Interacting policy: *ε*-greedy
- Learning policy: ϵ -greedy
- Same → on-policy
- Off-policy = "learning from others"
- On-policy = "learning from oneself"

Q-learning

 Key idea: incrementally obtain new data and update Q function using the optimal Bellman equation (greedy)

Q-Learning: Properties

Understanding this Proposition is the main subject of today + next time.

Proposition

If the learning rate satisfies the Robbins-Monro conditions in all states $s, a \in S \times A$

$$\sum_{i=0}^{\infty} \eta_t(s,a) = \infty \qquad \sum_{i=0}^{\infty} \eta_t^2(s,a) < \infty$$

And all state-action pairs are tried infinitely often, then for all $s, a \in S \times A$

$$\hat{Q}(s,a) \xrightarrow{a.s.} Q^*(s,a)$$

• **Remark**: "infinitely often" requires a steady exploration policy.

Outline

- 1. Policy learning
- 2. Convergence analysis stochastic approximation of a fixed

point

- a. Fixed points
- b. Stochastic approximation
- c. Examples: TD(0) & Q-learning
- d. Max norm convergence result & analysis
- e. Handling non-i.i.d. noise

Fixed Point

• We are interested in solving a system of (possibly nonlinear) equations H(x) = x

where *H* is a mapping from $\mathbb{R}^n \to \mathbb{R}^n$ (into itself).

A solution x^{*} ∈ ℝⁿ which satisfies H(x^{*}) = x^{*} is called a fixed point of H.

28

Example: Simple fixed point equations

- Mean. Consider $H(x) \coloneqq \mu$, where μ can be treated as simply some constant.
- Stochastic gradient descent. Consider $H(x) \coloneqq x \nabla f(x)$ for some cost function f.

Possible algorithms

H(x) is known precisely

- $x \leftarrow H(x)$
- $x \leftarrow (1 \eta)x + \eta H(x)$ (small steps version)

H(x) is not precisely known \rightarrow stochastic approximation algorithm

•
$$x \leftarrow (1 - \eta)x + \eta(H(x) + w)$$

E.g., stochastic gradient descent

Example: Fixed points in dynamic programming

- H is some operator that returns an object in the same space!
 - Example (Linear, Bellman operator): $H(V) \coloneqq \mathcal{T}^{\pi}(V)$
 - Example (Nonlinear, Optimal Bellman operator): $H(V) \coloneqq \mathcal{T}(V)$
 - Both take in value functions and return value functions.
- A solution $x^* \in \mathbb{R}^n$ which satisfies $H(x^*) = x^*$ is called a fixed point of H.
 - Example (Linear, Bellman operator): $V^{\pi} = \mathcal{T}^{\pi}V^{\pi}$
 - Example (Nonlinear, Optimal Bellman operator): $V^* = \mathcal{T}V^*$

Stochastic Approximation

- Stochastic approximation of a mean
 - Desired: $\mu_t \rightarrow \mu = \mathbb{E}[X]$
 - Data we get is noisy, $\mu + w_t$
 - Applications: TD(1)
- Stochastic approximation of a fixed point
 - Desired: $x_t \rightarrow x^*$, where x^* is a solution to H(x) = x
 - Data we get is noisy, $H(x_t) + w_t$
 - Applications: TD(0), TD(λ), Q-learning

Stochastic Approximation

Hope (and actuality):

$$\mu_{t+1} = (1 - \eta_t)\mu_t + \eta_t(\mu + w_t)$$

$$x_{t+1} = (1 - \eta_t)x_t + \eta_t(H(x_t) + w_t)$$

converge to the desired quantity, under appropriate conditions.

• Generalization to component-wise updates: $x_{t+1}(s) = (1 - \eta_t)x_t(s) + \eta_t (H(x_t)(s) + w_t(s)) \quad \forall s \in S$

Stochastic Approximation of a Fixed Point

Summary of results: two kinds of norms, two kinds of analysis

- *H* is contraction w.r.t. max norm $(\|\cdot\|_{\infty})$
- *H* is a contraction w.r.t. Euclidean norm $(\|\cdot\|_2)$

Under these contractive norms, with some additional assumptions, $x_t \rightarrow x^*$ a.s.

Max Norm Convergence Result (Prop 4.4, NDP)

Proposition

Let x_t be the sequence generated by the iteration

$$x_{t+1}(s) = (1 - \eta_t)x_t(s) + \eta_t (H(x_t)(s) + w_t(s)) \quad t = 0, 1, \dots$$

If:

a) [Robbins-Monro stepsize] The step sizes $\eta_t \ge 0$ and are such that

$$\sum_{t\geq 0}\eta_t=\infty;\quad \sum_{t\geq 0}\eta_t^2<\infty$$

b) [Unbiasedness] For every s, t we have zero-mean noise $\mathbb{E}[w_t(s)|\mathcal{F}_t] = 0$.

c) [Bounded variance] Given any norm $\|\cdot\|$ on \mathbb{R}^n , there exist constants A and B such that the variance of the noise is bounded as $\mathbb{E}[w_t^2(s) | \mathcal{F}_t] \le A + B ||x_t||^2, \quad \forall s, t$

d) [Contraction] The mapping *H* is a max norm contraction.

Then, x_t converges to x^* with probability 1.

 $\label{eq:constraint} \begin{array}{l} \textbf{Terminology: } \textit{Filtration } \mathcal{F}_t \\ (\text{probability theory}) \textit{ can be} \\ \textbf{thought of as history up to time } t. \\ \mathcal{F}_t = \{x_0, \dots, x_t, s_0, \dots, s_{t-1}, \eta_0, \dots \eta_t\} \end{array}$

Example for max norm: TD(0)

38

• TD(0) update (for t^{th} trajectory τ_t): $V_{t+1}(s) = V_t(s) + \eta_t \delta_t(s), \quad \forall s \in S$

With temporal difference $\delta_t(s)$ $\delta_t(s) = r(s, s') + \gamma V_t(s') - V_t(s)$ when $s \in \tau_t$, otherwise 0

• Exercise: Apply Prop 4.4 to show that TD(0) converges to V^{π}

Similarly for Q-Learning (see HW)

Recall:

• Compute the (optimal) temporal difference on the trajectory $\langle s_t, a_t, r_t, s_{t+1} \rangle$

$$\delta_t = r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - \hat{Q}(s_t, a_t)$$

Then, update the estimate of Q as

$$\hat{Q}(x_t, a_t) = \hat{Q}(s_t, a_t) + \eta(s_t, a_t)\delta_t$$

Proposition

If the learning rate satisfies the Robbins-Monro conditions in all states $s, a \in S \times A$

$$\sum_{i=0}^{\infty} \eta_t(s, a) = \infty \qquad \sum_{i=0}^{\infty} \eta_t^2(s, a) < \infty$$

And all state-action pairs are tried infinitely often, then for all $s, a \in S \times A$ $\hat{Q}(s, a) \xrightarrow{a.s.} \hat{Q}^*(s, a)$

Summary of Q-learning analysis

Peeling back the onion for Q-learning

Max Norm Convergence Result (Prop 4.4, NDP)

Proposition

Let x_t be the sequence generated by the iteration

$$x_{t+1}(s) = (1 - \eta_t)x_t(s) + \eta_t (H(x_t)(s) + w_t(s)) \quad t = 0, 1, \dots$$

If:

a) [Robbins-Monro stepsize] The step sizes $\eta_t \ge 0$ and are such that

$$\sum_{t\geq 0}\eta_t=\infty;\quad \sum_{t\geq 0}\eta_t^2<\infty$$

b) [Unbiasedness] For every s, t we have zero-mean noise $\mathbb{E}[w_t(s)|\mathcal{F}_t] = 0$.

c) [Bounded variance] Given any norm $\|\cdot\|$ on \mathbb{R}^n , there exist constants A and B such that the variance of the noise is bounded as $\mathbb{E}[w_t^2(s) | \mathcal{F}_t] \le A + B ||x_t||^2, \quad \forall s, t$

d) [Contraction] The mapping *H* is a max norm contraction.

Then, x_t converges to x^* with probability 1.

Terminology: Filtration \mathcal{F}_t (probability theory) can be thought of as history up to time t. $\mathcal{F}_t = \{x_0, ..., x_t, s_0, ..., s_{t-1}, \eta_0, ..., \eta_t\}$

Sketch: Max Norm Contraction Analysis (Prop 4.4)

- Overall proof strategy: show that an upper bound of the iterates ||x_t|| contracts. Therefore, ||x_t|| contracts.
- Note: w.l.o.g. assume that x^{*} = 0
 - Can translate the origin of the coordinate system.
- Assume that x_t is bounded.
 - This can be shown precisely (see NDP Prop 4.7).
- The upper bound can be decomposed into a deterministic and a stochastic (noise) component (induction argument).
- The deterministic component contracts as expected in due time (induction argument, Bellman operators).
- The noise component goes to 0 w.p. 1 (Supermartingale Convergence Theorem).
- Therefore, the overall x_t contracts.

Remark

- Deterministic-only upper bound
 - Corresponds to convergence analysis for asynchronous value iteration!
- Q-learning as noisy extension of value iteration.

Sketch: Handling the noise component in Prop 4.4

$$W_{t+1}(s) = (1 - \eta_t)W_t(s) + \eta_t w_t(s)$$
(1)

- Interpretation: {W_t(s)} as stochastic gradient descent along a quadratic (Lyapunov) function
- Descent direction interpretation (take $H(x) \coloneqq x \nabla f(x)$): $\begin{aligned} x_{t+1} &= (1 - \eta_t) x_t + \eta_t (x_t - \nabla f(x_t) + w_t) \\ &= x_t + \eta_t (x_t - \nabla f(x_t) - x_t + w_t) \\ &= x_t + \eta_t (-\nabla f(x_t) + w_t) \end{aligned}$
- Corresponds to taking Lyapunov function $f(x) = \frac{1}{2}x^2$
 - Take $x_t \coloneqq W_t(s)$ to recover stochastic approximation update for $W_{t+1}(s)$
 - That is, $-\nabla f(x_t) = x_t = W_t(s)$ recovers (1)
- To show that $W_t(s) \to 0$, sufficient to show that $f(x_t) \to 0$.

Sketch: Handling the noise component in Prop 4.4

- Key fact: $f(x_t)$ turns out to be martingale noise.
 - Martingale noise corresponds to a stochastic Lyapunov function.
- Consequently, martingale noise averages out over time to zero.
- Uses Supermartingale Convergence Theorem
 - Generalization to a probabilistic context of the fact that a bounded monotonic sequence converges.

Developments on Q-learning

Developments on Q-learning (an incomplete list!)

Asynchronous Q-learning

- Watkins, Dayan '92
- Tsitsiklis '94
- Jaakkola, Jordan, Singh'94
- Szepesvári '98
- Borkar, Meyn '00
- Even-Dar, Mansour '03
- Beck, Srikant '12
- Chi, Zhu, Bubeck, Jordan '18
- Lee, He'18
- Chen, Zhang, Doan, Maguluri, Clarke '19
- finite-sample • Du, Lee, Mahajan, Wang '20
 - Chen, Maguluri, Shakkottai, Shanmugam '20
 - Qu, Wierman '20
 - Devraj, Meyn '20

٠

- Weng, Gupta, He, Ying, Srikant '20
- Li, Wei, Chi, Gu, Chen '20
- Li, Cai, Chen, Wei, Chi'21
- Chen, Maguluri, Shakkottai, Shanmugam '21

Question: how many samples are needed to ensure $\|\widehat{Q} - Q^{\star}\|_{\infty} < \varepsilon$?

other papers	sample complexity
Even-Dar, Mansour '03	$rac{(t_{cover})^{rac{1-\gamma}{1-\gamma}}}{(1-\gamma)^4 arepsilon^2}$
Even-Dar, Mansour '03	$\left(\frac{t_{\text{cover}}^{1+3\omega}}{(1-\gamma)^4\varepsilon^2}\right)^{\frac{1}{\omega}} + \left(\frac{t_{\text{cover}}}{1-\gamma}\right)^{\frac{1}{1-\omega}}, \ \omega \in (\frac{1}{2}, 1)$
Beck & Srikant '12	$\frac{t_{cover}^3 \mathcal{S} \mathcal{A} }{(1\!-\!\gamma)^5\varepsilon^2}$
Qu & Wierman '20	$\frac{t_{mix}}{\mu_{min}^2(1-\gamma)^5\varepsilon^2}$
Li, Wei, Chi, Gu, Chen '20	$\frac{1}{\mu_{\min}(1-\gamma)^5\varepsilon^2} + \frac{t_{\max}}{\mu_{\min}(1-\gamma)}$
Chen, Maguluri, Shakkottai, Shanmugam '21	$rac{1}{\mu_{\min}^3(1-\gamma)^5arepsilon^2}+other-term(t_{mix})$

— cover time: $t_{\text{cover}} \asymp \frac{t_{\text{mix}}}{\mu_{\text{min}}}$

Wu

50

References courtesy Wei, Chen, Chi (2023)

Finite-time and

Summary

- State-action value function (Q) vs state value function (V)
 - State-action value function permits model-free extraction of the policy
- Policy learning: SARSA and Q-learning (definition, guarantees)
- Stochastic approximation of fixed points (results, contractive norms, analyses)
 - Supermartingale convergence theorem: Helps handle non-i.i.d. noise
- TD and Q-learning as stochastic approximation methods

References

- 1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017, Lectures 2-3.
- Neuro-dynamic Programming (NDP). Ch 3-5 (esp. §5.6, §4.1-4.3, §6.1-6.2).
- 3. DPOC2 §6.3
- 4. Daniela Pucci De Farias. MIT 2.997 Decision-Making in Large-Scale Systems. Spring 2004, Lecture 8.

Reference: Detailed proof of Prop 4.4

Proof: Max Norm Contraction Analysis (Prop 4.4)

- Deterministic part of upper bound: Since x_t is bounded, there exists some D_0 s.t. $\|x_t\|_{\infty} \leq D_0, \forall t$. We define: $D_{k+1} = \gamma D_k, \qquad k \geq 0$
- Clearly, D_k converges to zero.
 - For TD(0), can think of D_k as upper bound on $H(V_t)(s) = \mathbb{E}[r(s,s') + \gamma V_t(s')].$
- Proof idea (by induction): suppose there exists some t_k s.t.

 $\|x_t\|_{\infty} \leq D_k, \forall t \geq t_k$ Then, there exists some later time t_{k+1} s.t. $\|x_t\|_{\infty} \leq D_{k+1}, \forall t \geq t_{k+1}$ For Q-learning, let $x_t := \hat{Q}_t$ $\hat{Q}_t(s', a')$ $\gamma || \hat{Q}_t ||$ $|| \hat{Q}_t ||$ $0(= Q^*)$ $\hat{Q}_t(s, a)$

Proof: Max Norm Contraction Analysis (Prop 4.4)

For the stochastic part of the upper bound, define (need to confirm):

 $W_0(s) = 0;$ $W_{t+1}(s) = (1 - \eta_t)W_t(s) + \eta_t w_t(s)$

• Since x_t is bounded, so is the conditional variance of $w_t(s)$. Then, as a result of the Supermartingale Convergence Theorem, _____ and Lyapunov Function Analysis (NDP Prop 4.1) (discussed later), $\lim_{t\to\infty} W_t(s) = 0$

a.s.

That is, the noise averages out to zero.

Recall: $x_{t+1}(s) = (1 - \eta_t)x_t(s) + \eta_t (H(x_t)(s) + w_t(s))$ t = 0, 1, ...

Proof: Max Norm Contraction Analysis (Prop 4.4)

• Define combined upper bound (need to confirm) (for all $t \ge t_k$): $Y_{t_k}(s) = D_k + W_{t_k}(s);$ $Y_{t+1}(s) = (1 - \eta_t)Y_t(s) + \eta_t \gamma D_k + \eta_t w_t(s)$

Confirm combined upper bound via induction:

Suppose
$$|x_t(s)| \le Y_t(s), \forall s$$
, for some $t \ge t_k$. We then have:
 $x_{t+1}(s) = (1 - \eta_t)x_t(s) + \eta_t (H(x_t)(s) + w_t(s))$
 $\le (1 - \eta_t)Y_t(s) + \eta_t (H(x_t)(s) + w_t(s))$
 $\le (1 - \eta_t)Y_t(s) + \eta_t (\gamma D_k + w_t(s))$
 $= Y_{t+1}(s)$

Where the last inequality is due to $|H(x_t)(s)| \le \gamma ||x_t|| \le \gamma D_k$.

• Since $\sum_{t=0}^{\infty} \eta_{t} = \infty$ and $\lim_{t\to\infty} W_{t}(s) = 0$, Y_{t} converges to γD_{k} as $t \to \infty$ a.s. This yields:

$$\limsup_{t \to \infty} \|x_t\| \le \gamma D_k =: D_{k+1}$$

• Therefore, there exists some time t_{k+1} s.t. $||x_t|| \le D_{k+1}$, $\forall t \ge t_{k+1}$.

56

Reference: Detailed theorems and proofs for the noise (Prop 4.4)

Quadratic Lyapunov function (special case of NDP Prop 4.1)

Proposition

Let x_t be the sequence generated by the iteration

$$x_{t+1}(s) = x_t + \eta_t g_t$$
 $t = 0, 1, ...$
Suppose $f(r) = \frac{1}{2} ||r - r^*||_2^2$ satisfies:

Interpretation as noisy descent direction: $g_t \coloneqq -\nabla f(x_t) + w_t = -\|r - r^*\| + w_t$

1. [Pseudogradient property] $\exists c$ such that $cf(x_t) \leq -\nabla f(x_t)^T \mathbb{E}[g_t | \mathcal{F}_t]$

2. [Bounded variance] $\exists K_1, K_2$ such that $\mathbb{E}[\|g_t\|_2^2 | \mathcal{F}_t] \le K_1 + K_2 f(x_t)$

Then if $\eta_t > 0$ with $\sum_{t=0}^{\infty} \eta_t = \infty$ and $\sum_{t=0}^{\infty} \eta_t^2 < \infty$ $x_t \to r^*$, w.p.1

Terminology: Filtration \mathcal{F}_t (probability theory) can be thought of as history up to time t.

- Consequence of conditions (1) and (2) is that $f(x_t)$ is a supermartingale.
- Note: Prop 4.1 will generalize f(r) to general
 Lyapunov functions (conditions (a) and (b) in Prop 4.1).

(General) Lyapunov Function Analysis Setup

Descent direction interpretation (take
$$H(x) \coloneqq x - \nabla f(x)$$
):

$$\begin{aligned} x_{t+1} &= (1 - \eta_t) x_t + \eta_t (x_t - \nabla f(x_t) + w_t) \\ &= x_t + \eta_t (x_t - \nabla f(x_t) - x_t + w_t) \\ &= x_t + \eta_t (-\nabla f(x_t) + w_t) \\ &= x_t + \eta_t g_t \\ g_t \end{aligned}$$

$$\begin{aligned} x_{t+1}(s) &= (1 - \eta_t) x_t(s) + \eta_t \big(H(x_t)(s) + w_t(s) \big) & t = 0, 1, ... \\ &= x_t(s) + \eta_t \big(H(x_t)(s) - x_t(s) + w_t(s) \big) \\ g_t(s) \\ x_{t+1} &= x_t + \eta_t \big(H(x_t) - x_t + w_t \big) \\ &= x_t + \eta_t g_t \\ \end{aligned}$$

Supermartingale Convergence Theorem

Generalization to a probabilistic context of the fact that a bounded monotonic sequence converges.

Proposition (Supermartingale convergence theorem (Neveu, 1975, p33))

Let X_t , Y_t , and Z_t , t = 0, 1, 2, ..., be three sequences of random variables. Furthermore, let \mathcal{F}_t , t = 0, 1, 2, ..., be sets of random variables such that $\mathcal{F}_t \subset \mathcal{F}_{t+1}$, $\forall t$. Suppose that:

- a) [Nonnegative] The random variables X_t , Y_t , and Z_t are nonnegative, and are functions of the random variables in \mathcal{F}_t .
- b) [Non-increasing-ish] For each t, we have $\mathbb{E}[Y_{t+1}|\mathcal{F}_t] \leq Y_t X_t + Z_t$.
- c) [Diminishing increase] There holds $\sum_{t=0}^{\infty} Z_t < \infty$.

Then,

- 1. Y_t converges to a limit with probability 1,
- *2.* $\sum_{t=1}^{\infty} X_t < \infty$ with probability 1.

Correspondence to noise upper bound (intuition) $Y_t \leftarrow W_t^2; \mathcal{F}_t \leftarrow \tau_t$ $X_t \leftarrow \eta_t W_t^2; Z_t \leftarrow \eta_t^2 \mathbb{V}(w_t)$

Proof: quadratic Lyapunov function

Key idea: show that $f(x_t)$ is a supermartingale, so $f(x_t)$ converges. Then show converges to zero w.p. 1.

•
$$E[f(x_{t+1})|\mathcal{F}_{t}] = E\left[\frac{1}{2}||x_{t+1} - r^{*}||_{2}^{2}|\mathcal{F}_{t}\right]$$

$$= E\left[\frac{1}{2}(x_{t} + \eta_{t}g_{t} - r^{*})^{T}(x_{t} + \eta_{t}g_{t} - r^{*})|\mathcal{F}_{t}\right] \quad (g_{t} \triangleq g(x_{t}, w_{t}))$$

$$= \frac{1}{2}(x_{t} - r^{*})^{T}(x_{t} - r^{*}) + \eta_{t}(x_{t} - r^{*})^{T}E[g_{t}|\mathcal{F}_{t}] + \frac{\eta_{t}^{2}}{2}E[g_{t}^{T}g_{t}|\mathcal{F}_{t}]$$

$$= f(x_{t}) + \eta_{t}(x_{t} - r^{*})^{T}E[g_{t}|\mathcal{F}_{t}] + \frac{\eta_{t}^{2}}{2}E[||g_{t}||_{2}^{2}|\mathcal{F}_{t}]$$

 Y_t X_t

 Z_{t}

• Since $f(x_t) = \frac{1}{2} ||x_t - r^*||_2^2$, $\nabla f(x_t) = x_t - r^*$. Then:

• $E[f(x_{t+1})|\mathcal{F}_t] = f(x_t) + \eta_t \nabla f(x_t)^T E[g_t|\mathcal{F}_t] + \frac{\eta_t^2}{2} E[||g_t||_2^2 |\mathcal{F}_t]$ $\leq f(x_t) - \eta_t cf(x_t) + \frac{\eta_t^2}{2} (K_1 + K_2 f(x_t))$

(P4.1 conditions 1 & 2) $\leq f(x_t) - \left(\frac{\eta_t c - \frac{\eta_t^2 K_2}{2}}{2} \right) f(x_t) + \frac{\eta_t^2}{2} K_1 \qquad \text{(SCT condition b)}$

Correspondence to noise upper bound (intuition) $Y_t \leftarrow W_t^2; \mathcal{F}_t \leftarrow \tau_t$ $X_t \leftarrow \eta_t W_t^2$; $Z_t \leftarrow \eta_t^2 \mathbb{V}(w_t)$

Proof: quadratic Lyapunov function

$$E[f(x_{t+1})|\mathcal{F}_t] \leq f(x_t) - \left(\frac{\eta_t c - \frac{\eta_t^2 K_2}{2}}{Y_t}\right) f(x_t) + \frac{\eta_t^2}{2} K_1$$

$$Y_t \qquad X_t \qquad Z_t$$

- Since $\eta_t > 0$ and $\sum_{t=0}^{\infty} \eta_t^2 < \infty$, then $X_t \ge 0$ for large enough t (SCT condition a)
- Moreover: $\sum_{t=0}^{\infty} Z_t = \frac{K_1}{2} \sum_{t=0}^{\infty} \eta_t^2 < \infty$ (SCT condition c)
- Therefore, by Supermartingale convergence theorem:

$$f(x_t)$$
 converges w.p. 1, and $\sum_{t=0}^{\infty} \left(\eta_t c - \frac{\eta_t^2 K_2}{2} \right) f(x_t) < \infty$, w.p. 1

Suppose that $f(x_t) \to \epsilon > 0$. Then, by hypothesis that $\sum_{t=0}^{\infty} \eta_t = \infty$ and $\sum_{t=0}^{\infty} \eta_t^2 < \infty$, we must have:

$$\sum_{t=0}^{\infty} \left(\eta_t c - \frac{\eta_t^2 K_2}{2} \right) f(x_t) = \infty$$

Which is a contradiction. Therefore:

$$\lim_{t \to \infty} f(x_t) = \lim_{t \to \infty} \frac{1}{2} \|x_t - r^*\|_2^2 = 0 \quad \text{w.p. 1} \quad \Longrightarrow \quad x_t \to r^* \quad \text{w.p. 1}$$

Lyapunov Function Analysis (NDP Prop 4.1)

Proposition

Let x_t be the sequence generated by the iteration

$$x_{t+1}(s) = x_t + \eta_t g_t$$
 $t = 0, 1, ...$

If the stepsizes $\eta_t \ge 0$ and are such that $\sum_{t\ge 0} \eta_t = \infty$; $\sum_{t\ge 0} \eta_t^2 < \infty$, and there exists a function $f: \mathbb{R}^n \to \mathbb{R}^n$, with:

- a) [Non-negativity] $f(x) \ge 0, \forall x \in \mathbb{R}$.
- b) [Lipschitz continuity of ∇f] The function f is continuously differentiable and there exists some constant L such that

$$\|\nabla f(x) - \nabla f(x')\| \le L \|x - x'\|, \qquad \forall x, x' \in \mathbb{R}^n$$

- c) [Pseudogradient property] There exists a positive constant c such that $c \|\nabla f(x_t)\|^2 \leq -\nabla f(x_t)^T \mathbb{E}[g_t|\mathcal{F}_t], \quad \forall t$
- d) [Bounded variance] There exists positive constants K_1, K_2 s.t. $E[||g_t||^2|\mathcal{F}_t] \le K_1 + K_2 ||\nabla f(x_t)||^2$,

Then, with probability 1, we have

- **1**. The sequence $f(x_t)$ converges.
- 2. We have $\lim_{t\to\infty} \nabla f(x_t) = 0$.
- 3. Every limit point of x_t is a stationary point of f.

Note: This holds for contractions w.r.t. the Euclidean norm.

∀t

Lyapunov function

We proved the convergence for the special case where $f(r) = \frac{1}{2} ||r - r^*||_2^2$ for some r^* (sufficient for Q_rlearning).