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Function approximation

7

Last 1me: adding funcDon approximaDon to value iteraDon
This 1me: adding funcDon approximaDon to policy iteraDon. Sorta.
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Policy Iteration: Recap
8

Let 𝜋! be an arbitrary stationary policy.
while 𝑘 = 1,… , 𝐾 do

Policy Evaluation: given 𝜋" compute 𝑉" = 𝑉#!
Policy Improvement: find 𝜋"$% that is better than 𝜋"

- e.g. compute the greedy policy:

𝜋"$% 𝑠 ∈ argmax
&∈𝒜

𝑟 𝑠, 𝑎 + 𝛾4
)

𝑝 𝑦 𝑠, 𝑎 𝑉#!(𝑦)

return the last policy 𝜋*
end
§ Convergence is finite and monotonic [Bertsekas, 2007] (in exact settings)

Issues: Function approximation for 𝑉#! ⟹ Is it still converging?  
Continuous Actions?

?
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Approximate Policy Iteration with 𝑄 Functions
9

Recall the state-ac+on cost-to-go func+on: 𝑄! 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑"! 𝑝(𝑠′|𝑠, 𝑎)𝑄! 𝑠#, 𝜋 𝑠#

Approximate PI:
§ For 𝑘 = 0, 1, 2, …

1. Approximate the value under 𝜋!: 𝑄"! ≈ 𝑄#!
2. Solve for an improved policy

𝜋!$% 𝑠 ∈ argmin
&∈( )

𝑄"! 𝑠, 𝑎 ∀𝑠 ∈ 𝒮

𝑄1* can be approximated by either TD or Monte Carlo methods.
Same story as fi%ed Q-iteraDon. No longer guaranteed to converge.
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From Policy Iteration to Policy Search
17

§ Approximate a stochastic policy directly using function approximation
𝜋+: 𝑆 → 𝒫 𝒜 with 𝜃 ∈ ℝ,

§ Let 𝑉 𝜋+ denote the policy performance of policy 𝜋+
Ø Policy optimization problem

max
#"

𝑉 𝜋+

Solution 1: Policy Search/Blackbox optimization:
Use global optimizers or gradient by finite-difference methods
Policy 𝜋+ can also be not differentiable w.r.t. 𝜃

Solution 2: Policy gradient optimization:
Compute the gradient ∇+𝑉 𝜃 and follow the ascent direction
∇+𝜋+ 𝑠, 𝑎 should exist
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Policy Gradient as Policy Update
21

1. How do we compute 𝛁𝜽𝑽 𝜽 ?
2. How quickly do we update (i.e. 𝛼")?

Approximate Policy IteraDon
𝜋#*+, = argmax

$-
𝑄$- 𝑠, 𝜋# 𝑠

Unstable (fast)
No convergence

Policy Gradient
𝜃"%& = 𝜃" + 𝛼"∇#𝑉 𝜃"

Smooth, fine control (slow)
Convergence to local optima
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Outline
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1. From Policy IteraDon to Policy Search

2. Policy gradient methods
a. REINFORCE
b. RepresenCng a policy (discrete and conCnuous!)
c. Variance reducCon (temporal structure and baselines)

3. Actor-criDc
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Assume: finite-horizon setting

30

Discount 𝛾 excluded to simplify notation.
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Policy Gradient (Finite-Horizon)
31

Given an MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and a policy 𝜋#.. For k = 1,2,…
1. Use 𝜋#* to collect data 𝜏.
2. Use 𝜏 to approximate gradient of:

𝑉 𝜋#* = 𝔼 B
'()

*+&

𝑟'|𝜋#*, 𝑀 = 𝔼,~ ℙ 𝜏 𝜋#*, 𝑀
ℛ 𝜏

where
• 𝜇 is an initial state distribution
• 𝜏 = 𝑠/, 𝑎/, 𝑟/, 𝑠%, 𝑎%, 𝑟%, … , 𝑠*+&, 𝑎*+&, 𝑟*+&, 𝑠* (includes terminal reward) 

is a trajectory 
• ℛ 𝜏 its return (sum of rewards).

3. Update 𝜃"%& = 𝜃" + 𝛼" E∇#𝑉 𝜋#*

Maximizing this is ulCmately 
what we desire

How?
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Policy Gradient (Finite-Horizon)
32

Policy Gradient Theorem [Williams, 1992; SuZon et al., 2000]
For any finite-horizon MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝑇, 𝜇 and differentiable 
policy 𝜋#

∇#𝑉 𝜋# = 𝔼,~ℙ ⋅ 𝜋,𝑀 𝑅 𝜏 B
'()

*+&

∇# log 𝜋# 𝑠' , 𝑎'

§ Model-free! Why?
§ Compare: taking gradient through trajectory-space is difficult

∇#𝑉 𝜋# = ∇#𝔼, 𝑅 𝜏 = ∇#Kℙ 𝜏 𝜋# , 𝑀 𝑅 𝜏 𝑑𝜏
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§ The objective is an expectation. Want to compute the gradient w.r.t. 𝜃
(simplify notation from: 𝑉 𝜋+ to 𝑉 𝜃 ). First, bring the gradient to the inside.

∇+𝑉 𝜃 = ∇+𝔼- 𝑅 𝜏 = ∇+Jℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

= J∇+ℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

= Jℙ 𝜏 𝜋+, 𝑀 ∇+ logℙ 𝜏 𝜋+, 𝑀 𝑅 𝜏 𝑑𝜏

= 𝔼- 𝑅 𝜏 ∇+ logℙ 𝜏 𝜋+, 𝑀
§ Last expression is an unbiased gradient estimator

Just sample 𝜏.~ ℙ 𝜏 𝜋+, 𝑀 , and compute P𝑔. = 𝑅 𝜏. ∇+ logℙ 𝜏. 𝜋+, 𝑀
§ Issue: Need to be able to compute & differentiate the density ℙ 𝜏 𝜋+, 𝑀 w.r.t 𝜃

Proof

Log trick
∇" logℙ 𝜏 𝜋" , 𝑀

=
∇"ℙ 𝜏 𝜋" , 𝑀
ℙ 𝜏 𝜋" , 𝑀
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Proof
Likelihood (with stochastic policies)

ℙ 𝜏 𝜋" , 𝑀 = 𝜇 𝑠/ =
01/

23%

𝜋" 𝑎0 𝑠0 𝑝 𝑠0$% 𝑠0 , 𝑎0

logℙ 𝜏 𝜋" , 𝑀 = log 𝜇 𝑠/ +@
01/

23%

log 𝜋" 𝑎0 𝑠0 + log 𝑝 𝑠0$% 𝑠0 , 𝑎0

∇" logℙ 𝜏 𝜋" , 𝑀 = ∇" log 𝜇 𝑠/ +@
01/

23%

∇" log 𝜋" 𝑎0 𝑠0 + ∇" log 𝑝 𝑠0$% 𝑠0 , 𝑎0
0 0

à model free
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AlternaCve proof: likelihood rescaling
§ Interested in policy gradient: ∇/ 𝑉 𝜃 + Δ |∇()
§ Likelihood rescaling

𝑉 𝜃 + Δ = 𝔼,(#) 𝑅 𝜏(𝜃)
∏' 𝜋#%/(𝑎'|𝑠')
∏' 𝜋#(𝑎'|𝑠')

§ Apply chain rule to get 

∇/ 𝑉 𝜃 + Δ R
∇()

= 𝔼,(#) 𝑅 𝜏(𝜃) B
'

∇ 𝜋# 𝑎' 𝑠'
𝜋# 𝑎' 𝑠'

= 𝔼A 𝑅 𝜏 ∑B ∇C log 𝜋C 𝑎B 𝑠B
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REINFORCE [Williams, 1992]
36

1. Let 𝜋#, be an arbitrary policy.
2. At each iteration 𝑘 = 1,… , 𝐾
• Sample 𝑚 trajectories 𝜏$ = 𝑠%, 𝑎%, 𝑟%, 𝑠&, … , 𝑠'(&, 𝑎'(&, 𝑟'(&, 𝑠' following 𝜋!
• Compute unbiased gradient estimate:

E∇"𝑉 𝜋"! =
1
𝑚@

41%

5

@
01/

23%

𝑟04 @
01/

23%

∇" log 𝜋"! 𝑎0
4 𝑠04

• Update parameters:
𝜃!$% = 𝜃! + 𝛼! E∇"𝑉 𝜋"!

3. Return last policy 𝜋#6
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How do we represent a policy?
Policy Gradient: Example

Normal Policy

𝜋 𝑎 𝑠 =
1

𝜎) 𝑠 2𝜋
𝑒
(
*(+" " #

,-$# (")

Then:

∇0 log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇0 𝑠
𝜎), 𝑠

∇0𝜇0 𝑠

∇) log 𝜋 𝑎 𝑠 =
𝑎 − 𝜇0 𝑠

, − 𝜎), 𝑠
𝜎)1 𝑠

∇)𝜇) 𝑠

Gibbs (softmax) Policy

𝜋 𝑎 𝑠 =
𝑒𝒦3" ",*

∑*!∈𝒜 𝑒𝒦3" ",*!

Then:
∇0 log 𝜋 𝑎 𝑠 = 𝒦∇0𝑄0 𝑠, 𝑎

−𝒦 =
*!∈𝒜

𝜋 𝑎# 𝑠 ∇0𝑄0 𝑠, 𝑎#
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Policy Gradient via Automatic Differentiation
§ Manually coding the derivative can be tedious
⟹ use auto diff

§ Define a graph parameterized by 𝜃 such that its gradient is the policy 
gradient

“Pseudo loss”: weighted maximum likelihood

U𝑉 =
1
𝑚
B
3(&

4

B
'()

*+&

log 𝜋# 𝑠3,' , 𝑎3,' W𝑞3,'

Where:
§ W𝑞3,' = ∑"()

*7 𝑟"3 for REINFORCE and
§ W𝑞3,' = ∑"('

*7 𝑟"3 for G(PO)MDP.
Note that 𝔼 ∇# U𝑉 = ∇#𝑉 𝜋# .
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W𝑔' = 𝑅 𝜏' ∇# logℙ 𝜏' 𝜋# , 𝑀
§ 𝑅 𝜏' measures how good is sample 𝜏'
§ Moving in the direcDon of W𝑔' pushes up the 

log probability of the sample in proporDon 
to how good it is.

InterpretaDon: uses good trajectories as 
supervised examples
• Like maximum likelihood in supervised learning
• Good stuff are made more likely while bad less
• Trial and Error approach

From “CS 294-112: Deep Reinforcement 
Learning” slides by S. Levine

𝑅 𝜏0

𝜏

REINFORCE as Supervised Learning

ℙ 𝜏0 𝜋" , 𝑀
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Dynamic programming vs policy gradient

40

How would policy gradient solve shortest path?

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5 Destination is node 5.
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REINFORCE
41

Pros
§ Easy to compute
§ Does not use Markov property!
§ Can be used in parDally observable MDPs without modificaDon

Issues
§ Use an MC esDmate of 𝑄(𝑠, 𝑎)
§ It has possibly a very large variance
§ Needs many samples to converge
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Policy-based vs value-based methods
42

Value-based methods
§ Conceptually more 

complicated
§ Global convergence 

guarantees for 
tabular discounted 
infinite horizon 
MDPs J

§ Doesn’t work that 
well outside of its 
comfort zone (on its 
own) LEnvironment

Action-value 
function
𝑄(𝑠,⋅)

Action

Policy
𝜋(⋅ |𝑠)

sample
max

w.p. 1 − 𝜖

random
w.p. 𝜖

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase 

probability 
of selec=ng 
ac=ons w/ 

higher 
returns,

i.e. ∑!"#$ 𝑟!

Policy-based methods
§ Sensible & simple J
§ Local convergence 

guarantees only
§ Also “works” for 

partial observation, 
nonstationary 
settings

§ Doesn’t work that 
well (on its own) L
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Policy Gradient: Temporal Structure
44

∇+𝑉 𝜋+ = 𝔼 4
./!

01%

∇+ log 𝜋+ 𝑎. 𝑠. 4
.#/.

01%

𝑟.#

Because ∀𝑡 :

𝔼*~!" ∇0 log 𝜋0 𝑎 𝑠= )
=!>%

=(&

𝑟$ |𝜏%:=(& = )
=!>%

=(&

𝑟$ .𝜋0 𝑠= , 𝑎 ∇0 log 𝜋0 𝑎 𝑠= 𝑑𝑎

= 4
.#/!

.1%

𝑟2 J∇+𝜋+ 𝑎 𝑠. 𝑑𝑎

= 4
.#/!

.1%

𝑟2 ∇+J𝜋+ 𝑎 𝑠. 𝑑𝑎 = 0

In literature known as G(PO)MDP [Peters and Schaal, 2008b].
≔ 1

Discuss: Why is 
this beYer?
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Policy Gradient: Baseline
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§ Further reduce the variance by introducing a baseline 𝑏 𝑠

∇#𝑉 𝜋# = 𝔼 B
'()

*+&

∇# log 𝜋# 𝑠' , 𝑎' B
'8('

*+&

𝑟'8 − 𝑏 𝑠'

§ The gradient estimate is unbiased.
§ “Near optimal choice” that minimize the variance is the expected 

sum of returns:

𝑏⋆ 𝑠 ≈ 𝔼 B
'()

*+&

𝑟'|𝑠) = 𝑠, 𝜋# , 𝑀 = 𝑉$- 𝑠

Interpretation: increase the log probability of an action 𝑎'
proportionally to how much returns are better than expected 
(relative values).

Discuss: Why does this help with variance?
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baseline

Intuition (variance reduction):

Var(x� y) = Var(x)� 2Cov(x, y) + Var(y)

Variance reducCon via baseline?
47

∇"𝑉 𝜋" = 𝔼 @
01/

23%

∇" log 𝜋" 𝑠0 , 𝑎0 @
0#10

23%

𝑟0# − 𝑏 𝑠0
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48Optimal Baseline Derivation
Rough Idea

∇#@𝑉 𝜋# = 𝔼, ∇#@ logℙ 𝜏 𝜋# (𝑅 𝜏 − 𝑏)

Var = 𝔼, (𝑔 𝜏 𝑅 𝜏 − 𝑏 )7 − 𝔼, 𝑔 𝜏 𝑅 𝜏 − 𝑏 7

⟹ 𝔼, 𝑔 𝜏 𝑅 𝜏 7

𝜕
𝜕b
Var =

𝜕
𝜕b
𝔼, 𝑔 𝜏 7 𝑅 𝜏 − 𝑏 7

=
𝜕
𝜕b𝔼, 𝑔 𝜏 7𝑅 𝜏 7 − 2

𝜕
𝜕b𝔼, 𝑔 𝜏 7𝑅 𝜏 𝑏 +

𝜕
𝜕b𝔼, 𝑏

7𝑔 𝜏 7

⟹ 𝑏⋆ 𝜏 =
𝔼, 𝑔 𝜏 7𝑅 𝜏
𝔼, 𝑔 𝜏 7

Expected return weighted by the magnitude of the gradient.

≔ 𝑔 𝜏

[Baseline is unbiased 
in expectaCon]

0
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Going Beyond the Finite-Horizon Case
52

Theorem
For an infinite horizon MDP (average or discounted), the policy 
gradient is:

∇#𝑉 𝜋# = 𝔼8~99
:-𝔼:~$- ⋅ 𝑠 ∇# log 𝜋# 𝑎 𝑠 �̂�$- 𝑠, 𝑎

§ 𝑑;
$- is the stationary distribution

§ �̂�$- is the state-action value estimate 𝑅 𝜏'
Preview to actor-cribc methods. See HW to formalize the connecbon.
Gradient esbmate based on 𝑚 trajectories 𝜏2 2/%

3 :

∇+𝑉 𝜋+ ≔
1
𝑚
4
2/%

3

4
./!

0$1%

𝛾.∇+ log 𝜋+ 𝑠.2 , 𝑎.2 4
.#/.

0$

𝛾.#1.𝑟.#
2

Where 𝑇2 is the length of trajectory 𝜏2.
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Convergence Results
56

§ Policy gradient is stochastic gradient
𝜃"%& = 𝜃" + 𝛼" ∇𝑉 𝜃" + noise

§ 𝑉 is non-convex
§ ⟹ converge asymptotically to a stationary point or a local minimum 

(under standard technical assumptions)
What is the quality of this point?

Dynamics are linear (LQ systems) ⟹ global convergence [Fazel et al., 
2018].
§ Surprising since min

$
𝑉LQ(𝜋) may be not convex, and 𝑉LQ is not 

smooth but is “almost” smooth (far from un/stable boundaries).
§ Hint: use properties of functions that are gradient dominated.
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Convergence Results
57

Issues
§ Non-convexity of the loss function
§ Unnatural policy parameterization: parameters that are far in 

Euclidean distance may describe the same policy (we will talk about 
this later)

§ Insufficient exploration: naïve stochastic exploration
§ Large variance of stochastic gradients: generally increases with the 

length of the horizon
Solution:
⟹ similar to LQ, we need structural assumptions [Bhandari and Russo, 
2019]
See also [Zhang et al., 2019] for convergence results.
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Outline
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1. From Policy Iteration to Policy Search

2. Policy gradient methods

3. Actor-critic
a. Compatible function approximation
b. Advantages and Advantage Actor-Critic (A2C)
c. Asynchronous A2C (A3C)
d. Deep Deterministic Policy Gradient (DDPG)
e. Soft Actor-Critic (SAC)
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Policy gradients & high variance: the saga continues
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§ Monte-Carlo policy gradient is unbiased but still has high variance

∇"𝑉 𝜋" = 𝔼 @
01/

23%

∇" log 𝜋" 𝑎0 𝑠0 @
0#10

23%

𝑟0#

§ Policy gradient is on-policy (doesn’t re-use data à inefficient!)

𝑠/
𝜏

𝑅

𝜏
𝑅

𝜏 from off-policy data

𝑅

𝑅∗ High variance
unbiased

Biased
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Policy- and value-based methods à actor-critic
64

§ Monte-Carlo policy gradient is unbiased but still has high variance

∇"𝑉 𝜋" = 𝔼 @
01/

23%

∇" log 𝜋" 𝑎0 𝑠0 @
0#10

23%

𝑟0#

§ Incorporate an estimate of 𝑄$ 𝑠, 𝑎 ⟹ actor-critic
• Critic: estimate the value function
• Actor: update the policy in the direction suggested by the critic

§ Actor-critic

∇#𝑉 𝜋# = 𝔼 B
'()

*+&

∇# log 𝜋# 𝑎' 𝑠' 𝑄$-(𝑠' , 𝑎')

§ These are equivalent (see HW).
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Actor-critic methods
65

Environment

Action-value 
function
𝑄(𝑠,⋅)

Action

Policy
𝜋(⋅ |𝑠)

sample

state,
reward

state,
reward

Bootstrap target

update

e.g. 𝑟 + 𝛾max
!"

𝑄(𝑠", 𝑎′)

update:
Increase 

probability 
of selecting 
actions w/ 

higher 
returns,

i.e. ∑!"#$ 𝑟!

update
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Actor-CriCc
66

§ Algorithm maintains two sets of parameters: 𝜃 ⟼ 𝜋# , 𝜔 ⟼ 𝑄<
§ Critic can use 𝑇𝐷 0

for 𝑡 = 0,… , 𝑇 − 1 do
𝑎'~𝜋# 𝑠' ,⋅ and observe 𝑟' and 𝑠'%&
Compute temporal difference

𝛿' = 𝑟' + 𝛾𝑄< 𝑠'%&, 𝑎'%& − 𝑄< 𝑠' , 𝑎'
Update 𝑄 estimate 

𝜔 = 𝜔 + β𝛿'∇<𝑄< 𝑠' , 𝑎'
Update policy

𝜃 = 𝜃 + 𝛼∇# log 𝜋# 𝑎' 𝑠' 𝑄< 𝑠' , 𝑎'
end
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Actor-Critic
67

Issues: 
§ 𝑄< 𝑠, 𝑎 is a biased estimate of 𝑄$- 𝑠, 𝑎
§ The update of 𝜃 may not follow the gradient of ∇#𝑉(𝜋#)

Solution:
§ Choose the approximation space 𝑄<(𝑠, 𝑎) carefully
⟹ compatible function approximation between 𝑄< and 𝜋#
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CompaCble FuncCon ApproximaCon
68

§ Actor-critic

∇#𝑉 𝜋# = 𝔼 B
'()

*+&

∇# log 𝜋# 𝑎' 𝑠' 𝑄$-(𝑠' , 𝑎')

§ Re-write using occupancy measures
∇#𝑉 𝜋# = 𝔼8~9:-𝐸:~$- ∇# log 𝜋# 𝑎 𝑠 𝑄$- 𝑠, 𝑎

§ Interpretation (inner product): projection of 𝑄$- 𝑠, 𝑎 onto 
subspace spanned by ∇# log 𝜋# 𝑎 𝑠

§ Let 𝑄< 𝑠, 𝑎 = ∑3 𝛼3[∇#log 𝜋# 𝑠, 𝑎 ]𝑖
where 𝜔 = 𝛼3 |#|
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Compatible Function Approximation
70

Theorem
An action value function space 𝑄< is compatible with a policy space 
𝜋# if:
1. ∇<𝑄< 𝑠, 𝑎 = ∇#log 𝜋# 𝑠, 𝑎
2. And if 𝜔 minimizes the squared error

𝜔 = argmin
<
𝔼8~9:- B

:

𝜋# 𝑎 𝑠 𝑄$- 𝑠, 𝑎 − 𝑄< 𝑠, 𝑎 7

Then:
∇#𝑉 𝜋# = 𝔼8~9:-𝐸:~$- ∇# log 𝜋# 𝑎 𝑠 𝑄< 𝑠, 𝑎

• Remark 1: condiCons for which the policy gradient is exact.
• Remark 2: approximately saCsfied by linear funcCon approximaCon.
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Sample Efficiency in Actor-CriCc
72

Issues:
§ Sample efficiency is pretty poor
§ All samples need to be generated by the current policy (on-policy 

learning)
§ Samples are discarded after a single update
Solutions:
§ Variance reduction techniques
§ Asynchronous training (A3C)
§ Use samples from other policies via importance sampling (not very 

stable) (next time)
§ Conservative approaches (next time)
§ Newton for Quasi-newton methods
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Actor-Critic with a Baseline
73

∇#𝑉 𝜋# = 𝔼8~9:- B
:

∇#𝜋# 𝑠, 𝑎 𝑄$- 𝑠, 𝑎 − 𝑏 𝑠

§ 𝑏(𝑠) minimizes the variance
§ 𝑉$(𝑠) is a good choice as baseline
• It minimizes the variance in average reward [Bhatnagar et al., 2009]

§ 𝐴$ 𝑠, 𝑎 = 𝑄$ 𝑠, 𝑎 − 𝑉$ 𝑠 is the advantage function
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Actor-CriCc with Advantage FuncCon (A2C)
74

§ It is possible to estimate 𝑉$ and 𝑄$ independently (e.g. by 𝑇𝐷 0 )
§ 𝐴$ = 𝑄< − 𝑉𝒱 is a biased and unstable estimate
Solution:
§ Consider the temporal difference error

𝛿$- = 𝑟 𝑠, 𝑎 + 𝛾𝑉$- 𝑠? − 𝑉$- 𝑠
§ 𝛿$- is an unbiased estimate of the advantage

𝔼 𝛿$- 𝑠, 𝑎 = 𝔼 𝑟 𝑠, 𝑎 + 𝛾𝑉$- 𝑠? 𝑠, 𝑎 − 𝑉$- 𝑠
= 𝑄$- 𝑠, 𝑎 − 𝑉$- 𝑠
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Actor-Critic with Advantage Function (A2C)
75

§ Estimate only 𝑉5 ⟼ 𝛿5 = 𝑟 + 𝛾𝑉5 𝑠6 − 𝑉5 𝑠
F Convergence results with compatible function approximation [Bhatnagar et 
al., 2009]

for 𝑡 = 0,… , 𝑇 do
𝑎.~𝜋+ 𝑠.,⋅ and observer 𝑟. and 𝑠.$%
Compute temporal difference

𝛿. = 𝑟. + 𝛾𝑉5 𝑠.$% − 𝑉5 𝑠.
Update 𝑉 estimate 

𝑣 = 𝑣 + β𝛿.∇5𝑉5 𝑠.
Update policy

𝜃 = 𝜃 + 𝛼𝛿7∇+ log 𝜋+ 𝑎. 𝑠.
end

Compare (actor-critic):
𝛿% = 𝑟% + 𝛾𝑄& 𝑠%'#, 𝑎%'# − 𝑄& 𝑠%, 𝑎%
𝜔 = 𝜔 + β𝛿%∇&𝑄& 𝑠%, 𝑎%

𝜃 = 𝜃 + 𝛼∇( log 𝜋( 𝑎% 𝑠% 𝑄& 𝑠%, 𝑎%
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Asynchronous Advantage Actor-CriCc (A3C)
79

§ Multiple independent agents (networks) with 
their own weights, who interact with a 
different copy of the environment in parallel.

§ The agents (or workers) train in parallel using a 
global network 𝜃. They periodically update the 
global network with their 𝑑𝜃.

§ Improved training exploration, stability. Figure from Atrisha Sarkar

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." ICML, 2016.
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Bringing policies back to value-based methods
80

§ Recall: value-based methods have trouble handling conOnuous acOons/large acOon spaces
§ Key idea: simplify Q using determinisOc policies

DeterminisOc Policy Gradient (2014)
§ Recall: 𝑉% 𝜋 = 𝔼&~() 𝑟 𝑠, 𝜋 𝑠
§ ∇)𝑉% 𝜃 = ∑& 𝑑* 𝑠 ∇)𝜋) 𝑠 ∇+𝑄* 𝑠, 𝑎 |+,** & = 𝔼&~() |∇)𝜋) 𝑠 ∇+𝑄* 𝑠, 𝑎 +,** &

Plug it into an actor-criOc framework

§ Use 𝑇𝐷 0 to update a parametric representaOon of 𝑄*
𝛿- = 𝑅- + 𝛾𝑄. 𝑠-/0, 𝑎-/0 − 𝑄. 𝑠- , 𝑎-
𝑤-/0 = 𝑤- + 𝛼.𝛿-∇.𝑄. 𝑠- , 𝑎-
𝜃-/0 = 𝜃- + 𝛼)∇+𝑄. 𝑠- , 𝑎- ∇)𝜋) 𝑠 U

+,** &

§ Issue: Need to explicitly force exploraOon, e.g. “behavior policy” 𝛽 ⋅ ~𝒩 𝜃, 𝜎𝛽1

Q𝑠
𝑄 𝑠, 𝑎!
𝑄 𝑠, 𝑎"
𝑄 𝑠, 𝑎#

Q𝑠 𝑄 𝑠, 𝑎𝜋𝑠 𝑎

; TD error in SARSA

; Deterministic policy 
gradient theorem
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Soft actor-critic [Haarnoja, 2018]
82

1. [So2 policy evalua9on]
Train the acDon-value funcDon 𝑄#, minimizing:

argmin
#
𝔼 8,: ∈[

1
2
𝑄# 𝑠' , 𝑎' − 𝑟 𝑠' , 𝑎' + 𝛾𝔼 𝑉\] 𝑠?

7

! Fix the target network (e.g. DQN) → increase stability / break dependences

2. Train the value funcDon 𝑉], minimizing:

𝐽 𝜓 = 𝔼8$~_
1
2
𝑉] 𝑠' − 𝔼:$~$% 𝑄# 𝑠' , 𝑎' − log 𝜋` 𝑎' 𝑠'

7

3. [So2 policy improvement]
Fit the new (stochasDc) policy 𝜋`:

argmin
`
𝔼8∈[ 𝐷ab 𝜋`||

exp 𝜂𝑄#
𝑍

[𝑠]

replace max with softmax

soft state value function

entropy regularization

“Soft policy iteration + function approximation”
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Soft actor-critic (SAC) [Haarnoja, 2018]
83



Wu

Summary
§ Policy gradient methods are an alternative and powerful class of 

reinforcement learning methods, based on directly optimizing the policy, 
rather than the value function.

§ Policy gradient methods attempt to maximize the likelihood of good 
trajectories.

§ Benefits over value-function based methods include not needing Markovian
assumption and are often more effective for continuous action space 
problems.

§ Disadvantages: high variance and on-policy (less sample efficient).
§ Similar challenges include: exploration vs exploitation.
§ A variety of approaches help to reduce variance: temporal structure, 

baselines, actor-critic methods.
§ Core practical policy gradient methods: REINFORCE, SAC, TRPO, PPO. More 

on these later.
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