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Introduce the characters*
6

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

Goal: maximize reward over Hme (returns, cumulaHve reward)
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What: Reinforcement Learning 9

Also known as approximate dynamic
programming (ADP). We will use these
terms more-or-less interchangeably.

R L agent

environment

action at state streward rt

“Reinforcement learning is learning  how to 
map states to actions so as to  maximize a 
numerical reward signal in  an unknown and 
uncertain environment.

In the most interesting and challenging  cases, 
actions affect not only the immediate reward but 
also the next situation and  all subsequent 
rewards (delayed reward).

The agent is not told which actions to take  but it 
must discover which actions yield
the most reward by trying them (trial-and-
error).”

— Sutton and Barto (1998)
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“No simple yet reasonable evaluation 
function will ever be found for Go.” 

-- 2002, Martin Müller 
(winner of 2009 Go program competition)

2016:



h3ps://www.youtube.com/watch?v=WXuK6gekU1Y

10§ Fan Hui, the reigning 
three-time European 
Champion
• 2015: 5-0 AlphaGo win

§ Lee Sedol, the winner of 
18 world titles. Widely 
considered the greatest 
player of the past decade.
• 2016: 4-1 AlphaGo win

AlphaGo is the first computer program 
to defeat a professional human Go 

player, the first to defeat a Go world 
champion, and is arguably the strongest 

Go player in history.

https://www.youtube.com/watch?v=WXuK6gekU1Y
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Q: What applications are you excited about?

14



Wu

Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia

22



Wu

Recall: the characters*
23

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over time (returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

ℳMarkov Decision Process (MDP) 
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Assume for now: finite horizon problems, i.e. 𝑇 < ∞

24

Used when: there is an intrinsic deadline to meet.

Later: infinite horizon
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The value function
Given a policy 𝜋 (deterministic to simplify notation)

§ Finite time horizon 𝑇: deadline at time 𝑇, the agent focuses 
on the sum of the rewards up to 𝑇.

𝑉! 𝑡, 𝑠 = 𝔼 )
"#$

%&'

𝑟 𝑠", 𝜋 (𝑎") + 𝑅 𝑠% |𝑠$ = 𝑠; 𝜋

where 𝑅 is a value function for the final state.

§ Shorthand: 𝑉$! 𝑠 or simply 𝑉$! (think: vector of size |𝑆|)
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Optimization Problem

Definition (Optimal policy and optimal value function)
The solution to an MDP is an optimal policy 𝜋∗ satisfying

𝜋∗ ∈ argmax
"∈$

𝑉%"

where Π is some policy set of interest.

The corresponding value function is the optimal value function

𝑉∗ = 𝑉%"
∗

§ Our goal: achieve the best value
• Max value-to-go (min cost-to-go)

26
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Expectations
§ Technical note: the expectations refer to all possible stochastic trajectories.
§ A (possibly non-stationary stochastic) policy 𝜋 applied from state 𝑠! returns

𝑠!, 𝑟!, 𝑠", 𝑟", 𝑠#, 𝑟#, …
§ Where 𝑟$ = 𝑟 𝑠$ , 𝑎$ and 𝑠$%"~ 𝑝 ⋅ 𝑠$ , 𝑎$ = 𝜋$(𝑠$) are random realizations.

§ The value function is

𝑉& 𝑡, 𝑠 = 𝔼((!,(",… ) 0
,-$

./"

𝑟 𝑠, , 𝜋 (𝑎,) + 𝑅 𝑠. |𝑠$ = 𝑠; 𝜋

§ More generally, for stochastic policies:

𝑉& 𝑡, 𝑠 = 𝔼(0#,(!,0!,(",… ) 0
,-$

./"

𝑟 𝑠, , 𝜋 (𝑎,) + 𝑅 𝑠. |𝑠$ = 𝑠; 𝜋
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Example: The Amazing Goods Company Example

Inventory  
Systemst

Stock at month t

Reward of month t

D t  Demand at month t

Stock at month t +1

Stock Ordered at month t  
at
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Example: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 𝑠$ items 

of a  specific goods and the demand for that goods is 𝐷
(stochastic). At the end of each month the manager of the 
warehouse can order  𝑎$ more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served leave.
§ The value of the remaining inventory at the end of the 

year is 𝑔 𝑠 .
§ Constraint: the store has a maximum capacity 𝐶.
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Recall: Markov Chains

Definition (Markov chain)
Let the state space S be a subset of the Euclidean space, the discrete-time dynamic  
system 𝑠𝑡 !∈ℕ

∈ 𝑆 is a Markov chain if it satisfies the Markov property
𝑃(𝑠𝑡 + 1 = 𝑠|𝑠𝑡, 𝑠𝑡 − 1, . . . , 𝑠0) = 𝑃(𝑠𝑡 + 1 = 𝑠|𝑠𝑡),

Given an initial state 𝑠! ∈ 𝑆, a Markov chain is defined by the transition probability 

p  𝑝(𝑠′|𝑠) = 𝑃(𝑠𝑡 + 1 = 𝑠′|𝑠𝑡 = 𝑠).

6
30
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,

Example: The Amazing Goods Company
§ State space: 𝑠 ∈ 𝑆 = {0, 1,… , 𝐶}.
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,

Example: The Amazing Goods Company
§ Action space: it is not possible to order more items than the capacity of the 

store, so the action space should depend on the current state.  Formally, at 
state 𝑠, 𝑎 ∈ 𝐴 𝑠 = {0, 1,… , 𝐶 − 𝑠}.
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,
§ 𝑃(𝑠1|𝑠,𝑎) is the transition probability with 

𝑃 𝑠1 𝑠,𝑎 = ℙ(𝑠$%" = 𝑠1|𝑠$ = 𝑠,𝑎$ = 𝑎)

Example: The Amazing Goods Company
§ Dynamics: 𝑠$%" = 𝑠$ + 𝑎$ − 𝑑$ %.
§ The demand 𝑑$ is stochastic and time-independent.  Formally, 𝑑$ 2.2.4

~ 𝐷.

often simplified to finite

33

𝑠1 = 𝑓$ 𝑠, 𝑤$
where 𝑤$~𝑊$

transition equation
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,
§ 𝑃(𝑠1|𝑠,𝑎) is the transition probability with 

𝑃 𝑠1 𝑠,𝑎 = ℙ(𝑠$%" = 𝑠1|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠1) is the immediate reward

at state 𝑠 upon taking action 𝑎,

Example: The Amazing Goods Company
§ Reward: 𝑟$ = −𝐶 𝑎$ − ℎ 𝑠$ + 𝑎$ + 𝑓( 𝑠$ + 𝑎$ − 𝑠$%" %).  This corresponds to 

a purchasing cost, a cost for excess stock (storage, maintenance), and a 
reward for fulfilling orders.

often simplified to finite

sometimes simply 𝑟(𝑠)
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,
§ 𝑃(𝑠1|𝑠,𝑎) is the transition probability with 

𝑃 𝑠1 𝑠,𝑎 = ℙ(𝑠$%" = 𝑠1|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠1) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

Example: The Amazing Goods Company
§ The horizon of the problem is 12 (12 months in 1 year).

often simplified to finite

sometimes simply 𝑟(𝑠)
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,
§ 𝑃(𝑠1|𝑠,𝑎) is the transition probability with 

𝑃 𝑠1 𝑠,𝑎 = ℙ(𝑠$%" = 𝑠1|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠1) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

Example: The Amazing Goods Company
§ Objective: 𝑉 𝑠!; 𝑎!, … = ∑$-!6/" 𝑟$ + 𝑟6, where r"# = g s"# .  This corresponds 

to the cumulative reward, including the value of the remaining inventory at 
“the end.”

often simplified to finite

sometimes simply 𝑟(𝑠)

37



Wu

Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,
§ 𝑃(𝑠1|𝑠,𝑎) is the transition probability with 

𝑃 𝑠1 𝑠,𝑎 = ℙ(𝑠$%" = 𝑠1|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠1) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

F In general, a non-Markovian decision process’s transitions could depend on much 
more information:

ℙ 𝑠$%" = 𝑠1 𝑠$ = 𝑠,𝑎$ = 𝑎,𝑠$/",𝑎$/",…,𝑠!,𝑎! ,

often simplified to finite

sometimes simply 𝑟(𝑠)
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃 𝑜𝑟 𝑓, 𝑟,𝐻) where
§ 𝑆 is the state space,
§ A	 is the action space,
§ 𝑃(𝑠1|𝑠,𝑎) is the transition probability with 

𝑃 𝑠1 𝑠,𝑎 = ℙ(𝑠$%" = 𝑠1|𝑠$ = 𝑠,𝑎$ = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠1) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

F The process generates trajectories 𝜏$ = (𝑠!, 𝑎!,… , 𝑠$/", 𝑎$/", 𝑠$), 
with 𝑠$%"~𝑃(⋅ |𝑠$, 𝑎$)

often simplified to finite

sometimes simply 𝑟(𝑠)
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40

Example: The Amazing Goods Company Example

§ State space: s ∈ S = {0, 1, … , C}.
§ Action space: it is not possible to order more items than the capacity of the store, so the action 

space should depend on the current state.  Formally, at state s, a ∈ A s = {0, 1, … , C − s}.
§ Objective: V s$; a$, … = ∑%&$'() r% + r', where H = 12 and r)* = g s)*

Inventory  
Systemst

Stock at month t

Reward of month t
t t t-C (a  ) - h(s + a )
t t t+ f ([s + a - D ]+)

D t  Demand at month t

Stock at month t +1

Stock Ordered at month t  
at

𝑠+,) = 𝑠+ + 𝑎+ − 𝑑+ ,

Where d% -.-./
~ D
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia
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Example: Shortest PathProblem

Sequential decision problem 
§ Start state s0: city 2
§ Action a0: take link between city 2 and city 3 
§ State s1: city 3
§ Action a1: take link between city 3 and city 5
§ State s2: city 5
§ …

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

Naive approach: enumerate all possibilities.
• From a starting city s0, choose any remaining city 

(N	- 1 choices). Chooseany next remaining city 
(N	- 2 choices). ...
Until there is only 1 option remaining.

• Add up the edge costs.
• Select the best sequence (lowest total cost).
• O(N!).

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.

58

Assumption: all cycles have non-negative length.
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Solving Shortest Path

Issue: repeated calculations of subsequences.

• Dynamic programming: divide-and-conquer, or 
the principle of op-mality.

• Overall problem would be much easier to solve if 
a part of the problem were already solved.

• Break a problem down into subproblems.

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
Destination

Origin

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5

??

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

min ??

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

min

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

min

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.

66



Wu

Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5

shortest path

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

min

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
3

5

7

2

min

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

min

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5

min

3 3

4 5

5.5 7

2 2

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
3 3 3

4 4 5

min 4.5 5.5 7

2 2 2

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Outline

1. Reinforcement learning to solve sequenSal decision problems

2. FormulaSon of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path rouHng
b. Dynamic programming algorithm
c. SequenHal decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia
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Principle of optimality (Bellman, 1957)

0 t T

st Tail Subproblem
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The Agent-Environment Interaction Protocol

Environment

Agent

action /  
actuation

state /  
perception

76
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<latexit sha1_base64="6kqQf958GcN1f5nIhMIJxjRS9bs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3SAg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxanzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPuZUEmKXLHlojCVBGMy/5sMheYM5dQSyrSwtxI2ppoytOmUbAje6svrpH1V9WpV9/660qjncRThDM7hEjy4gQbcQRNawGAEz/AKb450Xpx352PZWnDymVP4A+fzB0yCjcY=</latexit>at

<latexit sha1_base64="+lg0MSGb5i2iMeSA3TYM4bsHvFw=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0WoKCURxS4LblxWsA9oQphMJu3QyYOZG6HEbt34K25cKOLWP3Dn3zh9INp64MLhnHu59x4/FVyBZX0ZhaXlldW14nppY3Nre8fc3WupJJOUNWkiEtnxiWKCx6wJHATrpJKRyBes7Q+uxn77jknFk/gWhilzI9KLecgpAS15JlZeDif2CDuKR7hRcWiQAL7XMpxi4sGxZ5atqjUB/iH2PCmjGRqe+ekECc0iFgMVRKmubaXg5kQCp4KNSk6mWErogPRYV9OYREy5+eSTET7SSoDDROqKAU/U3xM5iZQaRr7ujAj01bw3Fv/zuhmENTfncZoBi+l0UZgJDAkex4IDLhkFMdSEUMn1rZj2iSQUdHglHcLCy4ukdVa1L6rWzXm5XpvFUUQH6BBVkI0uUR1dowZqIooe0BN6Qa/Go/FsvBnv09aCMZvZR39gfHwD91OYjg==</latexit>

st+1 ⇠ P (·|st, at)

<latexit sha1_base64="xCPZicAJbqlJLfUvJZkALvTsDbI=">AAACCnicbVDLSgMxFM3UV62vUZduokWoKGVGFLsRCm5cVrAPaMuQSTNtMJMZkjtCGbp246+4caGIW7/AnX9jpi2irQcSDuecS3KPHwuuwXG+rNzC4tLySn61sLa+sbllb+80dJQoyuo0EpFq+UQzwSWrAwfBWrFiJPQFa/p3V5nfvGdK80jewjBm3ZD0JQ84JWAkz97XXgrH7ghf4qCkPTjBJLs6LNZcmAAceXbRKTtj4B/izpIimqLm2Z+dXkSTkEmggmjddp0YuilRwKlgo0In0Swm9I70WdtQSUKmu+l4lRE+NEoPB5EyRwIeq78nUhJqPQx9kwwJDPSsl4n/ee0Egko35TJOgEk6eShIBIYIZ73gHleMghgaQqji5q+YDogiFEx7BVPC3MrzpHFads/Lzs1ZsVqZ1pFHe+gAlZCLLlAVXaMaqiOKHtATekGv1qP1bL1Z75NozprO7KI/sD6+AbDymPk=</latexit>

st+1 = f(st, at, ✏t)
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Principle of optimality (Bellman, 1957)
77

Principle (Optimality)
Let {𝑎?∗ , … , 𝑎ABC∗ } be an optimal action sequence, which together with 𝑠? and 
{𝜖?, … , 𝜖ABC} determines the corresponding state sequence {𝑠C∗, … , 𝑠A∗} via the 
state transition function. Consider the subproblem whereby we start at 𝑠D∗ at 
time 𝑡 and wish to maximize the value function from time 𝑡 to time 𝑇,

over {𝑎D, … , 𝑎ABC}with 𝑎E ∈ 𝐴E 𝑠E , 𝜏 = 𝑡,… , 𝑇 − 1. Then, the truncated 
optimal action sequence  {𝑎D∗, … , 𝑎ABC∗ } is optimal for this subproblem.

0 t T

st Tail Subproblem

<latexit sha1_base64="4um86o0glLsBlw4n3bKWCrkHyS8=">AAACb3icbVFNb9QwEHXCR8vytZQDhyJksSB1KaySSgguSJUQEsci7baVNmnkeCe7Vh0ntcdIKytXfiA3/gMX/gF2uofSMpLlpzdvZjzPZSuFwST5FcW3bt+5u7V9b3D/wcNHj4dPdo5NYzWHGW9ko09LZkAKBTMUKOG01cDqUsJJef455E++gzaiUVNct5DXbKlEJThDTxXDH1kJS6EcXNie6QZZzXBVlu5LRzMJFc6pLhx2e6bAszdjuk8zY+vCZcjsJ4f7adeduem7tPOywFEvDPdbyvo7VPgG09BgOqaZFssV5oMM1OLK0GI4SiZJH/QmSDdgRDZxVAx/ZouG2xoUcsmMmadJi7ljGgWX4LewBlrGz9kS5h4qVoPJXe9XR197ZkGrRvujkPbs1QrHamPWdemVwQxzPRfI/+XmFquPuROqtQiKXw6qrKTY0GA+XQgNHOXaA8a18G+lfMU04+i/KJiQXl/5Jjg+mKTvJ8m3g9Hhq40d22SXvCR7JCUfyCH5So7IjHDyO9qJdqPn0Z/4WfwippfSONrUPCX/RDz+C+bCuvM=</latexit>

E
"
rt(s

⇤
t ) +

T�1X

⌧=t+1

r⌧ (s⌧ , a⌧ ) + rT (sT )

#
(1)



Wu

Dynamic programming algorithm
VT (sT ) = rT (sT )
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Dynamic programming algorithm

VT (sT ) = rT (sT )
for t = T - 1 , . . . , 0 do State s

4

3

2

1

0 1 2 3 4 Stage

5
r (s )  = 0T T
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Dynamic programming algorithm

State s

1

2

3

4

0 1 2 3 4 Stage

5
VT - 1 (sT - 1 )

VT - 1 (sT - 1 )

VT - 1 (sT - 1 )

VT - 1 (sT - 1 )

VT (sT ) = rT (sT )
for t = T - 1 , . . . , 0 do

end for

<latexit sha1_base64="dxzybLgystXbL9nItR2i14HIyLk="></latexit>

Vt(st) = maxat2At(st) E✏t [rt(st, at) + Vt+1(st+1)]
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Dynamic programming algorithm

State s

4

3

2

1

0 1 2 3 4 Stage

5

VT (sT ) = rT (sT )
for t = T - 1 , . . . , 0 do

end for

<latexit sha1_base64="dxzybLgystXbL9nItR2i14HIyLk="></latexit>

Vt(st) = maxat2At(st) E✏t [rt(st, at) + Vt+1(st+1)]
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Dynamic programming algorithm

State s

4

3

2

1

0 1 2 3 4 Stage

5

VT (sT ) = rT (sT )
for t = T - 1 , . . . , 0 do

end for

<latexit sha1_base64="dxzybLgystXbL9nItR2i14HIyLk="></latexit>

Vt(st) = maxat2At(st) E✏t [rt(st, at) + Vt+1(st+1)]
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Dynamic programming algorithm

State s

1

2

3

4

0 1 2 3 4 Stage

5
V0(s0)

V0(s0)

V0(s0)

V0(s0)

VT (sT ) = rT (sT )
for t = T - 1 , . . . , 0 do

end for

<latexit sha1_base64="dxzybLgystXbL9nItR2i14HIyLk="></latexit>

Vt(st) = maxat2At(st) E✏t [rt(st, at) + Vt+1(st+1)]
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Theorem (Dynamic programming)

For every initial state 𝑠+, the optimal value 𝑉∗(𝑠+) is equal to 𝑉+ 𝑠+ , 
given above.
Furthermore, if 𝑎-∗ = 𝜋-∗ 𝑠- maximizes the right side of the above for 
each 𝑠- and 𝑡, the policy 𝜋∗ = 𝜋+∗ , … , 𝜋./0∗ is optimal.

𝑉. 𝑠. = 𝑟. 𝑠.
for 𝑡 = 𝑇 − 1,… , 0 do
𝑉- 𝑠- = max

1(∈𝒜( 3(
𝔼 𝑟- 𝑠- , 𝑎- + 𝑉-40 𝑠-40

end for

Dynamic programming algorithm
Note (simplification): we drop 𝛾.84
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Dynamic programming algorithm

§ Proof: by induction
§ Equivalent to Bellman-Ford algorithm
§ Strength: Generality
§ Weakness: Computationally expensive 

O(|S||A|T )
§ Much better than naive approach O(T!)
§ ALL the tail subproblems are solved (in 

addition to the original problem)

𝑉. 𝑠. = 𝑟. 𝑠.
for 𝑡 = 𝑇 − 1,… , 0 do
𝑉- 𝑠- = max

1(∈𝒜( 3(
𝔼 𝑟- 𝑠- , 𝑎- + 𝑉-40 𝑠-40

end for

Consider: Do other shortest path 
algorithms have sequential 
decision interpretations? 
Dijkstra’s, A*, Floyd–Warshall, 
Johnson’s, Viterbi, etc.
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Proof of the induction step
Assume w.l.o.g. that 𝛾 = 1. Let 𝑓$: 𝑆 ×𝐴 → 𝑆 denote the transition function.
Denote tail policy from time 𝑡 onward as 𝜋$:./" = 𝜋$, 𝜋$%", … , 𝜋./"
Assume that 𝑉$%" 𝑥$%" = 𝑉$%"∗ 𝑥$%" .  Then:

𝑉$∗ 𝑠$ = max
&1,&12!:45!

𝔼 𝑟$ 𝑠$, 𝜋$ 𝑠$ + 𝑟. 𝑠. + Z
2-$%"

./"

𝑟2 𝑥2, 𝜋2 𝑥2

= max
&1

𝔼 𝑟$ 𝑠$, 𝜋$ 𝑠$ + max
&12!:45!

𝔼 𝑟. 𝑠. + Z
2-$%"

./"

𝑟2 𝑥2, 𝜋2 𝑥2

= max
&1

𝔼 𝑟$ 𝑠$, 𝜋$ 𝑠$ + 𝑉$%"∗ 𝑓$ 𝑠$, 𝜋$ 𝑠$
= max

&1
𝔼 𝑟$ 𝑠$, 𝜋$ 𝑠$ + 𝑉$%" 𝑓$ 𝑠$, 𝜋$ 𝑠$

= max
01∈𝒜1 (1

𝔼 𝑟$ 𝑠$, 𝑎$ + 𝑉$%" 𝑓$ 𝑠$, 𝑎$
= 𝑉$ 𝑠$

Interpretation as optimal reward-to-go (cost-to-go) function.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

1

2 3

4

6

0.5

1

32

5 52

Destination
5

7 5

Destination is node 5.
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia
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SequenGal decision making as shortest path
For Deterministic Finite-State Problems

Example: Thermostats (linear-quadratic control)
Applications: 
control systems, 
industrial manufacturing

89

...

...

...

s0Initial
State

Artificial  
d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
...

Too cold! 🥶

64F
(18C)

64F
65F
… Great temperature ☺

74F… … …
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Sequential decision making as shortest path
For Deterministic Finite-State Problems

Example: Breakout

90

...

...

...

s0Initial
State

Artificial  
d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
...
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Sequential decision making as shortest path

For Deterministic Finite-State Problems

...

...

...

s0Initial
State

Artificial  
d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
...

Discuss: If shortest path isn’t hard, why are DP problems still challenging?
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Sequential decision making as shortest path
For Deterministic Finite-State Problems

Example: Integer programming (combinatorialoptimization)
<latexit sha1_base64="c+ClJlmdGHvvzaLFbxTZzYfc/20="></latexit>

max cTx

subject to Ax = b

x 2 {0, 1}T
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Sequential decision making can get hairy

Example: traveling salesman problem (TSP)
N cities.
Goal: Find the shortest tour (visit every city  
exactly once and return home).
In this case, can’t get around exponential. (why?)
|S| = O(N!) , |A| = N, T 	 	= N, so
O(|S||A|T	)  = O(N!).
(Actually, DP is slightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.
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Sequential decision making can get hairy

Example: traveling salesman problem(TSP)
N cities.
Goal: Find the shortest tour (visit every city  
exactly once and return home).
In this case, can’t get around exponential. (why?)
|S| = O(N!) , |A| = N, T		= N, so
O(|S||A|T	)  = O(N!).
(Actually, DP is slightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.
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Key challenge: huge decision spaces
§ Arcade Learning Environment 

(ALE): framework that allows 
researchers and hobbyists to 
develop AI agents for Atari 2600 
games

§ ALE parameters
• 60 frames per sec

§ Suppose a game is 2 minutes long
§ Horizon is 2 * 60 * 60 = 7200 

steps long
§ Given 3 actions, the decision 

space is 356++ ≈ 107879

For reference: 
There are between 1078 to 1082

atoms in the observable universe.

Cannot only explore. Cannot only exploit.
Must trade off exploration and exploitation.
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97

Travelling Salesman Problem (https://xkcd.com/399/)
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia
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Forward dynamic programming algorithm?
100

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

??

min

op*mal “reward-to-arrive”
Consider: stochastic
shortest path routing

• Travel to intended city 
with probability 1 − 𝜖.

• Travel to any city with 
probability 𝜖.
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Forward Dynamic Programming Algorithm?
101

𝑉+ 𝑠+ = 𝑟+ 𝑠+
for 𝑡 = 1,… , 𝑇 do

𝑉- 𝑠- = max
1()*∈𝒜()* 3()*

𝔼:()* 𝑟- 𝑠- + 𝑉-/0 𝑠-/0 𝑠-
s.t. 𝑠- = 𝑓-/0 𝑠-/0, 𝑎-/0, 𝜖-/0

end for

Discuss: Does forward DP work?  Why/why not?  When/when not?
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Dynamic programming algorithm

𝑉. 𝑠. = 𝑟. 𝑠.
for 𝑡 = 𝑇 − 1,… , 0 do
𝑉- 𝑠- = max

1(∈𝒜( 3(
𝔼 𝑟- 𝑠- , 𝑎- + 𝑉-40 𝑠-40

end for
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia
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Philosophy + aims of the course
§ What is an appropriate foundational course to advance research and 

practice in sequential decision making?
§ Context

Design
§ (2/3 Exploit)

Teach what we know and understand. 
§ (1/3 Explore)

Selected up-and-coming topics.

104

Reinforcement Learning

ClusteringA.I.
Statistical Learning

Approximation
Theory

Learning Theory

Dynamic
Programming

Optimal
Control

Neuroscience

Active Learning

Psychology

Categorization

Neural
Networks

Cognitives Sciences Applied
Math

Automatic
Control

Statistics

Figure: Note: circles may not be to scale. 
Credit: Alessandro Lazaric



What: the Highlights of the Course

How to model DP & RL problems

What: problem space, deterministic vs Markov decision process, imperfect information
Tools: probability, processes, Markov chain
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

What: Bellman equations, dynamic programming algorithms
Tools: induction, optimality principle, fixed point operators
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems

What: Monte Carlo, temporal difference (TD), Q-learning
Tools: stochastic approximation, max norm contraction analysis
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems  

How to solve approximately DP & RL problems

What: approximate RL  (TD-based methods, policy space methods, deepRL)
Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction
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What: the Highlights of the Course

How to model DP & RL problems

How to solve exactly DP & RL problems

How to solve incrementally DP & RL problems  How to 

solve approximately DP & RL problems

With examples from resource optimization, control systems, computer games, and beyond.
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Special topics (tentative)
§ Empirical rigor in RL
§ Scale & diversity of problems
• Offline RL
• Learning for Combinatorial Optimization
• Multi-agent RL
• Bayesian RL
• Generalization in RL

§ Applications
• Case studies
• Healthcare
• Robotics

§ Recent theoretical results
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Outline

1. Reinforcement learning to solve sequential decision problems

2. Formulation of finite-horizon decision problems

3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP

4. Course overview
a. Administrivia
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How: Textbooks and readings
112

Useful references (recommended but not required)
(a) Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13:  978-1-886529-

43-4 by Dimitri P. Bertsekas. [DPOC]

(b) The second volume of the text is a useful and comprehensive reference. [DPOC2]

(c) Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

Readings: We will give pointers to these references. Some additional readings / 
notes may be posted.

A note on notation. We will be using contemporary notation (e.g. s, a, V), which differs  
from notation from these texts (e.g. x, u, J). We will be maximizing instead of minimizing,
etc.
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How: Pre-requisites
113

(a) Solid knowledge of undergraduate probability (6.041A & 6.041B)

(b) Mathematical maturity and the ability to write down precise and rigorous arguments

(c) Python programming

We will issue a HW0 (not graded) to help you gauge your level of familiarity with the 
pre-requisite material and useful concepts (hints for HW).
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When/What/Where
114

§ Lecture: TR 4-4:30pm (4-237)
§ Instructor
• Cathy Wu <cathywu@mit.edu>
• Office Hours: TR 4-4:30pm (4-237, TBD)

§ Teaching assistant
• Guilherme Venturelli Cavalheiro

<guivenca@mit.edu>
• Office hours: TBD (check website)

§ RecitaSons: TBD (check website)
• First recitaHon: 1pm tomorrow

§ Staff list: <6-7950-staff@mit.edu>
• Please include “[6.7950]" in your email subject line

Course pointers
§ web.mit.edu/6.7950/www
§ Website: lecture materials & 

general info
§ Piazza: announcements, collab, 

HW, solutions, readings
§ Gradescope: submit HW
§ Psetpartners: find pset partners

mailto:cathywu@mit.edu
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Grading
115

§ 7 homework assignments (30%)
• More at the beginning, sparser later

§ 1 in-class quiz (25%)
• Coverage: first 14 lectures

§ Class project (35%)
• Research-level project of your choice.
• Form groups of 1-3 students, you’re welcome to start early!
• Class presentation + final report

§ Class participation (10%)
• Participation during lecture; answering questions on Piazza; attending office hours 

and recitation

Homeworks
§ 4 late days across all homeworks. Solutions for homework will be released 

shortly after the deadline (late submitters must abide by honor code).


