# Dynamic programming 

What makes sequential decision making hard?

## Cathy Wu

6.7950: Reinforcement Learning: Foundations and Methods

## References

1. Some slides adapted from Alessandro Lazaric (FAIR/INRIA)
2. DPOC vol 1, 1.1-1.3, 2.1

## Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia
$0$

## 2015:



Video Pinball $2539 \%$ Breakout Star Gunner Robotank Atlantis Crazy Climber Gopher Demon Attack Name This Game Assault Runner Kangaroo James Bond
Tennis

Tennis
Pong
Pong Beam Rider Tutankham Kung-Fu Master

Freeway
Time Pilot Enduro Fishing Derby p and Down
ce Hockey
Q*bert
Asterix Asterix Wizard of Wor Chopper Command

Centipede
Bank Heist
Bank Heist
River Raid
Zaxxon
Amidar
Alien
Venture
Seaquest Double Dunk

Bowling
Ms. Pac-Man
Asteroids
Frostbite
Gravitar
Private Eye
e $0 \%$

## Introduce the characters*

- Interaction loop
$o_{t}, r_{t}$
Observation and reward



## What: Reinforcement Learning

"Reinforcement learning is learning how to

Also known as approximate dynamic programming (ADP). We will use these terms more-or-less interchangeably.

map states to actions so as to maximize a numerical reward signal in an unknown and uncertain environment.

In the most interesting and challenging cases, actions affect not only the immediate reward but also the next situation and all subsequent rewards (delayed reward).

The agent is not told which actions to take but it must discover which actions yield the most reward by trying them (trial-anderror)."

- Sutton and Barto (1998)


## "No simple yet reasonable evaluation function will ever be found for Go." <br> -- 2002, Martin Müller <br> (winner of 2009 Go program competition)

## 2016:

## ARTICLE

## Mastering the game of Go with deep neural networks and tree search

David Silver ${ }^{1 *}$, Aja Huang ${ }^{1 *}$, Chris J. Maddison ${ }^{1}$, Arthur Guez ${ }^{1}$, Laurent Sifre ${ }^{1}$, George van den Driessche ${ }^{1}$,
Julian Schrittwieser ${ }^{1}$, Ioannis Antonoglou ${ }^{1}$, Veda Panneershelvam ${ }^{1}$, Marc Lanctot ${ }^{1}$, Sander Dieleman ${ }^{1}$, Dominik Grewe ${ }^{1}$, John Nham ${ }^{2}$, Nal Kalchbrenner ${ }^{1}$, Ilya Sutskever ${ }^{2}$, Timothy Lillicrap ${ }^{1}$, Madeleine Leach ${ }^{1}$, Koray Kavukcuoglu ${ }^{1}$, Thore Graepel ${ }^{1}$ \& Demis Hassabis


AlphaGo is the first computer program to defeat a professional human Go player, the first to defeat a Go world champion, and is arguably the strongest Go player in history.

## AlphaGo: The Movie

(C) 130 MINS

## Push notifications (2020)



Gauci, et al., "Horizon: Facebook's Open Source Applied Reinforcement Learning Platform - Facebook Research" (2020)

## High-altitude balloons (2020)



Station-keeping range


## Traffic flow smoothing (2021)



Sugiyama, et al. 2008


Q: What applications are you excited about?

## Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## Recall: the characters*

Markov Decision Process (MDP) $\mathcal{M}$


Assume for now: finite horizon problems, i.e. $T<\infty$
Used when: there is an intrinsic deadline to meet.

Later: infinite horizon

The value function
Given a policy $\pi$ (deterministic to simplify notation)

- Finite time horizon $T$ : deadline at time $T$, the agent focuses on the sum of the rewards up to $T$.

$$
V^{\pi}(t, s)=\mathbb{E}\left[\sum_{\tau=t}^{T-1} r\left(s_{\tau}, \pi\left(a_{\tau}\right)\right)+R\left(s_{T}\right) \mid s_{t}=s ; \pi\right]
$$

where $R$ is a value function for the final state.

- Shorthand: $V_{t}^{\pi}(s)$ or simply $V_{t}^{\pi}$ (think: vector of size $|S|$ )


## Optimization Problem

- Our goal: achieve the best value
- Max value-to-go (min cost-to-go)


## Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy $\pi^{*}$ satisfying

$$
\pi^{*} \in \arg \max _{\pi \in \Pi} V_{0}^{\pi}
$$

where $\Pi$ is some policy set of interest.
The corresponding value function is the optimal value function

$$
V^{*}=V_{0}^{\pi^{*}}
$$

## Expectations

- Technical note: the expectations refer to all possible stochastic trajectories.
- A (possibly non-stationary stochastic) policy $\pi$ applied from state $s_{0}$ returns

$$
\left(s_{0}, r_{0}, s_{1}, r_{1}, s_{2}, r_{2}, \ldots\right)
$$

- Where $r_{t}=r\left(s_{t}, a_{t}\right)$ and $s_{t+1} \sim p\left(\cdot \mid s_{t}, a_{t}=\pi_{t}\left(s_{t}\right)\right)$ are random realizations.
- The value function is

$$
V^{\pi}(t, s)=\mathbb{E}_{\left(s_{1}, s_{2}, \ldots\right)}\left[\sum_{\tau=t}^{T-1} r\left(s_{\tau}, \pi\left(a_{\tau}\right)\right)+R\left(s_{T}\right) \mid s_{t}=s ; \pi\right]
$$

- More generally, for stochastic policies:

$$
V^{\pi}(t, s)=\mathbb{E}_{\left(a_{0}, s_{1}, a_{1}, s_{2}, \ldots\right)}\left[\sum_{\tau=t}^{T-1} r\left(s_{\tau}, \pi\left(a_{\tau}\right)\right)+R\left(s_{T}\right) \mid s_{t}=s ; \pi\right]
$$

## Example: The Amazing Goods Company Example



## Example: The Amazing Goods Company Example

- Description. At each month $t$, a warehouse contains $s_{t}$ items of a specific goods and the demand for that goods is $D$ (stochastic). At the end of each month the manager of the warehouse can order $a_{t}$ more items from the supplier.


## Amazing

- The cost of maintaining an inventory of $s$ is $h(s)$.
- The cost to order $a$ items is $C(a)$.
- The income for selling $q$ items if $f(q)$.
- If the demand $d \sim D$ is bigger than the available inventory $s$, customers that cannot be served leave.
- The value of the remaining inventory at the end of the year is $g(s)$.
- Constraint: the store has a maximum capacity $C$.


## Recall: Markov Chains

Definition (Markov chain)
Let the state space $S$ be a subset of the Euclidean space, the discrete-time dynamic system $\left(s_{t}\right)_{t \in \mathbb{N}} \in S$ is a Markov chain if it satisfies the Markov property

$$
P\left(s t+1=s \mid s t, S_{t}-1, \ldots, s_{0}\right)=P(s t+1=s \mid s t),
$$

Given an initial state $s_{0} \in S$, a Markov chain is defined by the transition probability

$$
p p\left(s^{\prime} \mid s\right)=P\left(s_{t}+1=s^{\prime} \mid s_{t}=s\right)
$$

## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,

Example: The Amazing Goods Company

- State space: $s \in S=\{0,1, \ldots, C\}$.


## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,

Example: The Amazing Goods Company

- Action space: it is not possible to order more items than the capacity of the store, so the action space should depend on the current state. Formally, at state $s, a \in A(s)=\{0,1, \ldots, C-s\}$.


## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,


## often simplified to finite

- $P\left(s^{\prime} \mid s, a\right)$ is the transition probability with

$$
P\left(s^{\prime} \mid s, a\right)=\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)
$$

transition equation $s^{\prime}=f_{t}\left(s, w_{t}\right)$ where $w_{t} \sim W_{t}$

Example: The Amazing Goods Company

- Dynamics: $s_{t+1}=\left[s_{t}+a_{t}-d_{t}\right]^{+}$.
- The demand $d_{t}$ is stochastic and time-independent. Formally, $d_{t} \underset{\sim}{i . i . d} D$.


## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,


## often simplified to finite

- $P\left(s^{\prime} \mid s, a\right)$ is the transition probability with

$$
P\left(s^{\prime} \mid s, a\right)=\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)
$$

- $r\left(s, a, s^{\prime}\right)$ is the immediate reward at state $s$ upon taking action $a$,

```
sometimes simply r(s)
```

Example: The Amazing Goods Company

- Reward: $r_{t}=-C\left(a_{t}\right)-h\left(s_{t}+a_{t}\right)+f\left(\left[s_{t}+a_{t}-s_{t+1}\right]^{+}\right)$. This corresponds to a purchasing cost, a cost for excess stock (storage, maintenance), and a reward for fulfilling orders.


## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,


## often simplified to finite

- $P\left(s^{\prime} \mid s, a\right)$ is the transition probability with

$$
P\left(s^{\prime} \mid s, a\right)=\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)
$$

- $r\left(s, a, s^{\prime}\right)$ is the immediate reward at state $s$ upon taking action $a$,

```
sometimes simply r(s)
```

- $H$ is the horizon.

Example: The Amazing Goods Company

- The horizon of the problem is 12 (12 months in 1 year).


## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,


## often simplified to finite

- $P\left(s^{\prime} \mid s, a\right)$ is the transition probability with

$$
P\left(s^{\prime} \mid s, a\right)=\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)
$$

- $r\left(s, a, s^{\prime}\right)$ is the immediate reward at state $s$ upon taking action $a$, sometimes simply $r(s)$
- $H$ is the horizon.

Example: The Amazing Goods Company

- Objective: $V\left(s_{0} ; a_{0}, \ldots\right)=\sum_{t=0}^{H-1} r_{t}+r_{H}$, where $\mathrm{r}_{12}=\mathrm{g}\left(\mathrm{s}_{12}\right)$. This corresponds to the cumulative reward, including the value of the remaining inventory at "the end."


## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,
often simplified to finite
- $P\left(s^{\prime} \mid s, a\right)$ is the transition probability with

$$
P\left(s^{\prime} \mid s, a\right)=\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)
$$

- $r\left(s, a, s^{\prime}\right)$ is the immediate reward at state $s$ upon taking action $a$, sometimes simply $r(s)$
- $H$ is the horizon.

In general, a non-Markovian decision process's transitions could depend on much more information:

$$
\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a, s_{t-1}, a_{t-1}, \ldots, s_{0}, a_{0}\right),
$$

## Markov Decision Process

## Definition (Markov decision process)

A Markov decision process(MDP) is defined as a tuple $M=(S, A, P$ or $f, r, H)$ where

- $S$ is the state space,
- A is the action space,
often simplified to finite
- $P\left(s^{\prime} \mid s, a\right)$ is the transition probability with

$$
P\left(s^{\prime} \mid s, a\right)=\mathbb{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)
$$

- $r\left(s, a, s^{\prime}\right)$ is the immediate reward at state $s$ upon taking action $a$, sometimes simply $r(s)$
- $H$ is the horizon.
(*) The process generates trajectories $\tau_{t}=\left(s_{0}, a_{0}, \ldots, s_{t-1}, a_{t-1}, s_{t}\right)$, with $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$


## Example: The Amazing Goods Company Example



- State space: $s \in S=\{0,1, \ldots, C\}$.
- Action space: it is not possible to order more items than the capacity of the store, so the action space should depend on the current state. Formally, at state $s, a \in A(s)=\{0,1, \ldots, C-s\}$.
- Objective: $\mathrm{V}\left(\mathrm{s}_{0} ; \mathrm{a}_{0}, \ldots\right)=\sum_{\mathrm{t}=0}^{\mathrm{H}-1} \mathrm{r}_{\mathrm{t}}+\mathrm{r}_{\mathrm{H}}$, where $\mathrm{H}=12$ and $\mathrm{r}_{12}=\mathrm{g}\left(\mathrm{s}_{12}\right)$

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## Example: Shortest Path Problem



Sequential decision problem

- Start state so: city 2
- Action ao: take link between city 2 and city 3
- State $\mathrm{s}_{1}$ : city 3
- Action aı: take link between city 3 and city 5
- State s2: city 5

Destination is node 5.

## Solving Shortest Path

Assumption: all cycles have non-negative length.


■ Naive approach: enumerate all possibilities.

- From a starting city so, choose any remaining city ( $\mathrm{N}-1$ choices). Choose any next remaining city ( $\mathrm{N}-2$ choices)....
Until there is only 1 option remaining.
- Add up the edge costs.
- Select the best sequence (lowest total cost).
- $O$ (N!).


Destination is node 5.

## Solving Shortest Path



- Issue: repeated calculations of subsequences.
- Dynamic programming: divide-and-conquer, or the principle of optimality.
- Overall problem would be much easier to solve if a part of the problem were already solved.
- Break a problem down into subproblems.

Destination is node 5.

## Solving Shortest Path



## Solving Shortest Path



Destination is node 5.


## Solving Shortest Path



Destination is node 5 .


## Solving Shortest Path



Destination is node 5.


1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## Principle of optimality (Bellman, 1957)



The Agent-Environment Interaction Protocol


## Principle of optimality (Bellman, 1957)



## Principle (Optimality)

Let $\left\{a_{0}^{*}, \ldots, a_{T-1}^{*}\right\}$ be an optimal action sequence, which together with $s_{0}$ and $\left\{\epsilon_{0}, \ldots, \epsilon_{T-1}\right\}$ determines the corresponding state sequence $\left\{s_{1}^{*}, \ldots, s_{T}^{*}\right\}$ via the state transition function. Consider the subproblem whereby we start at $s_{t}^{*}$ at time $t$ and wish to maximize the value function from time $t$ to time $T$,
over $\left\{a_{t}, \ldots, a_{T-1}\right\}$ with $\left[\begin{array}{l}r_{t}\left(s_{t}^{*}\right) \\ a_{\tau} \in A_{\tau}\left(\sum_{s_{\tau}}\right)_{\tau} \tau-1 \\ \text { optimal action sequence }\left\{a_{t}^{*}, \ldots, a_{T-1}^{*}\right\} \\ r_{\tau}\left(s_{\tau}, a_{\tau}\right), \ldots, T-r_{T}\left(s_{T}\right) \\ \text { is optimal for this subproblem. }\end{array}\right.$

## Dynamic programming algorithm

$$
\mathrm{V}_{T}(\mathrm{~S} T)=\mathrm{r} T(\mathrm{~S} T)
$$

Dynamic programming algorithm
$\mathrm{V}_{T}(\mathrm{~s} T)=\mathrm{r} T(\mathrm{~s} T)$
for $\mathrm{t}=\mathrm{T}-1, \ldots, 0 \mathrm{do}$
State s ^


## Dynamic programming algorithm

```
\(\mathrm{V}_{T}(\mathrm{~S} T)=\mathrm{r} T(\mathrm{~S} T)\)
for \(\mathrm{t}=\mathrm{T}-1, \ldots, 0\) do
    \(V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}_{\epsilon_{t}}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right]\)
end for
```



## Dynamic programming algorithm

```
\(\mathrm{V}_{T}(\mathrm{~S} T)=\mathrm{r} T(\mathrm{~S} T)\)
for \(\mathrm{t}=\mathrm{T}-1, \ldots, 0\) do
    \(V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}_{\epsilon_{t}}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right]\)
end for
```



## Dynamic programming algorithm

```
\(\mathrm{V}_{T}(\mathrm{~S} T)=\mathrm{r} T(\mathrm{~S} T)\)
for \(\mathrm{t}=\mathrm{T}-1, . . ., 0\) do
    \(V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}_{\epsilon_{t}}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right]\)
end for
```



## Dynamic programming algorithm

```
\(\mathrm{V}_{T}(\mathrm{~s} T)=\mathrm{r} T(\mathrm{~S} T)\)
for \(\mathrm{t}=\mathrm{T}-1, \ldots, 0\) do
    \(V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}_{\epsilon_{t}}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right]\)
end for
```



## Dynamic programming algorithm

$$
\begin{aligned}
& V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right) \\
& \text { for } t=T-1, \ldots, 0 \text { do } \\
& \quad V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right] \\
& \text { end for }
\end{aligned}
$$

## Theorem (Dynamic programming)

For every initial state $s_{0}$, the optimal value $V^{*}\left(S_{0}\right)$ is equal to $V_{0}\left(s_{0}\right)$, given above.
Furthermore, if $a_{t}^{*}=\pi_{t}^{*}\left(s_{t}\right)$ maximizes the right side of the above for each $s_{t}$ and $t$, the policy $\pi^{*}=\left(\pi_{0}^{*}, \ldots, \pi_{T-1}^{*}\right)$ is optimal.

## Dynamic programming algorithm

$$
\begin{aligned}
& V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right) \\
& \text { for } t=T-1, \ldots, 0 \text { do } \\
& \quad V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right] \\
& \text { end for }
\end{aligned}
$$

- Proof: by induction
- Equivalent to Bellman-Ford algorithm
- Strength: Generality
- Weakness: Computationally expensive O(|S||A|T)
- Much better than naive approach O(T!)
- ALL the tail subproblems are solved (in addition to the original problem)

Consider: Do other shortest path algorithms have sequential
decision interpretations?
Dijkstra's, A*, Floyd-Warshall, Johnson's, Viterbi, etc.

## Proof of the induction step

Assume w.l.o.g. that $\gamma=1$. Let $f_{t}: S \times A \rightarrow S$ denote the transition function.
Denote tail policy from time $t$ onward as $\pi_{t: T-1}=\left\{\pi_{t}, \pi_{t+1}, \ldots, \pi_{T-1}\right\}$
Assume that $V_{t+1}\left(x_{t+1}\right)=V_{t+1}^{*}\left(x_{t+1}\right)$. Then:

$$
\begin{aligned}
V_{t}^{*}\left(s_{t}\right) & =\max _{\left(\pi_{t}, \pi_{t+1: T-1}\right)} \mathbb{E}\left\{r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+r_{T}\left(s_{T}\right)+\sum_{i=t+1}^{T-1} r_{i}\left(x_{i}, \pi_{i}\left(x_{i}\right)\right)\right\} \\
& =\max _{\pi_{t}} \mathbb{E}\left\{r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+\max _{\pi_{t+1: T-1}}\left[\mathbb{E}\left\{r_{T}\left(s_{T}\right)+\sum_{i=t+1}^{T-1} r_{i}\left(x_{i}, \pi_{i}\left(x_{i}\right)\right)\right\}\right]\right\} \\
= & \max _{\pi_{t}} \mathbb{E}\left\{r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+V_{t+1}^{*}\left(f_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)\right)\right\} \\
= & \max _{\pi_{t}} \mathbb{E}\left\{r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+V_{t+1}\left(f_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)\right)\right\} \\
& =\max _{\substack{\left.a_{t} \mathcal{A}_{\mathcal{A}}\left(s_{t}\right) \\
s_{t}\right)}} \mathbb{E}\left\{r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(f_{t}\left(s_{t}, a_{t}\right)\right)\right\}
\end{aligned}
$$

Interpretation as optimal reward-to-go (cost-to-go) function.

## Solving Shortest Path



Destination is node 5.


## Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## Sequential decision making as shortest path



Example: Thermostats (linear-quadratic control)


Applications:
74F control systems, industrial manufacturing

Too cold! :
Great temperature

## Sequential decision making as shortest path



Example: Breakout


## Sequential decision making as shortest path



Discuss: If shortest path isn't hard, why are DP problems still challenging?

## Sequential decision making as shortest path



Example: Integer programming (combinatorial optimization)

$$
\begin{aligned}
\max & c^{T} x \\
\text { subject to } & A x=b \\
& x \in\{0,1\}^{T}
\end{aligned}
$$

## Sequential decision making can get hairy

## Example: traveling salesman problem (TSP)

- N cities.
- Goal: Find the shortest tour (visit every city exactly once and return home).
- In this case, can't get around exponential. (why?)
- $|S|=O(N!),|A|=N, T=N$, so $O(|\mathrm{~S}||\mathrm{A}| \mathrm{T})=O(\mathrm{~N}!)$.
- (Actually, DP is slightly better: $|\mathrm{S}|=\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}^{2}\right)$.)
- This is called the curse of dimensionality.


Terminal State $t$

|  | 5 | 1 | 15 |
| :---: | :---: | :---: | :---: |
| 5 |  | 20 | 4 |
| 1 | 20 |  | 3 |
| 15 | 4 | 3 |  |

## Sequential decision making can get hairy

## Example: traveling salesman problem(TSP)

- N cities.
- Goal: Find the shortest tour (visit every city exactly once and return home).
- In this case, can't get around exponential. (why?)
- $|\mathrm{S}|=O(\mathrm{~N}!),|\mathrm{A}|=\mathrm{N}, \mathrm{T}=\mathrm{N}$, so $O(|\mathrm{~S}||\mathrm{A}| \mathrm{T})=O(\mathrm{~N}!)$.
- (Actually, DP is slightly better: $|\mathrm{S}|=\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}^{2}\right)$.)
- This is called the curse of dimensionality.



## Key challenge: huge decision spaces

- Arcade Learning Environment (ALE): framework that allows researchers and hobbyists to develop AI agents for Atari 2600 games
- ALE parameters
- 60 frames per sec
- Suppose a game is 2 minutes long
- Horizon is $2 * 60 * 60=7200$ steps long
- Given 3 actions, the decision space is $3^{7200} \approx 10^{3435}$

For reference:
There are between $10^{78}$ to $10^{82}$ atoms in the observable universe.

Cannot only explore. Cannot only exploit. Must trade off exploration and exploitation.


## SELUNG ON EBAY: O(1)

## STILL WORKING ON YOUR ROUTE?



1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## Forward dynamic programming algorithm?

Consider: stochastic shortest path routing

- Travel to intended city with probability $1-\epsilon$.
- Travel to any city with probability $\epsilon$.


## Forward Dynamic Programming Algorithm?

$$
\begin{aligned}
& V_{0}\left(s_{0}\right)=r_{0}\left(s_{0}\right) \\
& \text { for } t=1, \ldots, T \text { do } \\
& \qquad V_{t}\left(s_{t}\right)=\max _{a_{t-1} \in \mathcal{A}_{t-1}\left(s_{t-1}\right)} \mathbb{E}_{\epsilon_{t-1}}\left[r_{t}\left(s_{t}\right)+V_{t-1}\left(s_{t-1}\right) \mid s_{t}\right] \\
& \text { s.t. } s_{t}=f_{t-1}\left(s_{t-1}, a_{t-1}, \epsilon_{t-1}\right)
\end{aligned}
$$

## end for

Discuss: Does forward DP work? Why/why not? When/when not?

Dynamic programming algorithm

$$
\begin{aligned}
& V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right) \\
& \text { for } t=T-1, \ldots, 0 \text { do } \\
& \quad V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} \mathbb{E}\left[r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\right] \\
& \text { end for }
\end{aligned}
$$

## Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## Philosophy + aims of the course

- What is an appropriate foundational course to advance research and practice in sequential decision making?
- Context


## Design

- (2/3 Exploit)

Teach what we know and understand.

- (1/3 Explore) Selected up-and-coming topics.


Figure: Note: circles may not be to scale.
Credit: Alessandro Lazaric

## What: the Highlights of the Course

How to model DP \& RL problems

- What: problem space, deterministic vs Markov decision process, imperfect information
- Tools: probability, processes, Markov chain


## What: the Highlights of the Course

How to model DP \& RL problems
How to solve exactly DP \& RL problems

- What: Bellman equations, dynamic programming algorithms
- Tools: induction, optimality principle, fixed point operators


## What: the Highlights of the Course

How to model DP \& RL problems

How to solve exactly DP \& RL problems

How to solve incrementally DP \& RL problems

- What: Monte Carlo, temporal difference (TD), Q-learning

Tools: stochastic approximation, max norm contraction analysis

## What: the Highlights of the Course

How to model DP \& RL problems

How to solve exactly DP \& RL problems
How to solve incrementally DP \& RL problems

How to solve approximately DP \& RL problems
What: approximate RL (TD-based methods, policy space methods, deep RL)
Tools: function approximation, Lyapunov function analysis, deep learning, variance reduction

## What: the Highlights of the Course

How to model DP \& RL problems<br>How to solve exactly DP \& RL problems<br>How to solve incrementally DP \& RL problems How to<br>solve approximately DP \& RL problems

With examples from resource optimization, control systems, computer games, and beyond.

## Special topics (tentative)

- Empirical rigor in RL
- Scale \& diversity of problems
- Offline RL
- Learning for Combinatorial Optimization
- Multi-agent RL
- Bayesian RL
- Generalization in RL
- Applications
- Case studies
- Healthcare
- Robotics
- Recent theoretical results


## Outline

1. Reinforcement learning to solve sequential decision problems
2. Formulation of finite-horizon decision problems
3. Solving finite-horizon decision problems
a. Example: shortest path routing
b. Dynamic programming algorithm
c. Sequential decision making as shortest path
d. Forward DP
4. Course overview
a. Administrivia

## How: Textbooks and readings

## Useful references (recommended but not required)

(a) Dynamic Programming and Optimal Control (2007), Vol. I, 4th Edition, ISBN-13: 978-1-886529-43-4 by Dimitri P. Bertsekas. [DPOC]
(b) The second volume of the text is a useful and comprehensive reference. [DPOC2]
(c) Neuro Dynamic Programming (1996) by Dimitri P. Bertsekas and John N. Tsitsiklis. [NDP]

Readings: We will give pointers to these references. Some additional readings / notes may be posted.

A note on notation. We will be using contemporary notation (e.g. $s, a, V$ ), which differs from notation from these texts (e.g. $x, u, J$ ). We will be maximizing instead of minimizing, etc.

## How: Pre-requisites

(a) Solid knowledge of undergraduate probability (6.041A \& 6.041B)
(b) Mathematical maturity and the ability to write down precise and rigorous arguments
(c) Python programming

We will issue a HWO (not graded) to help you gauge your level of familiarity with the pre-requisite material and useful concepts (hints for HW).

## When/What/Where

- Lecture: TR 4-4:30pm (4-237)
- Instructor
- Cathy Wu [cathywu@mit.edu](mailto:cathywu@mit.edu)
- Office Hours: TR 4-4:30pm (4-237, TBD)
- Teaching assistant
- Guilherme Venturelli Cavalheiro [guivenca@mit.edu](mailto:guivenca@mit.edu)
- Office hours: TBD (check website)
- Recitations: TBD (check website)
- First recitation: 1pm tomorrow
- Staff list: [6-7950-staff@mit.edu](mailto:6-7950-staff@mit.edu)
- Please include "[6.7950]" in your email subject line


## Grading

- 7 homework assignments (30\%)
- More at the beginning, sparser later
- 1 in-class quiz (25\%)
- Coverage: first 14 lectures
- Class project (35\%)
- Research-level project of your choice.
- Form groups of 1-3 students, you're welcome to start early!
- Class presentation + final report
- Class participation (10\%)
- Participation during lecture; answering questions on Piazza; attending office hours and recitation


## Homeworks

- 4 late days across all homeworks. Solutions for homework will be released shortly after the deadline (late submitters must abide by honor code).

