Fall 2024

Value-based reinforcement learning

Policy learning without knowing how the world works

Cathy Wu

6.7920 Reinforcement Learning: Foundations and Methods

Readings

1. Neuro-dynamic Programming (NDP). §5.6, §4.1-4.3, §6.1-6.2.
Skim Ch 3-5 as needed.

2. DPOC2 §6.3

Outline

1. Policy learning

2. Convergence analysis — stochastic approximation of a fixed

point

Lay of the lanc

6.7920: Reinforcement learning:
foundations and methods

Today { Model-Free RL

Methods for sequential

decision making

Sampling-based

(large state space)

Dynamic
programming
(small state space)

Policy
improvement

Policy
evaluation

Dynamic programming
algorithm
(finite horizon)

Generalized policy
iteration
(infinite horizon)

Special

structures

Multi-armed
bandits

Reinforcement

learning

(horizon = 1)!

Value

Policy

iteration

iteration

(horizon = 1),
4

/ 1

)

/

\

/
1

gV 2
7

/
ylodeI-Based RL

De-facto definition:

Learn the policy

Learn the /

Reinforcement learning =
sampling-based policy improvement for

I

Learn the Model

sequential decision making (horizon > 1)

Given the Model

¢ T Y value function/
1 ’
Policy Optimization \ Q-Learning +
7
Cd
D I
Policy Gradient <«— (DQN
> DDPG F;
A2C/A3C [« C51
TD3
PPO < QR-DQN
J [e & d

TRPO

HER

World Models

AlphaZero

I2A
Adapted from: OpenAl Spinning Up
MBMF

MBVE

Outline

1. Policy learning

a. State-action value function

b. Q-iteration

c. Q-learning

d. On-policy vs off-policy learning

2. Convergence analysis — stochastic approximation of a fixed

point

Policy Learning

Learn optimal policy "

Fori =1,...,n [each of n episodes]
Sett =0
Set initial state s
While (s;; not terminal) [execute one trajectory]

Observe next state s, ; and reward 1y ; = 7(s;;, az ;)
Sett =t+1

EndWhile
Endfor
Return:

State-Action Value Function (“Q”)

In discounted infinite horizon problems, for any policy m, the state-action value

function (or Q-function) Q™ : SXA » R is
Q"(s,a) = [ZV r(se, aglso = s, a9 = a,a; =7(se), Ve = 1
The optimal Q-function is

Q*(s,a) = max Q™ (s, a)
and the optimal policy can be obtained as

n*(s) = arg max Q*(s,a)

= Recall: definition of value function, V™ (s) = IE[Z —oY r(st,n(st))|so =s; n]

Wu

State-Action Value Function Operators™

TT[Q(S,) = 7"(5,) + yIE5'~P(-|S,)[Q(S’,ﬂ'(S))]
Compare: TV (s) := r(s,) +VEg p(ys,)[V (s"]

TQ(s,) = (5,0) + VEq1_ pe. [max O(5',)
Compare: TV (s) = r(s,a) + vEg_p(ys,)V(S’)

Still true:
QT = TTQ"

Note: Abuse of notation for the operators

State-Action and State Value Function
QT[(SJ Cl) — T(S, Cl) + yIEs'~P(-|s,a) [Vn(sl)]
V™ (s) = Q"(s,m(s))

0*(5,@) = 7(5,) + YEgr_ p(15[V ("]
Vi(s) = Q"(s,m°(s") = max Q" (s, a)

Q-value lteration
Let Q,(s,a) be any Q-function Q,: Sx4 - R

At each iteration k =1,2,....,K
Compute Q.1 = 70k

Terminate when (@, stops improving
e.g. when max |0k +1(s) — Qx(s)] is small.

Return the greedy policy
m(s) € argmax Oy (s, a)

Compare: Value iteration algorithm
Let V/,(s) be any function V,: S - R.

At each iteration k =1,2,....,K
Compute V., =TV,

Terminate when 1, stops improving
e.g. when max |Vies1(s) — Vi (s)] is small.

Return the greedy policy

The Grid-World Problem

State: agent location

15

Example: Winter parking (with ice and potholes)

Simple grid world with a ¢oal state (green, desired parking spot) with
reward (+1), a “bad state” (red, pothole) with reward (-100), and all
other states neural (+0).

Ommnidirectional vehicle (ngent) can head in any direction. Actions
move in the desired direction with probably 0.8, in one of the
perpendicular directions with.

Taking an action that would bump into a wall leaves agent where it is.

0 0 0 1 .
Action = north

f

0 0 0 0 P =0.1 < —> P =0.1

[Source: adapted from Kolter, 2016]

16

Example: value iteration

Running value iteration with v = 0.9

0 0 0 0

Original reward function

(@)

Running value iteration with v = 0.9

2.686 (3.527 [4.402 (5.812

2.021 1.095 |-98.82

1.390|0.903]0.7380.123

17 at 10 iterations

(d)

Running value iteration with v = 0.9

0 0 0.72

1.81

-elelieli

0 0 0

17 at one iteration

(b)

Running value iteration with v = 0.9

5.470(6.313|7.190

8.669

4.802 3.347

-96.67

4.161|3.654 | 3.222

1.526

17 at 1000 iterations

(e)

Running value iteration with v = 0.9

0.809 (1.5698 |2.475|83.745

0.268 . 0.302 [-99.59

0]0.034(0.122 (0.004

V at five iterations

(©)

Running value iteration with v = 0.9

—»—»—)T

N pape

Pl=]<1
Resulting policy after 1000 iterations

(f)

17

State-Action Value Function (“Q table”)

Example: Winter parking (with ice and

potholes)
0 0 0 1 .
Action = north
P=08
0 o |-100 T
0 0 0 0 P =0.1 < —> P =0.1

Q(s,a)

Running value iteration with v = 0.9

It is convenient to keep

track of not only the long 5.470

6.313

7.190

8.669

term value of a state, but V(S) 4,802

-

-96.67

also the state, jointly with

. 4161
the next action.

3.654

3.222

1.526

¥ at 1000 iterations

2.5 1.4 3.2 54
1.0 3.2 51 6.3
5.2 4.2 55 7.2
8.7 3.4 2.0 8.0
4.8 2.5 3.5 4.2
1.0 3.0 3.3 1.2
-180 | -172 | -99.7 | -150
4.2 2.1 3.2 3.7
2.1 2.0 3.7 3.1
3.0 1.2 3.2 2.7
0.1 1.5 0.1 1.0

4 L «— —>

Convenient for selecting next action!
= Winter parking (with ice and potholes)

0 0 0 1

0 0 -100

0 0 0 0
Before

Action = north
P =

f

Q(s,a)

0.8

P =0.1 <

— P =0.1

Running value iteration with v = 0.9

5.47016.313 [7.190

8.669

4.802 3.347

-96.67

4.161|3.654 | 3.222

1.526

V at 1000 iterations

Running value iteration with v = 0.9

—>—>—>T
— 4 — =
t<]<]

Resulting policy after 1000 iterations

g (s) = arg rglea}qxr(s, a) + YEs - pisa) Vi (87)

2.5 1.4 3.2 5.4
1.0 3.2 51 6.3
5.2 4.2 55 7.2
8.7 3.4 2.0 8.0
4.8 2.5 3.5 4.2
1.0 3.0 3.3 1.2
-180 | -172 | -99.7 | -150
4.2 2.1 3.2 3.7
2.1 2.0 3.7 3.1
3.0 1.2 3.2 2.7
0.1 1.5 0.1 1.0

19

Policy Iteration (w/ Q-value function)

Let Ty be stationary policy

At each iterationk =1, 2, ..., K
. given 1, compute Q™
: compute the greedy policy
i1 (s) € arg max Qi (s,a)

Stop if Q™k = Q™k-1
Return the last policy my

Compare: Policy Iteration

1. Let Ty be any stationary policy

2. At each iterationk =1,2,....,K
= Policy evaluation: given 1, compute V"k

= Policy improvement: compute the greedy policy

T, 4+1(S) € arg max r(s,a) +)/Z p(s'ls, a)V”k(S’)]
ae
Sl

1. Stop if V™k = [/ Ttk-1

2. Return the last policy my

21

Q-Learning (Watkins, 1992)

Model-free algorithm for learning the optimal policy

Stochastic approximation lens
Model-free Q-function improvement via incremental updates
Compute TD error for the Bellman operator (compare: Bellman operator)

Use to collect data, to ensure that all state-actions are visited
enough (for convergence)

With probability 1 — €, choose the best predicted action argmax Q(s;41,a’)
al

With probability €, choose an action uniformly at random.

Intuition

Use for data collection (exploration)
But use policy for learning (exploitation)

Recall: Temporal Difference TD(0)

Fori=1,..,n [each of n episodes]
Sett =0
Set initial state s,
While (s; not terminal) [execute one trajectory]
Take action a,; = (s, ;)

Observe next state s;4,; and reward 7, ; = (s, ;, a; ;)
Sett=t+1

Update V™ (s; ;) using TD(0) estimation
EndWhile

Update /" (s,) using incremental Monte-Carlo estimation
Endfor

23

Learning the Optimal Policy

Fori=1,..,n
Set t = 0; Set initial state s,
While (s; not terminal)

Take action a; according to a suitable exploration policy

argmax Q(s;,1,a') w.p.1—¢

my(als) = a (e-greedy policy)
Unif (A) wW.p. €
exp(a(i’a))
my(als) = TG (soft-max policy)
Zal exp(.,_.)

Observe next state s, 1 and reward 1, take action a;
according to a swtabtle exploration policy (if needed)

Compute the temporal difference 6;
6y =1 + V@(5t+1») — Q(St; a) (SARSA)
=1ty Q(se+1,0") — Q(spa) (Q-learning)

Update the Q-function ~
Q(s¢, at) = Q(St; at) + 77(5t; at)5t
Sett=t+1

EndWhile
Endfor

Terminology: on-policy vs off-policy learning

Two uses of policies

Behavior policy: Policy used for
(collecting data)

Target policy: Policy used for
Q-learning

Interacting policy: e-greedy

Learning policy:

Different = off-policy
SARSA

Interacting policy: e-greedy
Learning policy: e-greedy
Same - on-policy

Off-policy = “learning from others”

On-policy = “learning from oneself”

25

Q-learning

Key idea: incrementally obtain new data and update Q function
using the optimal Bellman equation (greedy)

Q-value iteration Q-learning

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Understanding this Proposition is the

Q_ I_e a rﬂ | ﬂ g . P rO p e rt I es main subject of today + next time.

If the learning rate satisfies the Robbins-Monro conditions in all states

s,a € SXA . .
znt(s,a) = 00 zn?(s,a) < o
i=0 1=0

And all state-action pairs are tried infinitely often, then for all s,a €
SXA

0(s, @) — Q*(s, a)

Remark: “infinitely often” requires a steady exploration policy.

Outline

1. Policy learning

2. Convergence analysis — stochastic approximation of a fixed

point

d.

b
C.
d.
e

Fixed points

Stochastic approximation

Examples: TD(0) & Q-learning

Max norm convergence result & analysis
Handling non-i.i.d. noise

27

Fixed Point

We are interested in solving a system of (possibly nonlinear) equations
H(x) =x

where H is a mapping from R" — R" (into itself).

A solution x* € R™ which satisfies H(x*) = x* is called a of
H.

Example: Simple fixed point equations

= Mean. Consider H(x) := u, where u can be treated as simply some
constant.

= Stochastic gradient descent. Consider H(x) := x — Vf(x) for some
cost function f.

29

Possible algorithms
H(x) is known precisely
x <« H(x)
x < (1 —n)x+nH(x) (small steps version)

H(x) is not precisely known =
x <1 =n)x+nHX)+w)
E.g., stochastic gradient descent

Example: Fixed points in dynamic programming

= H is some operator that returns an object in the same space!
* Example (Linear, Bellman operator): H(V) := T™(V)
* Example (Nonlinear, Optimal Bellman operator): H(V) = T (V)
* Both take in value functions and return value functions.

= A solution x* € R™ which satisfies H(x*) = x* is called a fixed point
of H.
* Example (Linear, Bellman operator): V* = Ty ™"
* Example (Nonlinear, Optimal Bellman operator): V* = TV*

31

Stochastic Approximation

Stochastic approximation of a
Desired: u;, —» u = E[X]
Data we get is noisy, u + wy
Applications: TD(1)
Stochastic approximation of a
Desired: x; — x*, where x* is a solution to H(x) = x
Data we get is noisy, H(x;) + w,
Applications: TD(0), TD(A), Q-learning

Stochastic Approximation

Hope (and actuality):

Heer = (1 —ndpe + 1+ we)
Xep1 = (L =ng)xe + 0 (H(x) + we)
converge to the desired quantity, under appropriate conditions.

Generalization to component-wise updates:
Xe41(8) = (1 =n)x () + e (HOx)(s) + we(s)) Vs€S

Stochastic Approximation of a Fixed Point

Summary of results: two kinds of norms, two kinds of analysis
H is contraction w.r.t. max norm (||| «)

H is a contraction w.r.t. Euclidean norm (||]|,)

Under these contractive norms, with some additional assumptions, x; — x* a.s.

34

Max Norm Convergence Result (Prop 4.4, NDP)

Let x; be the sequence generated by the iteration
Xe1(8) = (1 = n)xe(8) + 0 (H(x)(5) + we(s)) t=0,1,...

If:
The step sizes 7, = 0 and are such that
— . 2
Q=i Qi<
t=0 t=0
For every s, t we have zero-mean noise E[w,(s)|F;] = 0.
Given any norm ||:|| on R", there exist constants A and B such that the
variance of the noise is bounded as
2 2
IIE[Wt (S)l Tt] <A+B ”xt” D vs,t Terminology: Filtration F,
The mapping H is a max norm contraction. (probability theory) can be
thought of as history up to time t.
Then, x; converges to x™ with probability 1. Fe = o, Xt S0, s Se-1. M0, - 11e}

Terminology: Referred to

Example for max norm: TD(0) e sttt 1000 1 585

= TD(0) update (for tth trajectory t,):
Vie1(s) = Vi (s) + n:6:(s), VsES

With temporal difference §;(s)
6:(s) =r(s,s") +yV.(s') —V.(s) whens € 1, otherwise 0

= Exercise: Apply Prop 4.4 to show that TD(0) converges to V"™

38

Similarly for Q-Learning (see HW)

Recall:

Compute the (optimal) temporal difference on the trajectory (s¢, as, 1, Sg4+1)
Op =1tV max Q(st41,a’) — Q(sp ar)

Then, update the estimate of Q as
Q(x¢, ar) = + 1(s¢, ar) 6

If the learning rate satisfies the Robbins-Monro conditions in all states s,a €

SxA _ _
ZUt(s,a) = o0 Enﬁ(s,a) < o
i=0 =0

And all state-action pairs are tried infinitely often, then for all s,a € SXA

0(s, @) — 0*(s, a)

Summary of Q-learning analysis

Max Norm

Convergence

(HW)

Q-learning

41

Peeling back the onion for Q-learning

42

Max Norm Convergence Result (Prop 4.4, NDP)

Let x; be the sequence generated by the iteration
Xe1(8) = (1 = n)xe(8) + 0 (H(x)(5) + we(s)) t=0,1,...

If:
The step sizes 7, = 0 and are such that
— . 2
Q=i Qi<
t=0 t=0
For every s, t we have zero-mean noise E[w,(s)|F;] = 0.
Given any norm ||:|| on R", there exist constants A and B such that the
variance of the noise is bounded as
2 2
IIE[Wt (S)l Tt] <A+B ”xt” D vs,t Terminology: Filtration F,
The mapping H is a max norm contraction. (probability theory) can be
thought of as history up to time t.
Then, x; converges to x™ with probability 1. Fe = o, Xt S0, s Se-1. M0, - 11e}

Sketch: Max Norm Contraction Analysis (Prop 4.4)

Overall proof strategy: show that For Q-learning, let x, = 0,

A I
S,a
Note: w.l.0.g. assume that x* = 0 Qc(s’, @) ~
Can translate the origin of the coordinate system. V| |Qt | |

Assume that x; is bounded. .

This can be shown precisely (see NDP Prop 4.7). | |Qt||

The upper bound can be decomposed into a .
0(= Q* A

.and a (=07 0,(s,)

component (induction argument).

The deterministic component
(induction argument,

Bellman operators).

The noise component
(Supermartingale Convergence Theorem).

Therefore, the overall x; contracts.

Remark

Deterministic-only upper bound
Corresponds to convergence analysis for

Q-learning as extension of value iteration.

Sketch: Handling the noise component in Prop 4.4

Wip1(s) = (1 =)W (s) + newe(s) (D
Interpretation: {W,(s)} as
(Lyapunov) function

(take H(x) = x — Vf(x)): \/
Xep1 = (1= n)xe+n: (e — VF(xe) + wy)

xe +0e(xe = V() — x¢ + wy)
xXe + e (=Vf(xe) + wy)

Corresponds to taking Lyapunov function f(x) = %xz

along a

Take x; := W,(s) to recover stochastic approximation update for W;, ;(s)
Thatis, —Vf(x;) = x; = W;(s) recovers (1)

To show that W, (s) — 0, sufficient to show that f(x;) — 0.

Sketch: Handling the noise component in Prop 4.4

= Key fact: f (x;) turns out to be martingale noise.
* Martingale noise corresponds to a stochastic Lyapunov function.

= Consequently, martingale noise averages out over time to zero.

= Uses Supermartingale Convergence Theorem

* Generalization to a probabilistic context of the fact that a bounded
monotonic sequence converges.

47

Summary of Q-learning analysis

Handles stochastic

Q-learning

correlated noise

Lya punov case) Lyapunov
Functhn = Function
Analysis Analysis

A\ 7

Supermartingale
Convergence
Theorem

(special Quadratic \

— Max Norm
Convergence

ﬂ Handles deterministic

progress

Bellman

Operator Theory

|

48

49

Developments on Q-learning

finite-time &
| finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Graphic courtesy Wei, Chen, Chi (2023) Wu

50

Developments on Q-learning (an incomplete list!)

Asynchronous Q-learning

| ® Watkins, Dayan '92
‘O’Q\(’ ® Tsitsiklis '94
P\(_“*@Q\\\«;\S ® Jaakkola, Jordan, Singh '94
'b(\,b ® Szepesvari’'98
. ® Borkar, Meyn'00
" ® Even-Dar, Mansour'03
® Beck, Srikant’'12
® Chi, Zhu, Bubeck, Jordan’18
® |ece He'l8
e'a(‘b ® Chen, Zhang, Doan, Maguluri, Clarke '19
. e,’&(\ (QQ\Q' ® Du, Lee, Mahajan, Wang '20
((\(\\\\\e,cp\\%\s ® Chen, Maguluri, Shakkottai, Shanmugam '20
N\ 2 ® Qu, Wierman '20
® Devraj, Meyn '20
® Weng, Gupta, He, Ying, Srikant '20
® Li, Wei, Chi, Gu, Chen'20
® Li, Cai, Chen, Wei, Chi’'21
® Chen, Maguluri, Shakkottai, Shanmugam '21
o

Question: how many samples are needed to ensure [|[Q — Q* [0 < €7

other papers

sample complexity

Even-Dar, Mansour'03

1
(tcover) 0

Even-Dar, Mansour'03

Beck & Srikant'12

(1—y)ie?
$14+3w 1 ¢ 1 1
Lcover)\ 1— =
()™ + (1) 77w e (3)
t3 er|SIIAl
(1-7)5e?

Qu & Wierman'20

tmix
——
“min(1_7)562

Li, Wei, Chi, Gu, Chen'20

1 + Emix
pmin(1=7)%€2 1 pmin (1—=7)

Chen, Maguluri, Shakkottai, Shanmugam '21

1
m —+ other-term (tmix)

min

References courtesy Wei, Chen, Chi (2023)

. i
— cover time: teoyer X i
Hmin

51

Summary

State-action value function (Q) vs state value function (V)
* State-action value function permits model-free extraction of the policy

Policy learning: SARSA and Q-learning (definition, guarantees)

Stochastic approximation of fixed points (results, contractive
norms, analyses)
* Supermartingale convergence theorem: Helps handle non-i.i.d. noise

TD and Q-learning as stochastic approximation methods

52

References

1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lectures 2-3.

2. Neuro-dynamic Programming (NDP). Ch 3-5 (esp. §5.6, §4.1-
4.3, §6.1-6.2).

3. DPOC2§6.3

4. Daniela Pucci De Farias. MIT 2.997 Decision-Making in Large-
Scale Systems. Spring 2004, Lecture 8.

Reference: Detailed proof of Prop 4.4

Proof: Max Norm Contraction Analysis (Prop 4.4)

: Since For Q-learning, let x, := 0
X; is bounded, there exists some D, s.t.
|x: |l < Dy, Vt. We define: Q,(s’,a")
= YU, k=0 V||Qt||

Clearly, D, converges to zero. ~

For TD(0), can think of D, as upper bound on ||Qt||

HV)(s) = E[r(s,s") + yV:(s")]. (T
Proof idea (by induction): suppose there Qc(s, a)

exists some ¢, s.t.
It lleo < Dy, VE = &
Then, there exists some later time t;,; s.t.
1xelloo < VE =ty

Proof: Max Norm Contraction Analysis (Prop 4.4)

= For the stochastic part of the upper bound,
define (need to confirm):
Wo(s) = 0;
Wip1(s) = (1 =)W (s) + newe(s)

= Since x; is bounded, so is the conditional
variance of w,(s). Then, as a result of the

For Q-learning, let x; == Q,

Qt(sli Cl’)

/.~

V||Qt||

1|01

Supermartingale Convergence Theorem,
and Lyapunov Function Analysis (NDP Prop
4.1) (discussed later),

L}im W.(s) =0
a.s.

= That is, the noise averages out to zero.

0(=Q7)

Qt (Sr Cl)

55

Recall: x;11(s) = (1 —np)x(s) + nt(H(xt)(s) + wt(s)) t=0,1,..
Proof: Max Norm Contraction Analysis (Prop 4.4)

Define combined upper bound (need to confirm) (for all t = t):
Y, (s) = D + Wy, (s); ¥ Dk

Confirm combined upper bound via induction:
Suppose |x;(s)| < Y;:(s), Vs, forsome t > t;,. We then have:

Xer1(8) = (1 —np)x(s) + Ut(H(xt)(S) + Wt(S))
<A —n)Y:(s) + Ut(H(xt)(S) + Wt(S))
<A —n)Y:(s) + Ut()’Dk + Wt(S))

=Yi41(5)
Where the last inequality is due to |H(x,.)(s)| < yllx;|| < ¥D,.
Since).°n; = oo and , Y; convergestoyDj, ast — o a.s.

This yields:
limsupllx;|| < yDy =: Dy41

t—oo

Therefore, there exists some time ty 41 S.t. ||x¢]|| < Dyyq, VE = tgi1.

Reference: Detailed theorems and proofs for the noise (Prop 4.4)

Wu

Quadratic Lyapunov function (special case of NDP Prop 4.1)

Let x; be the sequence generated by the iteration
Xer1(8) = x¢ + 1 t=0,1,..

Interpretation as noisy descent direction:
ge = —=Vf(xe) + we = —|lr = 77| + wy

Suppose f(r) = % lr — r*||5 satisfies:
Jc such that cf (x;) < —Vf(x)TE[g¢|F¢]
3Ky, K; such that E[|lg¢[I5|F¢] < K + Ko f (x,)

Then |f nt > O Wlth Z?):O nt = and Z?):O 77% < @ Terminology: Filtration F,

*
Xt =T, W.Dp. 1 (probability theory) can be
thought of as history up to time t.

Consequence of conditions (1) and (2) is that f (x;) is a /

Note: Prop 4.1 will generalize f(r) to general Vi
Lyapunov functions (conditions (a) and (b) in Prop 4.1).

(General) Lyapunov Function Analysis Setup

(take H(x) = x — Vf(x)):
X1 = (L= n)xe+n.(x — V() + wy)
= x¢ + N (e — VF(xe) — ¢ +wy)
= x¢ + N (=Vf(xp) + wy)
= Xt)

Slight re-write:
Xer1(8) = (1 —n)x(s) + Ut(H(xt)(S) + Wt(S)) t=20,1,..
= x:(5) + e (H(xe)(5) = 2 (5) + we(s))

Xe41 = Xp T nt(\H(xt) — X t Wt)

=Xt T+ 1¢

Supermartingale Convergence Theorem/ﬂ

Generalization to a of the fact that

Proposition (Supermartingale convergence theorem (Neveu, 1975, p33))

Let X;,Y,and 7, t = 0,1, 2, ..., be three sequences of random variables.
Furthermore, let F;,t = 0, 1, 2, ..., be sets of random variables such that ¥, C
Fiiq1, Vt. Suppose that:

The random variables X, Y;, and /, are nonnegative, and
are functions of the random variables in F;.

For each t, we have E[V,,1|F] <V, — X, +

There holds
Then,
Y; converges to a limit with probability 1,
with probability 1.

2.
Vi « W& Fp < 14

61

Proof: quadratic Lyapunov function
Key idea: show that f(x;) is a supermartingale, so f (x;) converges. Then show converges to zero w.p. 1.
* ElfCesDIF]=E [1 g1 — 7”*||2|T't]

=E [2 (xe +1ege —)T O +1ege — 1)|~7:t] (gt g(xe, Wt))

1
= _(xt —r)T (e =) +ne(xe — 1)TE[gtlf't] +nt Elgf g¢|F:]

77
= [() +1eCe — 7)TE[ge|Fe] + tE PAHEA

= Since f(x;) = z IIxt — 115, Vf(xy) = x — 1. Then.
= E[f(er)IFel =) +meV/) ElgeFel + -5 i3 E[”gtllzlj:t
< flxe) — necf () i (K1 + Kzf(xt)) (P4.1 conditions 1 & 2)

< flx) — (Utc - 1eKs fx t) . K1 (SCT condition b)

Correspondence to noise upper bound \ N
(intuition)

Yt<_Wt Fr <1 Yt Xt Zt

Xy < nWE; Ze < ngV(wy)

Y

Proof: quadratic Lyapunov function

ZK 2
E[f (er DIF] < fxe) — (Utc - 77t2 2>f(xt) +U_£K1
—— U v J
Ye Xt Zy

= Sincen, > 0and Y2 ,n? < o, then X, = 0 for large enough t (SCT condition a)
= Moreover: Y027, = %Z,‘?":Onf < oo (SCT condition c)

= Therefore, by Supermartingale convergence theorem:

f(x;) converges w.p. 1, and z <mc — mz 2> f(x;) < oo,wp. 1

t=0
= Suppose that f(x;) = € > 0. Then, by hypothesis that {2 ,n, = o and Y72, n? < o, we must have:

z C_’??Kz
Ul >

t=0
= Which is a contradiction. Therefore:

>f(xt) =

1
tlimf(xt) = L}im > lx, —r*|I5=0 wp.1 = x,->r* wp.1

Lyapunov Function Analysis (NDP Prop 4.1)

Let x; be the sequence generated by the iteration
Xep1(S) =x. +1:g: t=0,1,..
If the stepsizes 17, = 0 and are such that Y;»077¢ = ; Y4502 < o, and there exists a function f: R" —» R",
with:
f(x) =0,vx € R.
The function f is continuously differentiable and there exists some constant L
such that
IVF () = VFEDI < Lllx —=x"ll, vx,x" €R"

There exists a positive constant ¢ such that
cllVF(xp)ll? < =Vf (x)"Elg|F,], vt
There exists positive constants K, K, s.t. -
Elllgcl?1F] < Ky + K lIVF(e)ll?, vt
Then, with probability 1, we have

The sequence f(x;) converges. o .
We have tlim Vf(x,) = 0. Note: This holds for contractions

imit poi i : - w.r.t. the Euclidean norm.
Every limit point of x, is a stationary point of f. t. the Euclidean no

We proved the convergence for the special case where f(r) = %llr — r*||3 for some r* (sufficient for Qslearning).

