2022-10-20

Policy space methods

Simplicity at the cost of variance

Cathy Wu

6.7950: Reinforcement Learning: Foundations and Methods

References

- 1. Matteo Pirotta. FAIR. Reinforcement Learning. 2019, Lecture 5.
- 2. Matteo Pirotta. Reinforcement Learning Summer School, 2019. Policy Search: Actor-Critic Methods.

Outline

- 1. From Policy Iteration to Policy Search
- 2. Policy gradient methods
- 3. Actor-critic

Outline

1. From Policy Iteration to Policy Search

- 2. Policy gradient methods
- 3. Actor-critic

Function approximation

Last time: adding function approximation to value iteration This time: adding function approximation to policy iteration. Sorta.

7

Policy Iteration: Recap

Let π_0 be an arbitrary stationary policy.

```
while k = 1, \dots, K do
```

Policy Evaluation: given π_k compute $V_k = V^{\pi_k}$ Policy Improvement: find π_{k+1} that is better than π_k

- e.g. compute the *greedy* policy:

$$\pi_{k+1}(s) \in \arg \max_{a \in \mathcal{A}} \left\{ r(s,a) + \gamma \sum_{y} p(y|s,a) V^{\pi_k}(y) \right\}$$

return the last policy π_K

end

- Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)
- **?** Issues: Function approximation for $V^{\pi_k} \implies$ Is it still converging?

Continuous Actions?

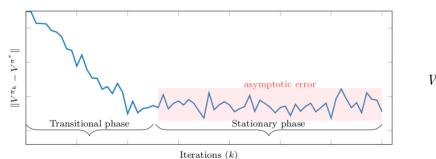
Approximate Policy Iteration with Q Functions

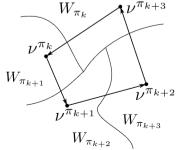
Recall the state-action cost-to-go function: $Q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) Q_{\pi}(s', \pi(s'))$

Approximate PI:

- For k = 0, 1, 2, ...
 - **1**. Approximate the value under $\pi_k: Q_{\theta_k} \approx Q_{\pi_k}$
 - 2. Solve for an improved policy $\pi_{k+1}(s) \in \underset{a \in A(s)}{\operatorname{argmin}} Q_{\theta_k}(s, a) \quad \forall s \in S$
- Q_{π_k} can be approximated by either TD or Monte Carlo methods.

Same story as fitted Q-iteration. No longer guaranteed to converge.





From Policy Iteration to Policy Search

- Approximate a stochastic policy directly using function approximation $\pi_{\theta}: S \to \mathcal{P}(\mathcal{A})$ with $\theta \in \mathbb{R}^d$
- Let $V(\pi_{\theta})$ denote the policy performance of policy π_{θ}
- Policy optimization problem

 $\max_{\pi_{\theta}} V(\pi_{\theta})$

Solution 1: Policy Search/Blackbox optimization:

Use global optimizers or gradient by finite-difference methods

Policy π_{θ} can also be not differentiable w.r.t. θ

Solution 2: Policy gradient optimization:

Compute the gradient $\nabla_{\theta} V(\theta)$ and follow the ascent direction $\nabla_{\theta} \pi_{\theta}(s, a)$ should exist

Policy Gradient as Policy Update

Approximate Policy Iteration $\pi_{\theta_{k+1}} = \arg \max_{\pi_{\theta}} Q^{\pi_{\theta}}(s, \pi_{\theta}(s))$ Unstable (fast) No convergence

Policy Gradient $\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} V(\theta_k)$ Smooth, fine control (slow) Convergence to local optima

1. How do we compute $\nabla_{\theta} V(\theta)$?

2. How quickly do we update (i.e. α_k)?

Outline

1. From Policy Iteration to Policy Search

2. Policy gradient methods

- a. **REINFORCE**
- b. Representing a policy (discrete and continuous!)
- c. Variance reduction (temporal structure and baselines)
- 3. Actor-critic

Assume: finite-horizon setting

Discount γ excluded to simplify notation.

Policy Gradient (Finite-Horizon)

-T_1

Given an MDP $M = (S, A, p, r, T, \mu)$ and a policy π_{θ_0} . For k = 1,2,...

1. Use π_{θ_k} to collect data τ .

2. Use τ to approximate gradient of:

Maximizing this is ultimately what we desire

$$V(\pi_{\theta_k}) = \mathbb{E}\left[\sum_{t=0}^{T-1} r_t | \pi_{\theta_k}, M\right] = \mathbb{E}_{\tau \sim \mathbb{P}\left(\tau | \pi_{\theta_k}, M\right)} [\mathcal{R}(\tau)]$$

where

- μ is an initial state distribution
- $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T)$ (includes terminal reward) is a trajectory
- $\mathcal{R}(\tau)$ its return (sum of rewards).

3. Update
$$\theta_{k+1} = \theta_k + \alpha_k \widehat{\nabla_{\theta} V}(\pi_{\theta_k})$$
 How?

Policy Gradient (Finite-Horizon)

Policy Gradient Theorem [Williams, 1992; Sutton et al., 2000]

For any finite-horizon MDP $M = (S, A, p, r, T, \mu)$ and differentiable policy π_{θ}

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}_{\tau \sim \mathbb{P}(\cdot | \pi, M)} \left[R(\tau) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \right]$$

- Model-free! Why?
- Compare: taking gradient through trajectory-space is difficult $\nabla_{\theta} V(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \nabla_{\theta} \int \mathbb{P}(\tau | \pi_{\theta}, M) R(\tau) d\tau$

Proof

• The objective is an expectation. Want to compute the gradient w.r.t. θ (simplify notation from: $V(\pi_{\theta})$ to $V(\theta)$). First, bring the gradient to the inside.

$$\nabla_{\theta} V(\theta) = \nabla_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \nabla_{\theta} \int \mathbb{P}(\tau | \pi_{\theta}, M) R(\tau) d\tau$$

Log trick

$$\nabla_{\theta} \log \mathbb{P}(\tau | \pi_{\theta}, M) = \frac{\nabla_{\theta} \mathbb{P}(\tau | \pi_{\theta}, M)}{\mathbb{P}(\tau | \pi_{\theta}, M)} = \int \mathbb{P}(\tau | \pi_{\theta}, M) \nabla_{\theta} \log \mathbb{P}(\tau | \pi_{\theta}, M) R(\tau) d\tau$$

$$= \mathbb{E}_{\tau} [R(\tau) \nabla_{\theta} \log \mathbb{P}(\tau | \pi_{\theta}, M)]$$

- Last expression is an unbiased gradient estimator Just sample $\tau_t \sim \mathbb{P}(\tau | \pi_{\theta}, M)$, and compute $\hat{g}_t = R(\tau_t) \nabla_{\theta} \log \mathbb{P}(\tau_t | \pi_{\theta}, M)$
- Issue: Need to be able to compute & differentiate the density $\mathbb{P}(\tau | \pi_{\theta}, M)$ w.r.t θ

Proof

Likelihood (with stochastic policies)

$$\mathbb{P}(\tau | \pi_{\theta}, M) = \mu(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

$$\log \mathbb{P}(\tau | \pi_{\theta}, M) = \log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) + \log p(s_{t+1} | s_t, a_t)$$

$$\nabla_{\theta} \log \mathbb{P}(\tau | \pi_{\theta}, M) = \nabla_{\theta} \log \mu(s_0) + \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) + \nabla_{\theta} \log p(s_{t+1} | s_t, a_t)$$

$$\rightarrow \text{model free}$$

Alternative proof: likelihood rescaling

- Interested in policy gradient: $\nabla_{\Delta} V(\theta + \Delta)|_{\nabla=0}$
- Likelihood rescaling

$$V(\theta + \Delta) = \mathbb{E}_{\tau(\theta)} \left[R(\tau(\theta)) \frac{\prod_t \pi_{\theta + \Delta}(a_t | s_t)}{\prod_t \pi_{\theta}(a_t | s_t)} \right]$$

• Apply chain rule to get $\nabla_{\Delta} V(\theta + \Delta) \Big|_{\nabla=0} = \mathbb{E}_{\tau(\theta)} \left[R(\tau(\theta)) \sum_{t} \frac{\nabla \pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta}(a_{t}|s_{t})} \right]$ $= \mathbb{E}_{\tau} [R(\tau) \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})]$

Wu

REINFORCE [Williams, 1992]

- 1. Let π_{θ_1} be an arbitrary policy.
- 2. At each iteration k = 1, ..., K
 - Sample *m* trajectories $\tau_i = (s_0, a_0, r_0, s_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$ following π_k

• Compute unbiased gradient estimate:

$$\widehat{\nabla_{\theta} V}(\pi_{\theta_k}) = \frac{1}{m} \sum_{i=1}^m \left(\sum_{t=0}^{T-1} r_t^i \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta_k}(a_t^i | s_t^i) \right)$$

• Update parameters:

$$\theta_{k+1} = \theta_k + \alpha_k \widehat{\nabla_{\theta} V}(\pi_{\theta_k})$$

3. Return last policy π_{θ_K}

Policy Gradient: Example

Normal Policy $\pi(a|s) = \frac{1}{\sigma_{\omega}(s)\sqrt{2\pi}} e^{-\frac{(a-\mu_{\theta}(s))^2}{2\sigma_{\omega}^2(s)}}$

Then:

$$\nabla_{\theta} \log \pi(a|s) = \frac{\left(a - \mu_{\theta}(s)\right)}{\sigma_{\omega}^{2}(s)} \nabla_{\theta} \mu_{\theta}(s)$$
$$\nabla_{\omega} \log \pi(a|s) = \frac{\left(a - \mu_{\theta}(s)\right)^{2} - \sigma_{\omega}^{2}(s)}{\sigma_{\omega}^{3}(s)} \nabla_{\omega} \mu_{\omega}(s)$$

Gibbs (softmax) Policy

$$\pi(a|s) = \frac{e^{\mathcal{K}Q_{\theta}(s,a)}}{\sum_{a' \in \mathcal{A}} e^{\mathcal{K}Q_{\theta}(s,a')}}$$

 \rightarrow

 π (a | s)

Then:

$$\nabla_{\theta} \log \pi(a|s) = \mathcal{K} \nabla_{\theta} Q_{\theta}(s, a) \\ -\mathcal{K} \sum_{a' \in \mathcal{A}} \pi(a'|s) \nabla_{\theta} Q_{\theta}(s, a')$$

Policy Gradient via Automatic Differentiation

- Manually coding the derivative can be tedious ⇒ use auto diff
- Define a graph parameterized by θ such that its gradient is the policy gradient

"Pseudo loss": weighted maximum likelihood

$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \log \pi_{\theta} (s_{i,t}, a_{i,t}) \hat{q}_{i,t}$$

Where:

• $\hat{q}_{i,t} = \sum_{k=0}^{T_i} r_k^i$ for REINFORCE and • $\hat{q}_{i,t} = \sum_{k=t}^{T_i} r_k^i$ for G(PO)MDP. Note that $\mathbb{E}[\nabla_{\theta} \tilde{V}] = \nabla_{\theta} V(\pi_{\theta})$.

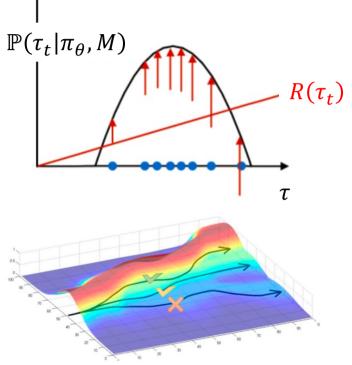
REINFORCE as **Supervised** Learning

 $\hat{g}_t = R(\tau_t) \nabla_{\theta} \log \mathbb{P}(\tau_t | \pi_{\theta}, M)$

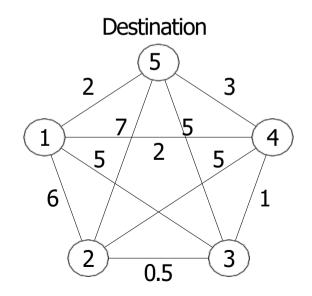
- $R(\tau_t)$ measures how good is sample τ_t
- Moving in the direction of \hat{g}_t pushes up the log probability of the sample in proportion to how good it is.

Interpretation: uses good trajectories as supervised examples

- Like maximum likelihood in supervised learning
- Good stuff are made more likely while bad less
- Trial and Error approach



From "CS 294-112: Deep Reinforcement Learning" slides by S. Levine Wu *Dynamic programming vs policy gradient* How would policy gradient solve shortest path?



Destination is node 5.

REINFORCE

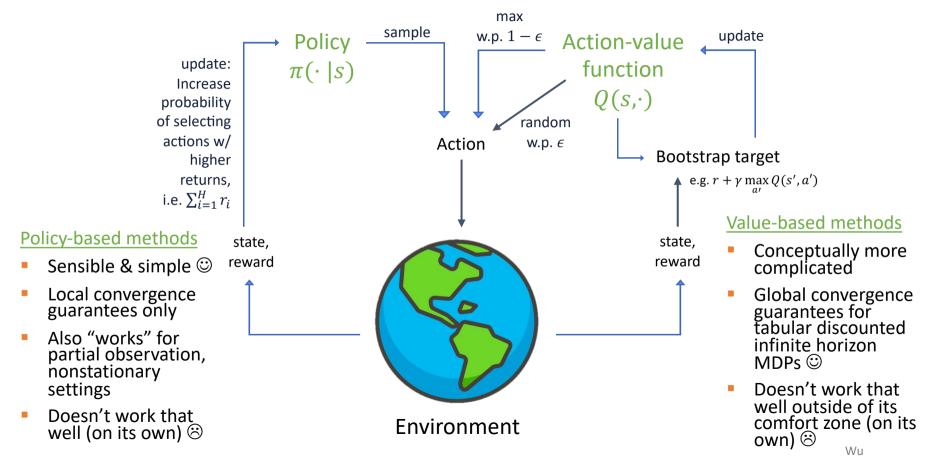
Pros

- Easy to compute
- Does not use Markov property!
- Can be used in partially observable MDPs without modification

Issues

- Use an MC estimate of Q(s, a)
- It has possibly a very large variance
- Needs many samples to converge

Policy-based vs value-based methods



Policy Gradient: Temporal Structure

 $\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=t}^{T-1} r_{t'}\right]$

Discuss: Why is this better?

Because
$$\forall t$$
:

$$\mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s_{t}) \sum_{t'=0}^{t-1} r_{i} |\tau_{0:t-1} \right] = \left(\sum_{t'=0}^{t-1} r_{i} \right) \int \pi_{\theta}(s_{t}, a) \nabla_{\theta} \log \pi_{\theta}(a|s_{t}) da$$
$$= \left(\sum_{t'=0}^{t-1} r_{i} \right) \int \nabla_{\theta} \pi_{\theta}(a|s_{t}) da$$
$$= \left(\sum_{t'=0}^{t-1} r_{i} \right) \nabla_{\theta} \int \pi_{\theta}(a|s_{t}) da = 0$$
$$:= 1$$
In literature known as G(PO)MDP [Peters and Schaal, 2008b].

Wu

• Further reduce the variance by introducing a baseline b(s)

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \left(\sum_{t'=t}^{T-1} r_{t'} - \frac{b(s_t)}{b(s_t)}\right)\right]$$

- The gradient estimate is unbiased.
- "Near optimal choice" that minimize the variance is the expected sum of returns:

$$b^{\star}(s) \approx \mathbb{E}\left[\sum_{t=0}^{T-1} r_t | s_0 = s, \pi_{\theta}, M\right] = V^{\pi_{\theta}}(s)$$

Interpretation: increase the log probability of an action a_t proportionally to how much returns are better than expected (relative values).

Variance reduction via baseline?

Intuition (variance reduction):

$$\operatorname{Var}(x - y) = \operatorname{Var}(x) - 2\operatorname{Cov}(x, y) + \operatorname{Var}(y)$$

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \left(\sum_{t'=t}^{T-1} r_{t'} - \frac{b(s_t)}{b(s_t)}\right)\right]$$

Optimal Baseline Derivation
Rough Idea
$$\nabla_{\theta_{i}}V(\pi_{\theta}) = \mathbb{E}_{\tau} \left[\nabla_{\theta_{i}} \log \mathbb{P}(\tau | \pi_{\theta})(R(\tau) - b) \right] \\ = g(\tau)$$

$$\operatorname{Var} = \mathbb{E}_{\tau} \left[(g(\tau)(R(\tau) - b))^{2} \right] - (\mathbb{E}_{\tau} [g(\tau)(R(\tau) - b)])^{2} \\ \Rightarrow \mathbb{E}_{\tau} [g(\tau)R(\tau)]^{2} \\ \xrightarrow{\partial}_{\partial b} \operatorname{Var} = \frac{\partial}{\partial b} \mathbb{E}_{\tau} [g(\tau)^{2}(R(\tau) - b)^{2}] \\ = \frac{\partial}{\partial b} \mathbb{E}_{\tau} [g(\tau)^{2}R(\tau)^{2}]^{\bullet} - 2 \frac{\partial}{\partial b} \mathbb{E}_{\tau} [g(\tau)^{2}R(\tau)b] + \frac{\partial}{\partial b} \mathbb{E}_{\tau} [b^{2}g(\tau)^{2}] \\ \Rightarrow b^{*}(\tau) = \frac{\mathbb{E}_{\tau} [g(\tau)^{2}R(\tau)]}{\mathbb{E}_{\tau} [g(\tau)^{2}]}$$

Expected return weighted by the magnitude of the gradient.

48

State-Action baseline (side note)

Several recent methods [Gu et al., 2017, Thomas and Brunskill, 2017, Grathwohl et al., 2018, Liu et al., 2018, Wu et al., 2018] have extended to state-action baselines

 $b(s) \to b(s, a)$

Going Beyond the Finite-Horizon Case

Theorem

For an infinite horizon MDP (average or discounted), the policy gradient is:

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}_{s \sim d_{\mu}}^{\pi_{\theta}} \mathbb{E}_{a \sim \pi_{\theta}}(\cdot|s) \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \hat{Q}^{\pi_{\theta}}(s,a) \right]$$

- $d_{\mu}^{\pi_{\theta}}$ is the stationary distribution
- $\hat{Q}^{\pi_{\theta}}$ is the state-action value estimate $R(\tau_t)$

Preview to actor-critic methods. See HW to formalize the connection. Gradient estimate based on m trajectories $(\tau_i)_{i=1}^m$: $\overline{\nabla_{\theta} V}(\pi_{\theta}) \coloneqq \frac{1}{m} \sum_{i=1}^m \sum_{t=0}^{T_i-1} \gamma^t \nabla_{\theta} \log \pi_{\theta} \left(s_t^i, a_t^i\right) \sum_{t'=t}^{T_i} \gamma^{t'-t} r_{t'}^i$ Where T_i is the length of trajectory τ_i .

Wu

52

Convergence Results

- Policy gradient is stochastic gradient $\theta_{k+1} = \theta_k + \alpha_k (\nabla V(\theta_k) + \text{noise})$
- V is non-convex
- ⇒ converge asymptotically to a stationary point or a local minimum (under standard technical assumptions)

What is the quality of this point?

Dynamics are linear (LQ systems) \Rightarrow global convergence [Fazel et al., 2018].

- Surprising since $\min_{\pi} V_{LQ}(\pi)$ may be not convex, and V_{LQ} is not smooth but is "almost" smooth (far from un/stable boundaries).
- Hint: use properties of functions that are gradient dominated.

Convergence Results

Issues

- Non-convexity of the loss function
- Unnatural policy parameterization: parameters that are far in Euclidean distance may describe the same policy (we will talk about this later)
- Insufficient exploration: naïve stochastic exploration
- Large variance of stochastic gradients: generally increases with the length of the horizon

Solution:

 \Rightarrow similar to LQ, we need structural assumptions [Bhandari and Russo, 2019]

See also [Zhang et al., 2019] for convergence results.

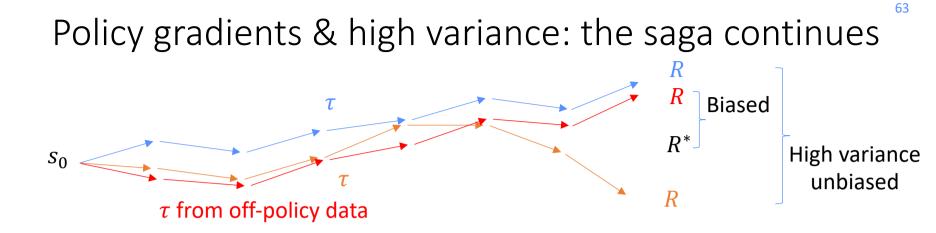
57

Outline

- 1. From Policy Iteration to Policy Search
- 2. Policy gradient methods

3. Actor-critic

- a. Compatible function approximation
- b. Advantages and Advantage Actor-Critic (A2C)
- c. Asynchronous A2C (A3C)
- d. Deep Deterministic Policy Gradient (DDPG)
- e. Soft Actor-Critic (SAC)



- Monte-Carlo policy gradient is unbiased but still has high variance $\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T-1} r_{t'} \right]$

Wu

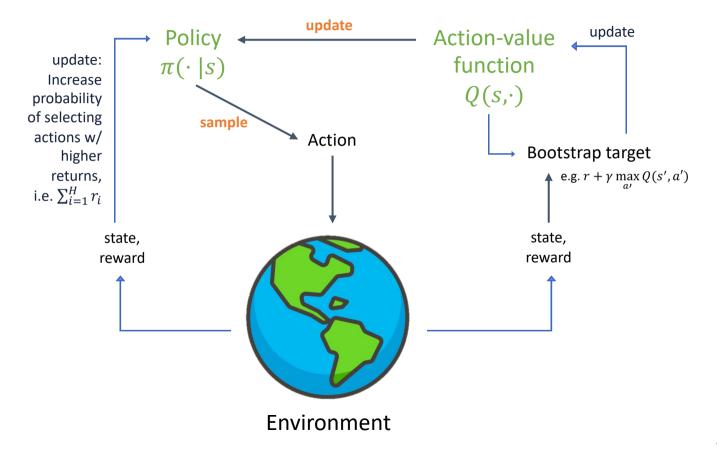
Policy- and value-based methods \rightarrow actor-critic

- Monte-Carlo policy gradient is unbiased but still has high variance $\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T-1} r_{t'} \right]$
- Incorporate an estimate of $Q^{\pi}(s, a) \Longrightarrow$ actor-critic
 - Critic: estimate the value function
 - Actor: update the policy in the direction suggested by the critic
- Actor-critic

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \, Q^{\pi_{\theta}}(s_t, a_t)\right]$$

These are equivalent (see HW).

Actor-critic methods



Actor-Critic

- Algorithm maintains two sets of parameters: $\theta \mapsto \pi_{\theta}, \omega \mapsto Q_{\omega}$
- Critic can use TD(0)

for
$$t = 0, ..., T - 1$$
 do
 $a_t \sim \pi_{\theta}(s_t, \cdot)$ and observe r_t and s_{t+1}
Compute temporal difference
 $\delta_t = r_t + \gamma Q_{\omega}(s_{t+1}, a_{t+1}) - Q_{\omega}(s_t, a_t)$
Update Q estimate
 $\omega = \omega + \beta \delta_t \nabla_{\omega} Q_{\omega}(s_t, a_t)$
Update policy
 $\theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q_{\omega}(s_t, a_t)$

end

Actor-Critic

Issues:

- $Q_{\omega}(s, a)$ is a biased estimate of $Q^{\pi_{\theta}}(s, a)$
- The update of θ may not follow the gradient of $\nabla_{\theta} V(\pi_{\theta})$

Solution:

• Choose the approximation space $Q_{\omega}(s, a)$ carefully \Rightarrow compatible function approximation between Q_{ω} and π_{θ} 67

Compatible Function Approximation

Actor-critic

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q^{\pi_{\theta}}(s_t, a_t)\right]$$

• Re-write using occupancy measures $\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}_{s \sim d} \pi_{\theta} E_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a)]$

- Interpretation (inner product): projection of Q^{πθ}(s, a) onto subspace spanned by ∇_θ log π_θ(a|s)
- Let $Q_{\omega}(s, a) = \sum_{i} \alpha_{i} [\nabla_{\theta} \log \pi_{\theta}(s, a)]_{i}$ where $\omega = (\alpha_{i})_{|\theta|}$

Proj"v

u

Compatible Function Approximation

Theorem

An action value function space Q_ω is compatible with a policy space π_θ if:

1.
$$\nabla_{\omega}Q_{\omega}(s,a) = \nabla_{\theta}\log \pi_{\theta}(s,a)$$

2. And if ω minimizes the squared error

$$\omega = \arg\min_{\omega} \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\sum_{a} \pi_{\theta}(a|s) (Q^{\pi_{\theta}}(s,a) - Q_{\omega}(s,a))^{2} \right]$$

Then:

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}_{s \sim d} \pi_{\theta} E_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\omega}(s,a)]$$

- Remark 1: conditions for which the policy gradient is exact.
- Remark 2: approximately satisfied by linear function approximation.

Sample Efficiency in Actor-Critic

Issues:

- Sample efficiency is pretty poor
- All samples need to be generated by the current policy (on-policy learning)
- Samples are discarded after a single update

Solutions:

- Variance reduction techniques
- Asynchronous training (A3C)
- Use samples from other policies via importance sampling (not very stable) (next time)
- Conservative approaches (next time)
- Newton for Quasi-newton methods

$$\nabla_{\theta} V(\pi_{\theta}) = \mathbb{E}_{s \sim d} \pi_{\theta} \left[\sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) \left(Q^{\pi_{\theta}}(s, a) - \frac{b(s)}{s} \right) \right]$$

- b(s) minimizes the variance
- V^π(s) is a good choice as baseline
 - It minimizes the variance in average reward [Bhatnagar et al., 2009]
- $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$ is the advantage function

73

Actor-Critic with Advantage Function (A2C)

• It is possible to estimate V^{π} and Q^{π} independently (e.g. by TD(0))

•
$$A^{\pi} = Q_{\omega} - V_{v}$$
 is a biased and unstable estimate

Solution:

• Consider the temporal difference error $\delta^{\pi_{\theta}} = r(s, a) + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$

•
$$\delta^{\pi_{\theta}}$$
 is an unbiased estimate of the advantage
 $\mathbb{E}[\delta^{\pi_{\theta}}|s,a] = \mathbb{E}[r(s,a) + \gamma V^{\pi_{\theta}}(s')|s,a] - V^{\pi_{\theta}}(s)$
 $= Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$

Actor-Critic with Advantage Function (A2C)

Estimate only $V_{\nu} \mapsto \delta_{\nu} = r + \gamma V_{\nu}(s') - V_{\nu}(s)$

Convergence results with compatible function approximation [Bhatnagar et al., 2009]

for t = 0, ..., T do $a_t \sim \pi^{\theta}(s_t, \cdot)$ and observer r_t and s_{t+1} Compute temporal difference $\delta_t = r_t + \gamma V_{\eta}(s_{t+1}) - V_{\eta}(s_t)$ Update V estimate $v = v + \beta \delta_t \nabla_n V_n(s_t)$ Update policy $\theta = \theta + \alpha \delta_t \nabla_\theta \log \pi_\theta(a_t|s_t)$ end

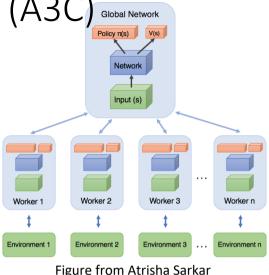
Compare (actor-critic):

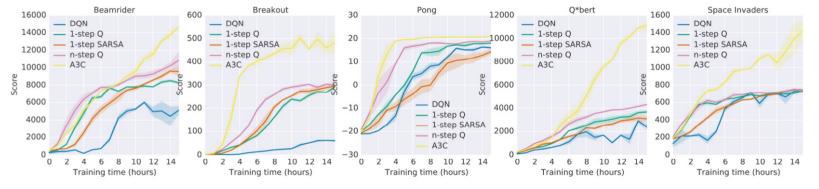
 $\delta_t = r_t + \gamma Q_{\omega}(s_{t+1}, a_{t+1}) - Q_{\omega}(s_t, a_t)$ $\omega = \omega + \beta \delta_t \nabla_{\omega} O_{\omega}(s_t, a_t)$ $\theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q_{\omega}(s_t, a_t)$

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.

Asynchronous Advantage Actor-Critic (A3C)

- Multiple independent agents (networks) with their own weights, who interact with a different copy of the environment in parallel.
- The agents (or workers) train in parallel using a global network θ . They periodically update the global network with their $d\theta$.
- Improved training exploration, stability.





Bringing policies back to value-based methods

- Recall: value-based methods have trouble handling continuous actions/large action spaces
- Key idea: simplify Q using deterministic policies

$$s \longrightarrow \pi \longrightarrow a \longrightarrow Q(s,a) \qquad s \longrightarrow Q \longrightarrow Q(s,a_1)$$

 $Q \longrightarrow Q(s,a_2) \longrightarrow Q(s,a_3)$

Deterministic Policy Gradient (2014)

- Recall: $V_D(\pi) = \mathbb{E}_{s \sim d^{\pi}} [r(s, \pi(s))]$
- $\nabla_{\theta} V_D(\theta) = \sum_s d^{\pi}(s) \nabla_{\theta} \pi_{\theta}(s) \nabla_a Q^{\pi}(s, a)|_{a=\pi_{\theta}(s)} = \mathbb{E}_{s \sim d^{\pi}} \left[\nabla_{\theta} \pi_{\theta}(s) \nabla_a Q^{\pi}(s, a)|_{a=\pi_{\theta}(s)} \right]$

Plug it into an actor-critic framework

• Use TD(0) to update a parametric representation of Q^{π}

$$\begin{split} \delta_{t} &= R_{t} + \gamma Q_{w}(s_{t+1}, a_{t+1}) - Q_{w}(s_{t}, a_{t}) & ; \text{TD error in SARSA} \\ w_{t+1} &= w_{t} + \alpha_{w} \delta_{t} \nabla_{w} Q_{w}(s_{t}, a_{t}) \\ \theta_{t+1} &= \theta_{t} + \alpha_{\theta} \nabla_{a} Q_{w}(s_{t}, a_{t}) \nabla_{\theta} \pi_{\theta}(s) \Big|_{a = \pi_{\theta}(s)} & ; \text{Deterministic policy} \\ \text{gradient theorem} \end{split}$$

• Issue: Need to explicitly force exploration, e.g. "behavior policy" $\beta(\cdot) \sim \mathcal{N}(\theta, \sigma \beta^2)$

"Soft policy iteration + function approximation" ₈₂

Soft actor-critic [Haarnoja, 2018]

1. [Soft policy evaluation]

Train the action-value function Q_{θ} , minimizing:

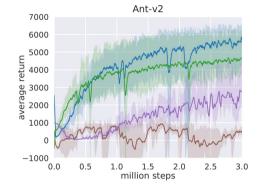
 $\arg\min_{\theta} \mathbb{E}_{(s,a)\in H} \left[\frac{1}{2} \left(Q_{\theta}(s_t, a_t) - \left(r(s_t, a_t) + \gamma \mathbb{E} \left[V_{\overline{\psi}}(s') \right] \right) \right)^2 \right]$! Fix the target network (e.g. DQN) \rightarrow increase stability / break dependences

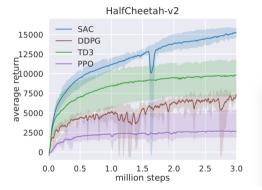
- 2. Train the value function V_{ψ} , minimizing: $J_{V}(\psi) = \mathbb{E}_{s_{t}\sim D} \left[\frac{1}{2} \left(V_{\psi}(s_{t}) - \mathbb{E}_{a_{t}\sim \pi_{\phi}} \left[Q_{\theta}(s_{t}, a_{t}) - \log \pi_{\phi}(a_{t}|s_{t}) \right] \right)^{2} \right]$
- **3. [Soft policy improvement]** soft state value function Fit the new (stochastic) policy π_{ϕ} :

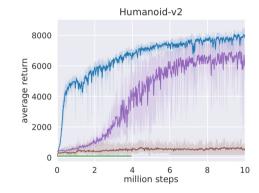
$$\arg\min_{\phi} \mathbb{E}_{s \in H} \left[D_{KL} \left(\pi_{\phi} || \frac{\exp[\eta Q_{\theta}]}{Z} \right) [s] \right]$$

replace max with softmax

Soft actor-critic (SAC) [Haarnoja, 2018]







Summary

- Policy gradient methods are an alternative and powerful class of reinforcement learning methods, based on directly optimizing the policy, rather than the value function.
- Policy gradient methods attempt to maximize the likelihood of good trajectories.
- Benefits over value-function based methods include not needing Markovian assumption and are often more effective for continuous action space problems.
- Disadvantages: high variance and on-policy (less sample efficient).
- Similar challenges include: exploration vs exploitation.
- A variety of approaches help to reduce variance: temporal structure, baselines, actor-critic methods.
- Core practical policy gradient methods: REINFORCE, SAC, TRPO, PPO. More on these later.