2022-09-08

Dynamic programming

What makes sequential decision making hard?

Cathy Wu

6.7950: Reinforcement Learning: Foundations and Methods

References

1. Some slides adapted from Alessandro Lazaric (FAIR/INRIA)

2. DPOCvol1,1.1-1.3,2.1

Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

4. Course overview

a. Administrivia

Self-taught Al software
attains human-level
performance invideo games

EPIDEMIOLOGY COSMOLOGY

SHARE DATA IN A GIANT IN THE
OUTBREAKS EARLY UNIVERSE

1ole

Video Pinball]
Boxing]
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber 7
Gopher 7]
Demon Attack |
Name This Game |
Krull 7|

Assault |

Road Runner |
Kangaroo 7
James Bond |
Tennis |

Pong]

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master 7
Freeway |

Time Pilot |
Enduro |
Fishing Derby]
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede 7
Bank Heist |
River Raid |
Zaxxon |
Amidar |

Alien |

Venture |
Seaquest |
Double Dunk |
Bowling 7]

Ms. Pac-Man :

Asteroids _||

Frostbite
Gravitar _|
Private Eye

Super-Human
Performance

At human-level or above

Below human-level

B 14%

J13%

Montezuma's Revenge |

Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning.

Nature 518, 529-533 (2015). https://doi.org/10.1038/nature14236

Best linear learner

T
600

)
T

T
200 300 400 500 1,000

=

Introduce the characters™

" |Interaction loop Ot Tt
Observation and reward S
t

State
Improve
Transition
Agent Environment f,P
n Action
at

Goal: maximize reward over time (returns, cumulative reward)
* pun intended Wu

What: Reinforcement Leaming 8

“Reinforcement learning is learning how to

Also known as approximate dynamic —~ ™Map statesto actions soasto maximize a
programming (ADP). We will use these numerical reward signal in an unknown and

terms more-or-less interchangeably. uncertain environment.

In the most interesting and challenging cases,
actions affect not only the immediate reward but
also the next situation and all subsequent

— environment ——
rewards (delayed reward).

action a¢ reward r¢ state st The agent is not told which actions to take but it
must discover which actions yield

the most reward by trying them (trial-and-
error).”

— RL agent -~

— Sutton and Barto (1998)

Wu

-- 2002, Martin Muller
(winner of 2009 Go program competition)

2016: | N
ARTICLE RN A

20101058/ naturel 5961 can beat a champion Go player PAGE 484

LSYSTEMS 90

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre!, George van den Driessche',

"

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman!, Dominik Grewe!, CONSERVATION RESEARCH ETHICS POPULAR SCIENCE O NATUREASIACOM
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuoglu!, SONGBIRDS SAFEGUARD WHEN GENES
Thore Graepel' & Demis Hassabis' ALA CARTE TRANSPARENCY = GOT ‘SELFISH’

legal has f millions Don’tlet ope s ba e Dawk calling

of Medit onindivia ’ card 40 yearson
PAGE 452 PAGE 459 PAGE462

AlphaGais the first computefpFfogram
¥ .
to defeat a professional human Go
player, the first to defeat a Go world
champion, and is arguably the strongest
Go player in history.

= AlphaGo: The Movie

-l

ORELRILE

Fan Hui, the refgning
three-time European
Champion

2015: 5-0 AlphaGo win

Lee Sedol, the winner of
18 world titles. Widely
considered the greatest
player of the past decade.
2016: 4-1 AlphaGo win

-

https://www.youtube.com/watch?v=WXuK6gekU1Y

Push notifications (2020)

@© MESSENGER

9m ago
© s Bt sent a photo to AppleToolBox.
. 3 more notifications

€3 rAcesook

Mon 22:11
There are commentson v .

% post you may have missed.
14 more notifications

Gauci, et al., “Horizon: Facebook's Open Source Applied Reinforcement Learning Platform - Facebook Research” (2020)

11

High-altitude balloons (2020)

--20km----_

16:00
11:00

6:00

21:00
__---15km

Station-keeping range

‘- .

Bellemare et al., “Autonomous navigation of stratospheric balloons using reinforcement learning” Nature, 2020.

12

Traffic flow smoothing (2021)

Sugiyama, et al. 2008

Wou, et al. “Flow: A Modular Learning Framework for Mixed Autonomy Traffic.” T-RO, 2021.

13

Q: What applications are you excited about?

Wu

Outline

1.

Reinforcement learning to solve sequential decision problems
Formulation of finite-horizon decision problems

Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

Course overview

a. Administrivia

22

Recall: the characters™

= Interaction loop

Improve

Markov Decision Process (MDP) M

ObserI/

e

Agent \

T

O, 1t

Action

at

\—/ Environment

ation and reward

State

Transition

f,P

Goal: maximize reward over time (returns, cumulative reward)

* pun intended

23

Assume for now: finite horizon problems, i.e. T < oo
Used when: there is an intrinsic deadline to meet.

Later: infinite horizon

24

The value function
Given a policy ©

: deadline at time T, the agent focuses
on the sum of the rewards up to T.

T-1

Ve(t,s) = E [2 r(s;,m (a;)) +R(sp)|sy =s;m

=t

where R is a value function for the final state.

Shorthand: V/*(s) or simply V[

Optimization Problem

Our goal: achieve the best value
Max value-to-go (min cost-to-go)

Definition (Optimal policy and optimal value function)

The solution to an MDP is an satisfying

" € argmax V'
& mell v
where II is some policy set of interest.

The corresponding value function is the
v =vT

Expectations

Technical note: the expectations refer to all possible stochastic trajectories.
A (possibly non-stationary stochastic) policy = applied from state s, returns

Where r, = r(s¢, a;) and s, ,~ p(: |s¢, a; = m.(s;)) are random realizations.

The value function is
T—-1
Vﬂ(t: S) — [E(sl,sz,...) [Z T'(ST,T[(ar)) + R(ST)lst =S, T[]
7=t
More generally, for stochastic policies:

T—1
VE(t,s) = Ecqysy,ar,50.) [Z r(se, ™ (a;)) +R(sr)|s; = s; T[]
=t

Example: The Amazing Goods Company Example

Stock at month ¢

D¢ Demand at month t

Amazing
\\—/7

St

i

Reward of month ¢

Inventory Stock at month t +1
*| System >

T Stock Ordered at month ¢

A

at

28

Example: The Amazing Goods Company Example

Description. At each month t, a warehouse contains s, items
of a specific goods and the demand for that goods is D

(stochastic). At the end of each month the manager of the A ma y4 | ng
warehouse can order a, more items from the supplier.

The cost of maintaining an inventory of s is h(s).

The cost to order a items is C(a).

The income for selling q items if f(q).

If the demand d~D is bigger than the available

inventory s, customers that cannot be served leave.

® The value of the remaining inventory at the end of the
year is g(s).

= Constraint: the store has a maximum capacity C.

29

Recall: Markov Chains

Definition (Markov chain)

Let the be a subset of the Eudlidean space, the discrete-time dynamic
system (s¢),, € S is a Markov chain if it satisfies the
P(st + 1 = s|st,5t —1,...,50) = P(st +1 = s|st),

Given an initial state s, € S, a Markov chain is defined by the

p p(s’|s) = P(st + 1 = S|st = s).

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,

Example: The Amazing Goods Company
= State space:se S ={0,1,...,C}.

31

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S is the state space,
= A isthe action space,

Example: The Amazing Goods Company
= Action space: it is not possible to order more items than the capacity of the
store, so the action space should depend on the current state. Formally, at
states, a € A(s) ={0,1, ...,C — s}.

32

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
= A isthe action space,

= P(s'|s,a) is the transition probability with transition equation
P(s'|s,a) = P(Sg41 = S'|s¢ = s,a; = a) s' = fi(s,w;)
where We~ Wt

> often simplified to finite

Example: The Amazing Goods Company
= Dynamics: sgpq = [s¢ + ap — d¢]*. -
= The demand d, is stochastic and time-independent. Formally, d, “*¢ D.

33

Markov Decision Process

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
= A isthe action space,
= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(sg1 =5S'|sy = 5,0, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

> often simplified to finite

Example: The Amazing Goods Company
= Reward: 1 = —=C(ay) — h(s; + a;) + f([s; + ar — s¢+1]T). This corresponds to
a purchasing cost, a cost for excess stock (storage, maintenance), and a
reward for fulfilling orders.

34

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

Example: The Amazing Goods Company
= The horizon of the problem is 12 (12 months in 1 year).

36

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

Example: The Amazing Goods Company
= Objective: V(sg; ag, ...) = XHdtre + ry, where ry, = g(s;,). This corresponds
to the cumulative reward, including the value of the remaining inventory at
“the end.”

37

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

< In general, a non-Markovian decision process’s transitions could depend on much
more information:
P(s;1q =S'|S; = Ss,a; = a,St—1, A1, -+, S, Ag),»

38

Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(sg41 =S'Ist =s,a, = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

@ The process generates trajectories t; = (sg, ag, -, St—1, At—1, St),
With s; 1 ~P (- |sg, ar)

39

40

Example: The Amazing Goods Company Example

D¢ Demand at month t

Amazing

Stock agtmonth t Tnventory Stock at month ¢ +1

System
i Where d; i'i;d D
Reward of month t T
Stock Ordered at month ¢
-C(a;) - h(s+ a) |«——— at
+f([s; +a;- D7)

Ser1 = [S¢ +ap — dt]+

= State space: seS={0,1,...,C}.

Action space: it is not possible to order more items than the capacity of the store, so the action
space should depend on the current state. Formally, at state s, a € A(s) ={0,1,...,C —s}.
Objective: V(sq; ag, ...) = Yiig 1y + ry, Where H = 12 and ry, = g(s12)

Outline

1.

Reinforcement learning to solve sequential decision problems
Formulation of finite-horizon decision problems

Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

Course overview
a. Administrivia

55

Example: Shortest Path Problem

Destination

Sequential decision problem

= Start state so: city 2

= Action ao: take link between city 2 and city 3
= State s;:city 3

= Action a1: take link between city 3 and city 5
= State sy:city 5

0.5

Destination is node 5.

Solving Shortest Path

Assumption: all cycles have non-negative length.

Destination

Naive approach: enumerate all possibilities.
From a starting city so, choose any remaining city
(N - 1 choices). Choose any next remaining city
(N - 2 choices). ...
Until there is only 1 option remaining.
Add up the edge costs.
Select the best sequence (lowest total cost).

ONY.

0.5

Destination is node 5.

Solving Shortest Path

Destination

Issue: repeated calculations of subsequences.

: divide-and-conquer, or

Overall problem would be much easier to solve if
a part of the problem were already solved.
Break a problem down into subproblems.

0.5

Destination is node 5.

Solving Shortest Path

State s .
Destination Destination

5r ®

0.5

Destination is node 5. x x x x

Solving Shortest Path

State s a

Destination

0.5

Destination is node 5.

- @
2
0 2 3 4Staget

Solving Shortest Path

State s ,

Destination

0.5

0303030

Destination is node 5.

Solving Shortest Path

State s a

Destination

0.5

Destination is node 5.

Solving Shortest Path

State s ,

Destination

0.5

03030303

Destination is node 5.

Solving Shortest Path

State s ,

Destination

0.5

Destination is node 5.

Solving Shortest Path

State s a

Destination

0.5

2?7/

7?

Destination is node 5.

3

4 Stage t

Solving Shortest Path

State s a

Destination

0.5

Destination is node 5.

shortest ’patﬁ
- @
0 1

Solving Shortest Path

State s a

Destination

0.5

2?7/

7?

Destination is node 5.

3

4 Stage t

Solving Shortest Path

Destination

0.5

Destination is node 5.

State s ,

Solving Shortest Path

State s ,

Destination

0.5

Destination is node 5.

Solving Shortest Path

State s a

Destination

0.5

Destination is node 5.

Solving Shortest Path

Destination

0.5

Destination is node 5.

State s

Solving Shortest Path

Destination

Destination is node 5.

State s ,

Outline

1.

Reinforcement learning to solve sequential decision problems
Formulation of finite-horizon decision problems

Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

Course overview
a. Administrivia

74

Principle of optimality (Bellman, 1957)

St Tail Subproblem

>
0 t T

The Agent-Environment Interaction Protocol

€t
l St4+1 — f(St, Qt, Gt)
4’{ Environment J Str1 ~ P(:]s¢,a)
action / state /
actuation perception
A St

)

Agent }%

Principle of optimality (Bellman, 1957)

St Tail Subproblem

>
0 t T

Principle (Optimality)

Let {ay, ..., ar_1} be an optimal action sequence, which together with s, and
{€0, ..., €71 } determines the corresponding state sequence {sj, ..., St} via the
state transition function. Consider the whereby we start at s; at
time t and wish to maximize the value function from time t to time T,

E
over {a;, ..., ar_1} with

HOD L B L G e el

Dynamic programming algorithm

VT(sT) = r7(ST)

78

Dynamic programming algorithm

VT(sT) = r7(sT)
fort=T- 1,...,0 do State s ,

A

rT(sT) =0

S @
4?

3%

0 1 2 3 4 Stage

Dynamic programming algorithm

VT(sT) = r7(ST)
fort=T-1,...,0do

Vi(se) = maxg, ca,(s,) Be, [re(st, ae) + Vig1(seq1)]

end for

State s 4

5

4

80

Dynamic programming algorithm

VT(sT) = r7(ST)
fort=T-1,...,0do

Vi(se) = maxg, ca,(s,) Be, [re(st, ae) + Vig1(seq1)]

end for

State s 4

5%

4?

Dynamic programming algorithm

VT(sT) = r7(ST)
fort=T- 1,. .., 0 do

Vi(se) = maxg, ca,(s,) Be, [re(st, ae) + Vig1(seq1)]

end for

State s ,

5

4

A

Dynamic programming algorithm

VT(sT) = r7(ST)
fort=T-1,...,0do

Vi(se) = maxg, ca,(s,) Be, [re(st, ae) + Vig1(seq1)]

end for

State s ,

5

4

A

T

83

VO(s0)
VO(s0)

o0
VO(s0) /
o 0

VO(s0)

0 1 2 3 4 Stge

Note (simplification): we drop,y.

Dynamic programming algorithm

Vr(st) = rr(sy)
fort=T-1,..,0do

Vi(sy) = max E [r(sq,ap) +Vip1(Se41)]

at€A¢(se)
end for
Theorem (Dynamic programming)
For every initial state s, ,
given above.

Furthermore, if a; = m/(s;) maximizes the right side of the above for
each s; and t, the policy t* = (mg, ..., Tp_41) is optimal.

Dynamic programming algorithm

Vr(st) = rr(sy)
fort=T-1,..,0do

at€A¢(St)
end for

Vi(sy) = max E [r(sq,ap) +Vip1(Se41)]

Proof: by induction

Equivalent to

Strength: Generality

Weakness: Computationally expensive

Much better than naive approach O(T!)
ALL the tail subproblems are solved (in
addition to the original problem)

Consider: Do other shortest path

algorithms have
?

Dijkstra’s, A*, Floyd—Warshall,

Johnson’s, Viterbi, etc.

Proof of the induction step

Assume w.l.o.g. that y = 1. Let f;: S XA — S denote the transition function.
Denote from time t onward as my.p_ 1 = {7, Tpsq, oo, Tp_1}

Assume that Vi1 (X¢41) = Viy1(xt41). Then: _

Vi(s) = max)E{rt(st,nt<st>)+rT(sT>+ > ri(xi,nmxi))}

(T, Tt 41:7-1 4
I=t+1 T—1

= max IE {Tt(st, me(se)) + max [E {TT(ST) * z ri(xi’ﬂi(Xi))}]}

Tt41:T-1 v

= max E {rt(st, ﬂt(st)) + Vt+1 (ft(St; ﬂt(St)))}
= max E {rt(st, ﬂt(st)) + Viiq (ft(St; ﬂt(St)))}

= atggqat)((st) E {Tt(St; at) + Vt+1(ft(str at))}

= Vi (st

Interpretation as optimal reward-to-go (cost-to-go) function.

Solving Shortest Path

Destination

Destination is node 5.

State s ,

Outline

1.

Reinforcement learning to solve sequential decision problems
Formulation of finite-horizon decision problems

Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

Course overview
a. Administrivia

88

89

Sequential decision making as shortest path

For Deterministic Finite-State Problems Terminal Arcs with
cost equal

to Terminal Reward

O\O\’% Artificial
O\ /

Stage 0 Stage 1 Stage 2 StageT-1 Stage T

Initial -
State

W
S
VL)

O >

Example Thermostats (linear-quadratic control)

\ 64F Applications:
WA 64F { 74F control systems,
=2 150 65F industrial manufacturing

Too cold! & Great temperature &

Seqguential decision making as shortest path

For Deterministic Finite-State Problems Terminal Arcs with
cost equal

to Terminal Reward

\&i}% oy
. o\o\ \o\ /

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T

Example: Breakout

Seqguential decision making as shortest path

For Deterministic Finite-State Problems Terminal Arcs with

cost equal
to Terminal Reward

O\; . O\:O\’% Artificial
Initial ,O\O\ \0\2%/:@?&2&
o— —d

State

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T

: If shortest path isn't hard, why are DP problems still challenging?

Seqguential decision making as shortest path

For Deterministic Finite-State Problems Terminal Arcs with
cost equal

to Terminal Reward

O\O\‘% Artificial
O\ /

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T

Initial -
State

VLY
N
VL)

O >

Example: Integer programming (combinatorial optimization)

Imax CT xr

subject to Ax = b
rec{0,1}*

Sequential decision making can get hairy

Example: traveling salesman problem (TSP)

Initial State S

20

3

93

4 3

18[ABc| 4 [aBD| 1()|ACB| 9|acp |

N cities.

3 3

Goal: Find the shortest tour (visitevery aty 15fgey 1o 15 IACBDI

21[ADB] 25[ADC]
4 20 20
|ACDB| 1 |ADBq |ADCB|

exactly once and return home)

In this case, cant get around exponential. (why?) _}/
IS|= O(N!), |JA|]= N, T = N, so

Terminal State ¢

O(|S||A|T) = O(N)).

(Actually, DP /sslightly better: |S| = O(2VN?).) Matrix of Intercity [5

Travel Costs

This is called the curse of dimensionality.

5|1

15

20
20

413

4
3

Sequential decision making can get hairy

Example: traveling salesman problem (TSP)

N cities.

Goal: Find the shortest tour (visit every city
exactly once and return home).

In this case, can't get around exponential. (why?)
IS| = O(N!),]A|]= N, T =N, so

O(|S||A|T) = O(N!).

(Actually, DP /sslightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.

94

Key challenge: huge decision spaces

Arcade Learning Environment
(ALE): framework that allows
researchers and hobbyists to
develop Al agents for Atari 2600
games

ALE parameters
60 frames per sec

Suppose a game is 2 minutes long
Horizon is 2 * 60 * 60 = 7200
steps long

Given 3 actions, the decision
space is 37200 ~ 103435

ar = left

For reference:
There are between 1078 to 1082
atoms in the observable universe.

BRUTE-FORCE
SOL.UT1ON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELWNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

Q4
N
SHUT THE |
HEW VR

Travelling Salesman Problem (https://xkcd.com/399/)

97

Outline

1.

Reinforcement learning to solve sequential decision problems
Formulation of finite-horizon decision problems

Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

Course overview
a. Administrivia

99

Forward dynamic programming algorithm?

State s 4
| o

optimal “reward-to-arrive”

Consider: 5¢ 0_v
shortest path routing .l

 Travel to intended city 3r
with probability 1 — €.
* Travel to any city with 2r
probability €.

Forward Dynamic Programming Algorithm?

Vo(s0) = 19(so)
fort=1,..,Tdo

Vi(se) = max)Eet_l[rt(st) + Vo1 (Se—1)|s¢]

at—1€A—1(St—1
st. s = fr—1(St-1,Ap—1,€¢-1)

end for

Discuss: Does forward DP work? Why/why not? When/when not?

Dynamic programming algorithm

Vr(st) = rr(sy)
fort=T-1,..,0do

Vi(sy) = max E [r(sq,ap) +Vip1(Se41)]
at€A¢(St)

end for

103

Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia

Philosophy + aims of the course

= What is an appropriate foundational course to advance research and
practice in sequential decision making?

= Context
Clustering
Statistical Learning
Cognitives Sciences Applied
Approximation Math
. . Theory
. Neuroscience Reinforcement Learning Dynami
DES|gn Progfamming

= (2/3 Exploit)
Teach what we know and understand.
= (1/3 Explore)
Selected up-and-coming topics.

Optimal
Control Aytomatic

Control
Attive Learning

Psychology

Figure: Note: circles may not be to scale.

Credit: Alessandro Lazaric W

What: the Highlights of the Course

How to rodel DP & RL problems

What: problem space, deterministic vs Markov decision process, imperfect information
Tools: probability, processes, Markov chain

105

What: the Highlights of the Course

How to rodel DP & RL problems

How to solve exactly DP & RL problems

What: Bellman equations, dynamic programming algorithms

Tools: induction, optimality principle, fixed point operators

106

What: the Highlights of the Course

How to model DP & RL problems
How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems

What: Monte Carlo, temporal difference (TD), Q-learning

Tools: stochastic approximation, max norm contraction analysis

107

What: the Highlights of the Course

How to r1odel DP & RL problems

How to solve exactly DP & RL problems
How to solve incrementally DP & RL problems

How to solve approximately DP & RL problems

What: approximate RL (TD-based methods, policy space methods, deepRL)

Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction

What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems How to

solve approximately DP & RL problems

With examples from resource optimization, control systems, computer games, and beyond.

Special topics (tentative)

Empirical rigor in RL

Scale & diversity of problems
Offline RL
Learning for Combinatorial Optimization
Multi-agent RL
Bayesian RL
Generalization in RL

Applications
Case studies
Healthcare
Robotics

Recent theoretical results

111

Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems

a. Example: shortest path routing

b. Dynamic programming algorithm

c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia

How: Textbooks and readings

Useful references (recommended but not required)

Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13: 978-1-886529-
43-4 by Dimitri P. Bertsekas. [DPOC]

The second volume of the text is a useful and comprehensive reference. [DPOC2]

Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

Readings: We will give pointers to these references. Some additional readings /
notes may be posted.

A note on notation. We will be using contemporary notation (e.g. s, a, V), which differs
from notation from these texts (e.g. x, u, J). We will be maximizing instead of minimizing,

etc.

112

How: Pre-requisites

Solid knowledge of undergraduate probability (6.041A & 6.041B)

Mathematical maturity and the ability to write down precise and rigorous arguments
Python programming

We will issue a HWO (not graded) to help you gauge your level of familiarity with the
pre-requisite material and useful concepts (hints for HW).

When/What/Where

Lecture: TR 4-4:30pm (4-237)

Instructor

Cathy Wu <cathywu@mit.edu>

Office Hours: TR 4-4:30pm (4-237, TBD)
Teaching assistant

Guilherme Venturelli Cavalheiro
<guivenca@mit.edu>

Office hours: TBD (check website)
Recitations: TBD (check website)

Staff list: <6-7950-staff@mit.edu>

Course pointers

web.mit.edu/6.7950/www

Website: lecture materials &
general info

Piazza: announcements, collab,
HW, solutions, readings

Gradescope: submit HW
Psetpartners: find pset partners

Please include “[6.7950]" in your email subject line

mailto:cathywu@mit.edu

Grading

7 homework assignments (30%)
More at the beginning, sparser later
1 in-class quiz (25%)
Coverage: first 14 lectures
Class project (35%)
Research-level project of your choice.
Form groups of 1-3 students, you’re welcome to start early!
Class presentation + final report
Class participation (10%)

Participation during lecture; answering questions on Piazza; attending office hours
and recitation

Homeworks

4 late days across all homeworks. Solutions for homework will be released
shortly after the deadline (late submitters must abide by honor code).

