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1. Neuro-dynamic Programming (NDP). §5.6, §4.1-4.3, §6.1-6.2. 
Skim Ch 3-5 as needed.

2. DPOC2 §6.3

Readings
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1. Policy learning

2. Convergence analysis – stochastic approximation of a fixed 

point
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Adapted from: OpenAI Spinning Up

Lay of the land
7Methods for sequential 

decision making

Sampling-based
(large state space)

Policy 
improvement

Multi-armed 
bandits 

(horizon = 1)

Reinforcement 
learning

(horizon ≥ 1)

Policy 
evaluation

Dynamic 
programming 

(small state space)

Dynamic programming 
algorithm 

(finite horizon)

Generalized policy 
iteration

(infinite horizon)

Value 
iteration

Policy 
iteration

Special 
structures

De-facto definition: 
Reinforcement learning = 

sampling-based policy improvement for 
sequential decision making (horizon ≥ 1)

Today

6.7920: Reinforcement learning: 
foundations and methods

Learn the 
value function

Learn the policy
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1. Policy learning
a. State-action value function
b. Q-iteration
c. Q-learning
d. On-policy vs off-policy learning

2. Convergence analysis – stochastic approximation of a fixed 

point
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Policy Learning
9

Learn optimal policy 𝜋∗

For 𝑖 = 1,… , 𝑛     [each of 𝑛 episodes]
1. Set 𝑡 = 0
2. Set initial state 𝑠"
3. While (𝑠#,% not terminal)   [execute one trajectory]

1. Take action 𝑎!,#        [Compare Policy Evaluation: Take action 𝑎!,# = 𝜋 𝑠!,# ]
2. Observe next state 𝑠!$%,#  and reward 𝑟!,# = 𝑟 𝑠!,# , 𝑎!,#
3. Set 𝑡 = 𝑡 + 1

EndWhile
Endfor
Return: Estimate of the value function +𝜋∗
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State-Action Value Function (“Q”)

§ Recall: definition of value function, 𝑉! 𝑠 = 𝔼 ∑"#$% 𝛾"𝑟 𝑠" , 𝜋 𝑠" |𝑠$ = 𝑠; 𝜋

Definition

In discounted infinite horizon problems, for any policy 𝜋, the state-action value 
function (or Q-function) 𝑄& ∶ 𝑆×𝐴	 ↦ ℝ is 

𝑄& 𝑠, 𝑎 = 𝔼 /
!'(

)

𝛾!𝑟 𝑠!, 𝑎! |𝑠( = 𝑠, 𝑎( = 𝑎, 𝑎! = 𝜋 𝑠! , ∀𝑡 ≥ 1

The optimal Q-function is

𝑄∗ 𝑠, 𝑎 = max
&
𝑄&(𝑠, 𝑎)

and the optimal policy can be obtained as 

𝜋∗ 𝑠 = argmax
+
𝑄∗ 𝑠, 𝑎
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State-Action Value Function Operators*
§ 𝒯!𝑄 𝑠, 𝑎 ≔ 𝑟 𝑠, 𝑎 + 𝛾𝔼"&~	% ⋅ ",() 𝑄(𝑠*, 𝜋 𝑠 )
• Compare: 𝒯!𝑉 𝑠 ≔ 𝑟 𝑠, 𝜋 𝑠 + 𝛾𝔼'#~	* ⋅ ',! ' ) 𝑉 𝑠.

§ 𝒯𝑄 𝑠, 𝑎 ≔ 𝑟 𝑠, 𝑎 + 𝛾𝔼"&~	% ⋅ ",() max(&
𝑄(𝑠*, 𝑎*)

• Compare: 𝒯𝑉 𝑠 ≔ max
/∈1	

𝑟 𝑠, 𝑎 + 𝛾𝔼'#~	* ⋅ ',/)	𝑉 𝑠.

Still true:
§ Q∗ = 𝒯𝑄∗

§ Q! = 𝒯!𝑄!

Note: Abuse of notation for the operators
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State-Action and State Value Function
§ 𝑄! 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼"&~	% ⋅ ",() 𝑉! 𝑠*

§ 𝑉! 𝑠 = 𝑄! 𝑠, 𝜋 𝑠

§ 𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼"&~	% ⋅ ",() 𝑉∗ 𝑠*

§ 𝑉∗ 𝑠 = 𝑄∗ 𝑠, 𝜋∗ 𝑠* = max
(∈-	

𝑄∗(𝑠, 𝑎)
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Q-value Iteration
1. Let 𝑄.(𝑠, 𝑎) be any Q-function 𝑄.: 𝑆×𝐴 → ℝ

2. At each iteration 𝑘 = 1, 2,… . , 𝐾
§ Compute 𝑄&'( = 𝒯𝑄&

3. Terminate when 𝑄/ stops improving
§ e.g. when max

)
|𝑄&'( 𝑠 − 𝑄& 𝑠 | is small.

4. Return the greedy policy 
𝜋0 𝑠 ∈ argmax

(∈-
𝑄0(𝑠, 𝑎)
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Compare: Value iteration algorithm
1. Let 𝑉.(𝑠) be any function 𝑉.: 𝑆 → ℝ.

2. At each iteration 𝑘 = 1, 2,… . , 𝐾
§ Compute 𝑉&'( = 𝒯𝑉&

3. Terminate when 𝑉/ stops improving
§ e.g. when max

)
|𝑉&'( 𝑠 − 𝑉& 𝑠 | is small.

4. Return the greedy policy
𝜋0 𝑠 ∈ argmax

(∈-	
𝑟 𝑠, 𝑎 + 𝛾𝔼"&~	% ⋅ ",()	𝑉0 𝑠*

14
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The Grid-World Problem

State: agent location

15
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Example: Winter parking (with ice and potholes)
§ Simple grid world with a goal state (green, desired parking spot) with 
reward (+1),  a “bad state” (red, pothole) with reward (-100), and all 
other states neural (+0).
§ Omnidirectional vehicle (agent) can head in any direction. Actions 
move in the  desired direction with probably 0.8, in one of the 
perpendicular directions with.
§ Taking an action that would bump into a wall leaves agent where it is.

[Source: adapted from Kolter, 2016]

16
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Example: value iteration

(a) (b) (c)

(d) (e) (f)

17
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State-Action Value Function (“Q table”)
§ Example: Winter parking (with ice and 

potholes)

𝑎

𝑠

2.5 1.4

1.0

5.2

8.7

4.8

1.0

-180

4.2

2.1

3.0

0.1

3.2

4.2

3.4

2.5

3.0

-172

2.1

2.0

1.2

1.5

3.2 5.4

5.1

5.5

2.0

3.5

3.3

-99.7

3.2

3.7

3.2

0.1

6.3

7.2

8.0

4.2

1.2

-150

3.7

3.1

2.7

1.0

𝑄(𝑠, 𝑎)

𝑉(𝑠)

It is convenient to keep 
track of not only the long 
term value of a state, but 
also the state, jointly with 
the next action.
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Convenient for selecting next action!
§ Winter parking (with ice and potholes)

Before

𝜋# 𝑠 = argmax
$∈&	

𝑟 𝑠, 𝑎 + 𝛾𝔼(!~	* ⋅ (,$)	𝑉# 𝑠.

𝑎

𝑠
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4.8

1.0

-180
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0.1
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3.0
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1.2

1.5

3.2 5.4

5.1

5.5

2.0

3.5

3.3

-99.7

3.2

3.7

3.2

0.1

6.3

7.2

8.0

4.2

1.2

-150

3.7

3.1

2.7

1.0

𝑄(𝑠, 𝑎)
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Policy Iteration (w/ Q-value function)
20

1. Let 𝜋. be any stationary policy
2. At each iteration 𝑘 = 1, 2,… , 𝐾
• Policy evaluation: given 𝜋2, compute 𝑄!$
• Policy improvement: compute the greedy policy

𝜋234 𝑠 ∈ arg	max
5∈1

	Q2! s, a

3. Stop if 𝑄!6 = 𝑄!678

4. Return the last policy 𝜋0
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Compare: Policy Iteration
1. Let 𝜋. be any stationary policy

2. At each iteration 𝑘 = 1, 2,… . , 𝐾
§ Policy evaluation: given 𝜋, , compute 𝑉&/

§ Policy improvement: compute the greedy policy

𝜋,$% 𝑠 ∈ argmax
+∈.

𝑟 𝑠, 𝑎 + 𝛾2
/0
𝑝 𝑠0 𝑠, 𝑎 𝑉&/ 𝑠0

1. Stop if 𝑉!6 = 𝑉!678

2. Return the last policy 𝜋0

21
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Q-Learning (Watkins, 1992)
22

§ Model-free algorithm for learning the optimal policy
§ Stochastic approximation lens
• Model-free Q-function improvement via incremental updates

§ Compute 𝑇𝐷 error for the optimal Bellman operator (compare: Bellman operator)

• Use 𝜖-greedy policy to collect data, to ensure that all state-actions are visited 
enough (for convergence)
§ With probability 1 − 𝜖, choose the best predicted action argmax

%!
	 ;𝑄 𝑠&'(, 𝑎)

§ With probability 𝜖, choose an action uniformly at random.

§ Intuition
• Use 𝜖-greedy policy for data collection (exploration)
• But use greedy policy for learning (exploitation)
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Recall: Temporal Difference 𝑇𝐷(0)
23

For 𝑖 = 1,… , 𝑛       [each of 𝑛 episodes]
1. Set 𝑡 = 0
2. Set initial state 𝑠. 
3. While (𝑠?  not terminal)   [execute one trajectory]

1. Take action 𝑎",9 = 𝜋 𝑠",9
2. Observe next state 𝑠"34,9  and reward 𝑟",9 = 𝑟 𝑠",9 , 𝑎",9
3. Set 𝑡 = 𝑡 + 1
4. Update =𝑉!(𝑠",9) using 𝑇𝐷(0) estimation

EndWhile
4. Update G𝑉@! 𝑠.  using incremental Monte-Carlo estimation
Endfor
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Learning the Optimal Policy
24

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0; Set initial state 𝑠1
2. While (𝑠2  not terminal)

1. Take action 𝑎"  according to a suitable exploration policy 

 𝜋 #$ 𝑎 𝑠 = >
argmax

%!
	 D𝑄 𝑠"&' , 𝑎( 	 𝑤. 𝑝. 	1 − 𝜖

𝑈𝑛𝑖𝑓 𝐴 	 𝑤. 𝑝. 	𝜖
 (𝜖-greedy policy)

 𝜋 #$ 𝑎 𝑠 =
)*+

"# $,&
'

∑&! )*+
"# $,&!

'

                                      (soft-max policy)

1. Observe next state 𝑠"&' and reward 𝑟", take action 𝑎"&' 
according to a suitable exploration policy (if needed)

2. Compute the temporal difference 𝛿"
𝛿" = 𝑟" + 𝛾 D𝑄 𝑠"&' , 𝑎"&' − D𝑄 𝑠" , 𝑎" 	 (SARSA)

𝛿" = 𝑟" + 𝛾max%!
D𝑄 𝑠"&' , 𝑎( − D𝑄 𝑠" , 𝑎" 	 (Q–learning)

1. Update the Q-functionD𝑄 𝑠" , 𝑎" = D𝑄 𝑠" , 𝑎" + 𝜂 𝑠" , 𝑎" 𝛿"
2. Set 𝑡 = 𝑡 + 1

EndWhile
Endfor

Terminology: on-policy vs off-policy learning
§ Two uses of policies

• Behavior policy: Policy used for 
interacting (collecting data)

• Target policy: Policy used for learning
§ Q-learning

• Interacting policy: 𝜖-greedy
• Learning policy: greedy
• Different à off-policy

§ SARSA
• Interacting policy: 𝜖-greedy
• Learning policy: 𝜖-greedy
• Same à on-policy

§ Off-policy = “learning from others”
§ On-policy = “learning from oneself”
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Q-learning
25

§ Key idea: incrementally obtain new data and update Q function 
using the optimal Bellman equation (greedy)

Q-value iteration

V

𝑄 ≈ 𝑞 !

𝑄
𝑄∗

(𝑄)

Q-learning

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.
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Q-Learning: Properties
26

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all states 
𝑠, 𝑎 ∈ 𝑆×𝐴

H
@A.

B

𝜂? 𝑠, 𝑎 = ∞	 H
@A.

B

𝜂?C 𝑠, 𝑎 < ∞

And all state-action pairs are tried infinitely often, then for all 𝑠, 𝑎 ∈
𝑆×𝐴	

G𝑄 𝑠, 𝑎
(.".
𝑄∗ 𝑠, 𝑎

§ Remark: “infinitely often” requires a steady exploration policy.

Understanding this Proposition is the 
main subject of today + next time.
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Outline
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1. Policy learning

2. Convergence analysis – stochastic approximation of a fixed 

point
a. Fixed points
b. Stochastic approximation
c. Examples: TD(0) & Q-learning
d. Max norm convergence result & analysis
e. Handling non-i.i.d. noise
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Fixed Point
28

§ We are interested in solving a system of (possibly nonlinear) equations
𝐻 𝑥 = 𝑥

    where 𝐻 is a mapping from ℝE → ℝE (into itself).

§ A solution 𝑥∗ ∈ ℝE which satisfies 𝐻 𝑥∗ = 𝑥∗ is called a fixed point of 
𝐻.
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§ Mean. Consider 𝐻 𝑥 ≔ 𝜇, where 𝜇 can be treated as simply some 
constant.

§ Stochastic gradient descent.  Consider 𝐻 𝑥 ≔ 𝑥 − ∇𝑓 𝑥  for some 
cost function 𝑓.  

Example: Simple fixed point equations
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Possible algorithms
30

𝐻 𝑥  is known precisely
§ 𝑥 ← 𝐻 𝑥
§ 𝑥 ← 1 − 𝜂 𝑥 + 𝜂𝐻 𝑥   (small steps version)

𝐻 𝑥  is not precisely known à stochastic approximation algorithm
§ 𝑥 ← 1 − 𝜂 𝑥 + 𝜂 𝐻 𝑥 + 𝑤
§ E.g., stochastic gradient descent
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Example: Fixed points in dynamic programming
§ 𝐻 is some operator that returns an object in the same space!
• Example (Linear, Bellman operator): 𝐻 𝑉 ≔ 𝒯! 𝑉
• Example (Nonlinear, Optimal Bellman operator): 𝐻 𝑉 ≔ 𝒯 𝑉
• Both take in value functions and return value functions. 

§ A solution 𝑥∗ ∈ ℝE which satisfies 𝐻 𝑥∗ = 𝑥∗ is called a fixed point 
of 𝐻.
• Example (Linear, Bellman operator): 𝑉! = 𝒯!𝑉!
• Example (Nonlinear, Optimal Bellman operator): 𝑉∗ = 𝒯𝑉∗
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Stochastic Approximation
32

§ Stochastic approximation of a mean
• Desired: 𝜇" → 𝜇 = 𝔼 𝑋
• Data we get is noisy, 𝜇 + 𝑤"
• Applications: TD(1)

§ Stochastic approximation of a fixed point
• Desired: 𝑥" → 𝑥∗, where 𝑥∗ is a solution to 𝐻 𝑥 = 𝑥
• Data we get is noisy, 𝐻 𝑥" + 𝑤"
• Applications: TD(0), TD(𝜆), Q-learning
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Stochastic Approximation
33

§ Hope (and actuality):
𝜇?FG = 1 − 𝜂? 𝜇? + 𝜂? 𝜇 + 𝑤?
𝑥?FG = 1 − 𝜂? 𝑥? + 𝜂? 𝐻 𝑥? + 𝑤?

converge to the desired quantity, under appropriate conditions.

§ Generalization to component-wise updates:
𝑥?FG 𝑠 = 1 − 𝜂? 𝑥? 𝑠 + 𝜂? 𝐻 𝑥? 𝑠 + 𝑤? 𝑠 	 ∀𝑠 ∈ 𝒮
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Stochastic Approximation of a Fixed Point
34

Summary of results: two kinds of norms, two kinds of analysis

§ 𝐻 is contraction w.r.t. max norm ( ⋅ b)

§ 𝐻 is a contraction w.r.t. Euclidean norm ( ⋅ c)

Under these contractive norms, with some additional assumptions, 𝑥" → 𝑥∗ a.s.
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Max Norm Convergence Result (Prop 4.4, NDP)
35

Proposition
Let 𝑥2  be the sequence generated by the iteration

𝑥245 𝑠 = 1 − 𝜂2 𝑥2 𝑠 + 𝜂2 𝐻 𝑥2 𝑠 + 𝑤2 𝑠 	 𝑡 = 0, 1, …

If:

a) [Robbins-Monro stepsize] The step sizes 𝜂2 ≥ 0 and are such that

E
261

𝜂2 = ∞;	 E
261

𝜂27 < ∞

b) [Unbiasedness] For every 𝑠, 𝑡 we have zero-mean noise 𝔼 𝑤2 𝑠 ℱ2] = 0.

c) [Bounded variance] Given any norm ⋅  on ℝ8, there exist constants 𝐴 and 𝐵 such that the 
variance of the noise is bounded as 

𝔼 𝑤27 𝑠 |	ℱ2 ≤ 𝐴 + 𝐵 𝑥2 7, 	 ∀𝑠, 𝑡
d) [Contraction] The mapping 𝐻 is a max norm contraction.

Then, 𝑥2  converges to 𝑥∗ with probability 1.

Terminology: Filtration ℱ( 
(probability theory) can be 

thought of as history up to time 𝑡.
ℱ! = 𝑥", … , 𝑥!, 𝑠", … , 𝑠!#$, 𝜂", … 𝜂!
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Example for max norm: 𝑇𝐷 0
§ 𝑇𝐷(0) update (for 𝑡th trajectory 𝜏?):

𝑉?FG 𝑠 = 𝑉? 𝑠 + 𝜂?𝛿? 𝑠 , 	 ∀𝑠 ∈ 𝒮
    With temporal difference 𝛿?(𝑠)

𝛿? 𝑠 = 𝑟 𝑠, 𝑠* + 𝛾V? 𝑠* − 𝑉? 𝑠 	 when	𝑠 ∈ 𝜏? , otherwise	0

§ Exercise: Apply Prop 4.4 to show that TD(0) converges to 𝑉!

Terminology: Referred to 
as first-visit TD(0) in S&B.
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Similarly for Q-Learning (see HW)
39

If the learning rate satisfies the Robbins-Monro conditions in all states 𝑠, 𝑎 ∈
𝑆×𝐴

9
%R"

S

𝜂# 𝑠, 𝑎 = ∞	 9
%R"

S

𝜂#T 𝑠, 𝑎 < ∞

And all state-action pairs are tried infinitely often, then for all 𝑠, 𝑎 ∈ 𝑆×𝐴	
>𝑄 𝑠, 𝑎

U.). >𝑄∗ 𝑠, 𝑎

Recall: 

§ Compute the (optimal) temporal difference on the trajectory 𝑠!, 𝑎!, 𝑟!, 𝑠!$%
𝛿! = 𝑟! + 𝛾max+0

@𝑄 𝑠!$%, 𝑎0 −	 @𝑄 𝑠!, 𝑎!

§ Then, update the estimate of 𝑄 as 
@𝑄 𝑥!, 𝑎! =	 @𝑄 𝑠!, 𝑎! + 𝜂 𝑠!, 𝑎! 𝛿!

Proposition



Wu

41

Summary of Q-learning analysis

Q-learning⟹Max Norm 
Convergence

(HW)
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Peeling back the onion for Q-learning
42
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Max Norm Convergence Result (Prop 4.4, NDP)
43

Proposition
Let 𝑥2  be the sequence generated by the iteration

𝑥245 𝑠 = 1 − 𝜂2 𝑥2 𝑠 + 𝜂2 𝐻 𝑥2 𝑠 + 𝑤2 𝑠 	 𝑡 = 0, 1, …

If:

a) [Robbins-Monro stepsize] The step sizes 𝜂2 ≥ 0 and are such that

E
261

𝜂2 = ∞;	 E
261

𝜂27 < ∞

b) [Unbiasedness] For every 𝑠, 𝑡 we have zero-mean noise 𝔼 𝑤2 𝑠 ℱ2] = 0.

c) [Bounded variance] Given any norm ⋅  on ℝ8, there exist constants 𝐴 and 𝐵 such that the 
variance of the noise is bounded as 

𝔼 𝑤27 𝑠 |	ℱ2 ≤ 𝐴 + 𝐵 𝑥2 7, 	 ∀𝑠, 𝑡
d) [Contraction] The mapping 𝐻 is a max norm contraction.

Then, 𝑥2  converges to 𝑥∗ with probability 1.

Terminology: Filtration ℱ( 
(probability theory) can be 

thought of as history up to time 𝑡.
ℱ! = 𝑥", … , 𝑥!, 𝑠", … , 𝑠!#$, 𝜂", … 𝜂!
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Sketch: Max Norm Contraction Analysis (Prop 4.4)
§ Overall proof strategy: show that an upper 

bound of the iterates 𝑥"  contracts.  
Therefore, 𝑥"  contracts.

§ Note: w.l.o.g. assume that 𝑥∗ = 0
• Can translate the origin of the coordinate system.

§ Assume that 𝑥" is bounded.
• This can be shown precisely (see NDP Prop 4.7).

§ The upper bound can be decomposed into a 
deterministic and a stochastic (noise) 
component (induction argument).

§ The deterministic component contracts as 
expected in due time (induction argument, 
Bellman operators).

§ The noise component goes to 0 w.p. 1 
(Supermartingale Convergence Theorem).

§ Therefore, the overall 𝑥" contracts.

0(= 𝑄∗) =𝑄"(𝑠, 𝑎)

=𝑄"(𝑠′, 𝑎.)
𝛾| =𝑄" |

| =𝑄" |

For Q-learning, let 𝑥( ≔ /𝑄(
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Remark
45

§ Deterministic-only upper bound
• Corresponds to convergence analysis for asynchronous value iteration!

§ Q-learning as noisy extension of value iteration.
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Sketch: Handling the noise component in Prop 4.4
𝑊?FG 𝑠 = 1 − 𝜂M 𝑊? 𝑠 + 𝜂?𝑤? 𝑠 	 (1)

§ Interpretation: {𝑊? 𝑠 } as stochastic gradient descent along a 
quadratic (Lyapunov) function

§ Descent direction interpretation (take 𝐻 𝑥 ≔ 𝑥 − ∇𝑓(𝑥)):
𝑥?FG = (1 − 𝜂?)𝑥?+𝜂? 𝑥? − ∇𝑓 𝑥? + 𝑤?
	 = 𝑥? + 𝜂? 𝑥? − ∇𝑓 𝑥? − 𝑥? + 𝑤?
	 = 𝑥? + 𝜂? −∇𝑓 𝑥? + 𝑤?

§ Corresponds to taking Lyapunov function 𝑓 𝑥 = G
C
𝑥C

• Take 𝑥" ≔𝑊" 𝑠  to recover stochastic approximation update for 𝑊"34 𝑠
• That is, −∇𝑓 𝑥" = 𝑥" = 𝑊" 𝑠  recovers (1)

§ To show that 𝑊? 𝑠 → 0, sufficient to show that 𝑓 𝑥? → 0.
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Sketch: Handling the noise component in Prop 4.4
§ Key fact: 𝑓 𝑥?  turns out to be martingale noise.
• Martingale noise corresponds to a stochastic Lyapunov function.

§ Consequently, martingale noise averages out over time to zero.
§ Uses Supermartingale Convergence Theorem
• Generalization to a probabilistic context of the fact that a bounded 

monotonic sequence converges.
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Summary of Q-learning analysis
Q-learning

⟹

Max Norm 
Convergence

Supermartingale 
Convergence 

Theorem

Lyapunov 
Function 
Analysis

Quadratic 
Lyapunov 
Function 
Analysis

⟹

⟹

⟹

(Special 
case)

Bellman 
Operator Theory

⟹

Handles deterministic 
progress

Handles stochastic 
correlated noise

⟹
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Developments on Q-learning
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Graphic courtesy Wei, Chen, Chi (2023)
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Developments on Q-learning (an incomplete list!)
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§ Asynchronous Q-learning

References courtesy Wei, Chen, Chi (2023)

Asymptotic 

analysis

Finite-tim
e and 

finite-sa
mple 

analysis
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Summary

§ State-action value function (𝑄) vs state value function (𝑉)
• State-action value function permits model-free extraction of the policy

§ Policy learning: SARSA and Q-learning (definition, guarantees)
§ Stochastic approximation of fixed points (results, contractive 

norms, analyses)
• Supermartingale convergence theorem: Helps handle non-i.i.d. noise

§ TD and Q-learning as stochastic approximation methods
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§ Deterministic part of upper bound: Since 
𝑥?  is bounded, there exists some 𝐷. s.t.
𝑥? B ≤ 𝐷., ∀𝑡. We define: 

𝐷/FG = 𝛾𝐷/ , 	 𝑘 ≥ 0
§ Clearly, 𝐷/  converges to zero.
• For TD(0), can think of 𝐷2  as upper bound on 
𝐻 𝑉" 𝑠 = 𝔼 𝑟 𝑠, 𝑠. + 𝛾𝑉" 𝑠. .

§ Proof idea (by induction): suppose there 
exists some 𝑡/  s.t. 

𝑥? B ≤ 𝐷/ , ∀𝑡 ≥ 𝑡/
Then, there exists some later time 𝑡/FG s.t. 

𝑥? B ≤ 𝐷/FG, ∀𝑡 ≥ 𝑡/FG

Proof: Max Norm Contraction Analysis (Prop 4.4)
For Q-learning, let 𝑥( ≔ /𝑄(

0(= 𝑄∗) =𝑄"(𝑠, 𝑎)

=𝑄"(𝑠′, 𝑎.)
𝛾| =𝑄" |

| =𝑄" |
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§ For the stochastic part of the upper bound, 
define (need to confirm):

𝑊. 𝑠 = 0;	
𝑊?FG 𝑠 = 1 − 𝜂M 𝑊? 𝑠 + 𝜂?𝑤? 𝑠

§ Since 𝑥?  is bounded, so is the conditional 
variance of 𝑤? 𝑠 .  Then, as a result of the 
Supermartingale Convergence Theorem, 
and Lyapunov Function Analysis (NDP Prop 
4.1) (discussed later), 

lim
?→B

𝑊? 𝑠 = 0
a.s.

§ That is, the noise averages out to zero.

Proof: Max Norm Contraction Analysis (Prop 4.4)
For Q-learning, let 𝑥( ≔ /𝑄(

0(= 𝑄∗) =𝑄"(𝑠, 𝑎)

=𝑄"(𝑠′, 𝑎.)
𝛾| =𝑄" |

| =𝑄" |



Wu

56

§ Define combined upper bound (need to confirm) (for all 𝑡 ≥ 𝑡&):
𝑌#$ 𝑠 = 𝐷& +𝑊#$ 𝑠 ;	 𝑌#'( 𝑠 = 1 − 𝜂# 𝑌# 𝑠 + 𝜂#𝛾𝐷& + 𝜂#𝑤# 𝑠

§ Confirm combined upper bound via induction:
• Suppose 𝑥! 𝑠 ≤ 𝑌! 𝑠 , ∀𝑠, for some 𝑡 ≥ 𝑡, .  We then have:

𝑥#'( 𝑠 = 1 − 𝜂# 𝑥# 𝑠 + 𝜂# 𝐻 𝑥# 𝑠 + 𝑤# 𝑠
≤ 1 − 𝜂# 𝑌# 𝑠 + 𝜂# 𝐻 𝑥# 𝑠 + 𝑤# 𝑠
≤ 1 − 𝜂# 𝑌# 𝑠 + 𝜂# 𝛾𝐷& + 𝑤# 𝑠
= 𝑌#'((𝑠)

   Where the last inequality is due to 𝐻 𝑥! 𝑠 ≤ 𝛾 𝑥! ≤ 𝛾𝐷, .
§ Since ∑#S 𝜂# = ∞ and lim

#→S
𝑊#(𝑠) = 0, 𝑌# converges to 𝛾𝐷& as 𝑡 → ∞ a.s.  

This yields:
limsup
#→S

𝑥# ≤ 𝛾𝐷& =:𝐷&'(

§ Therefore, there exists some time 𝑡&'( s.t. 𝑥# ≤ 𝐷&'(, ∀𝑡 ≥ 𝑡&'(.

Proof: Max Norm Contraction Analysis (Prop 4.4)

∎

Recall: 𝑥(/0 𝑠 = 1− 𝜂( 𝑥( 𝑠 + 𝜂( 𝐻 𝑥( 𝑠 +𝑤( 𝑠 	 𝑡 = 0, 1,…
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Reference: Detailed theorems and proofs for the noise (Prop 4.4)
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Quadratic Lyapunov function (special case of NDP Prop 4.1)
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Proposition
Let 𝑥# be the sequence generated by the iteration

𝑥#'( 𝑠 = 𝑥# + 𝜂#𝑔#	 𝑡 = 0, 1, …	
Suppose 𝑓 𝑟 = (

T
𝑟 − 𝑟∗ T

T satisfies:
1. [Pseudogradient property] ∃𝑐 such that 𝑐𝑓 𝑥# ≤ −∇𝑓 𝑥# [𝔼 𝑔# ℱ#
2. [Bounded variance] ∃𝐾(, 𝐾T such that 𝔼 𝑔# T

T ℱ# ≤ 𝐾( + 𝐾T𝑓 𝑥#
Then if 𝜂# > 0 with ∑#R"S 𝜂# = ∞ and ∑#R"S 𝜂#T < ∞

𝑥# → 𝑟∗, 	 𝑤. 𝑝. 1

§ Consequence of conditions (1) and (2) is that 𝑓(𝑥#) is a 
supermartingale.

§ Note: Prop 4.1 will generalize 𝑓 𝑟  to general 
Lyapunov functions (conditions (a) and (b) in Prop 4.1).

Interpretation as noisy descent direction: 
𝑔( ≔ −∇𝑓 𝑥( + 𝑤( = − 𝑟 − 𝑟∗ + 𝑤(

Terminology: Filtration ℱ( 
(probability theory) can be 

thought of as history up to time 𝑡.
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(General) Lyapunov Function Analysis Setup
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Descent direction interpretation (take 𝐻 𝑥 ≔ 𝑥 − ∇𝑓(𝑥)):
𝑥?FG = (1 − 𝜂?)𝑥?+𝜂? 𝑥? − ∇𝑓 𝑥? + 𝑤?
	 = 𝑥? + 𝜂? 𝑥? − ∇𝑓 𝑥? − 𝑥? + 𝑤?
	 = 𝑥? + 𝜂? −∇𝑓 𝑥? + 𝑤?
	 = 	 𝑥? + 𝜂?𝑔?

Slight re-write:
𝑥?FG 𝑠 = 1 − 𝜂? 𝑥? 𝑠 + 𝜂? 𝐻 𝑥? 𝑠 + 𝑤? 𝑠 	 𝑡 = 0, 1, …
	 = 𝑥? 𝑠 + 𝜂? 𝐻 𝑥? 𝑠 − 𝑥?(𝑠) + 𝑤? 𝑠
	
	
	 𝑥?FG = 𝑥? + 𝜂? 𝐻 𝑥? − 𝑥? + 𝑤?
	
	 = 𝑥? + 𝜂?𝑔?

𝑔"(𝑠)

𝑔"

𝑔"
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Supermartingale Convergence Theorem
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Proposition (Supermartingale convergence theorem (Neveu, 1975, p33))
Let 𝑋#, 𝑌#,	and 𝑍#, 𝑡 = 0, 1, 2, …, be three sequences of random variables.  
Furthermore, let ℱ#, 𝑡 = 0, 1, 2, …, be sets of random variables such that ℱ# ⊂
ℱ#'(, ∀𝑡.  Suppose that:
a) [Nonnegative] The random variables 𝑋#, 𝑌#,	and 𝑍# are nonnegative, and 

are functions of the random variables in ℱ#.
b) [Non-increasing-ish] For each 𝑡, we have 𝔼 𝑌#'( ℱ# ≤ 𝑌# − 𝑋# + 𝑍#.
c) [Diminishing increase] There holds ∑#R"S 𝑍# < ∞.
Then, 
1. 𝑌# converges to a limit with probability 1,
2. ∑#R(S 𝑋# < ∞ with probability 1.

Generalization to a probabilistic context of the fact that a bounded monotonic sequence converges.

Correspondence to noise upper bound 
(intuition)

𝑌2 ← 𝑊2
7; ℱ2 ← 𝜏2

𝑋2 ← 𝜂2𝑊2
7; 	𝑍2 ← 𝜂27𝕍(𝑤2)
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Proof: quadratic Lyapunov function
Key idea: show that 𝑓 𝑥&  is a supermartingale, so 𝑓 𝑥&  converges. Then show converges to zero w.p. 1.

§ 𝐸 𝑓 𝑥&'( ℱ& = 𝐸 (
@
𝑥&'( − 𝑟∗ @

@ ℱ&
= 𝐸 1

2 𝑥& + 𝜂&𝑔& − 𝑟∗ B 𝑥& + 𝜂&𝑔& − 𝑟∗ ℱ& 	 𝑔& ≜ 𝑔 𝑥& , 𝑤&

=
1
2
𝑥& − 𝑟∗ B 𝑥& − 𝑟∗ + 𝜂& 𝑥& − 𝑟∗ B𝐸 𝑔& ℱ& +

𝜂&@

2
𝐸 𝑔&B𝑔& ℱ&

= 𝑓 𝑥& + 𝜂& 𝑥& − 𝑟∗ B𝐸 𝑔& ℱ& +
𝜂&@

2
𝐸 𝑔& @

@ ℱ&

§ Since 𝑓 𝑥& = (
@
𝑥& − 𝑟∗ @

@, ∇𝑓 𝑥& = 𝑥& − 𝑟∗.  Then: 

§ 𝐸 𝑓 𝑥&'( ℱ& = 𝑓 𝑥& + 𝜂&∇𝑓 𝑥& B𝐸 𝑔& ℱ& + C23

@
𝐸 𝑔& @

@ ℱ&

≤ 𝑓 𝑥& − 𝜂&𝑐𝑓 𝑥& +
𝜂&@

2
𝐾( + 𝐾@𝑓 𝑥&

≤ 𝑓 𝑥& − 𝜂&𝑐 −
𝜂&@𝐾@
2

𝑓 𝑥& +
𝜂&@

2
𝐾(

	 𝑌! 𝑋! 𝑍!

(P4.1	conditions	1	&	2)

(SCT	condition	b)
Correspondence to noise upper bound 

(intuition)
𝑌" ← 𝑊"

4; ℱ" ← 𝜏"
𝑋" ← 𝜂"𝑊"

4; 	𝑍" ← 𝜂"4𝕍(𝑤")
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Proof: quadratic Lyapunov function
𝐸 𝑓 𝑥"&' ℱ" ≤ 𝑓 𝑥" − 𝜂"𝑐 −

𝜂"4𝐾4
2 𝑓 𝑥" +

𝜂"4

2 𝐾'

§ Since	𝜂" > 0	and		∑"567 𝜂"4 < ∞, then 𝑋" ≥ 0	for large enough 𝑡 (SCT condition a)

§ Moreover:	∑"567 𝑍" =
82
4
∑"567 𝜂"4 < ∞	(SCT condition c)

§ Therefore, by Supermartingale convergence theorem:

𝑓 𝑥" 	converges	w.p.	1, 	and	 z
"56

7

𝜂"𝑐 −
𝜂"4𝐾4
2 𝑓 𝑥" < ∞,	w.p.	1

§ Suppose that 𝑓 𝑥" → 𝜖 > 0.  Then, by hypothesis that ∑"567 𝜂" = ∞ and ∑"567 𝜂"4 < ∞, we must have:

z
"56

7

𝜂"𝑐 −
𝜂"4𝐾4
2 𝑓 𝑥" = ∞

§ Which is a contradiction.  Therefore:

lim
"→7

𝑓 𝑥" = lim
"→7

1
2
𝑥" − 𝑟∗ 4

4 = 0	 w.p.	1	 ⟹	 𝑥" → 𝑟∗	 w.p.	1
∎

𝑌! 𝑋! 𝑍!
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Lyapunov Function Analysis (NDP Prop 4.1)
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Proposition
Let 𝑥"  be the sequence generated by the iteration

𝑥"&' 𝑠 = 𝑥" + 𝜂"𝑔" 	 𝑡 = 0, 1, …	

If the stepsizes 𝜂" ≥ 0 and are such that ∑";6 𝜂" = ∞;∑";6 𝜂"4 < ∞, and there exists a function 𝑓:ℝ< → ℝ< , 
with:
a) [Non-negativity] 𝑓 𝑥 ≥ 0, ∀𝑥 ∈ ℝ.

b) [Lipschitz continuity of ∇𝑓] The function 𝑓 is continuously differentiable and there exists some constant 𝐿 
such that

∇𝑓 𝑥 − ∇𝑓 𝑥( ≤ 𝐿 𝑥 − 𝑥( , 	 ∀𝑥, 𝑥( ∈ ℝ<

c) [Pseudogradient property] There exists a positive constant 𝑐 such that
𝑐 ∇𝑓 𝑥" 4 ≤ −∇𝑓 𝑥" =𝔼 𝑔" ℱ" , 	 ∀𝑡

d) [Bounded variance] There exists positive constants 𝐾' , 𝐾4 s.t. 
𝐸 𝑔" 4 ℱ" ≤ 𝐾' + 𝐾4 ∇𝑓 𝑥" 4 , 	 ∀𝑡

Then, with probability 1, we have
1. The sequence 𝑓 𝑥"  converges.
2. We have lim

"→7
∇𝑓 𝑥" = 0.

3. Every limit point of 𝑥"  is a stationary point of 𝑓.

Note: This holds for contractions 
w.r.t. the Euclidean norm.

We proved the convergence for the special case where 𝑓 𝑟 = 5
7
𝑟 − 𝑟∗ 7

7 for some 𝑟∗ (sufficient for Q-learning).

Lyapunov function


