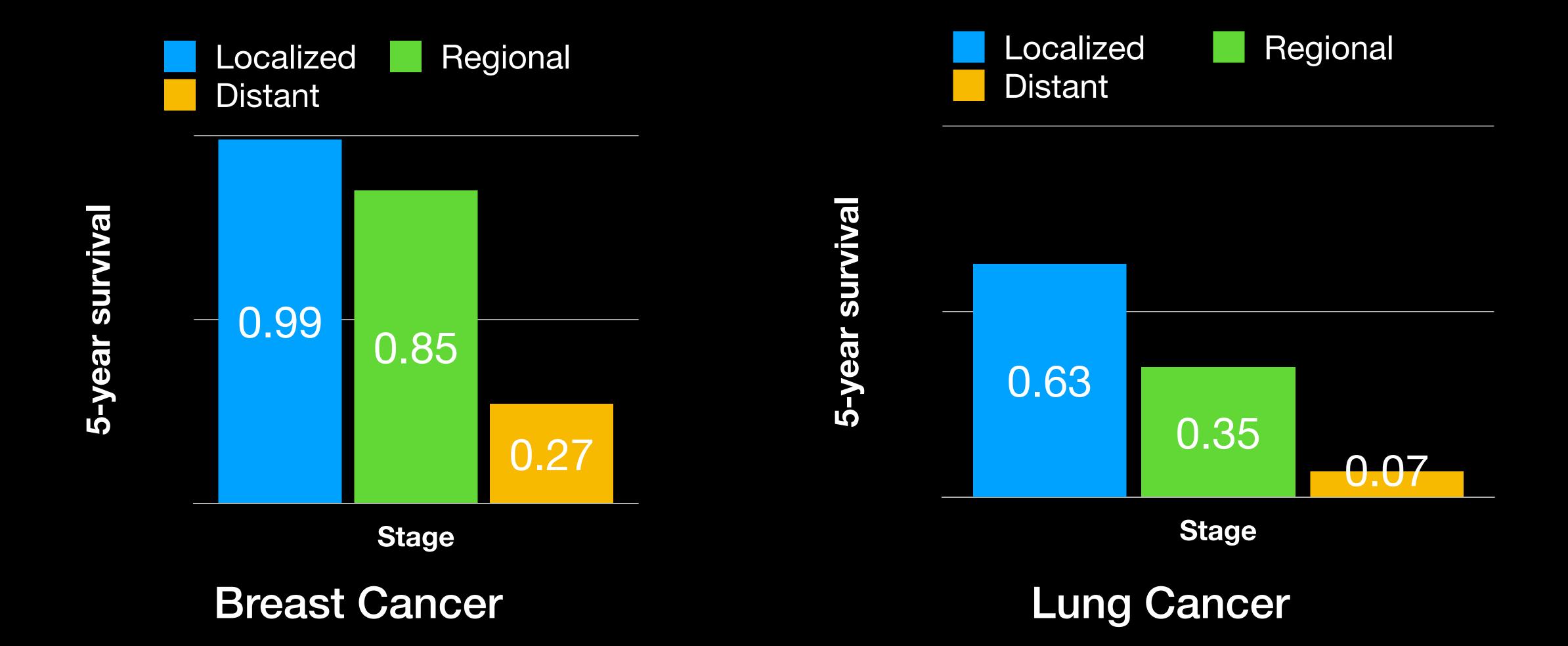
Seeing into the Future: Machine learning for Personalized Screening

Adam Yala, PhD

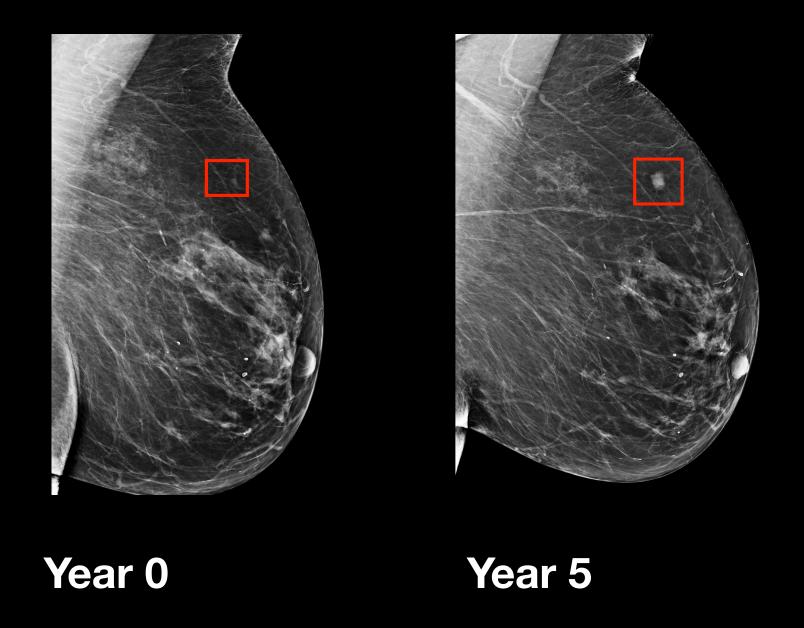
Assistant Professor

Early Detection is critical

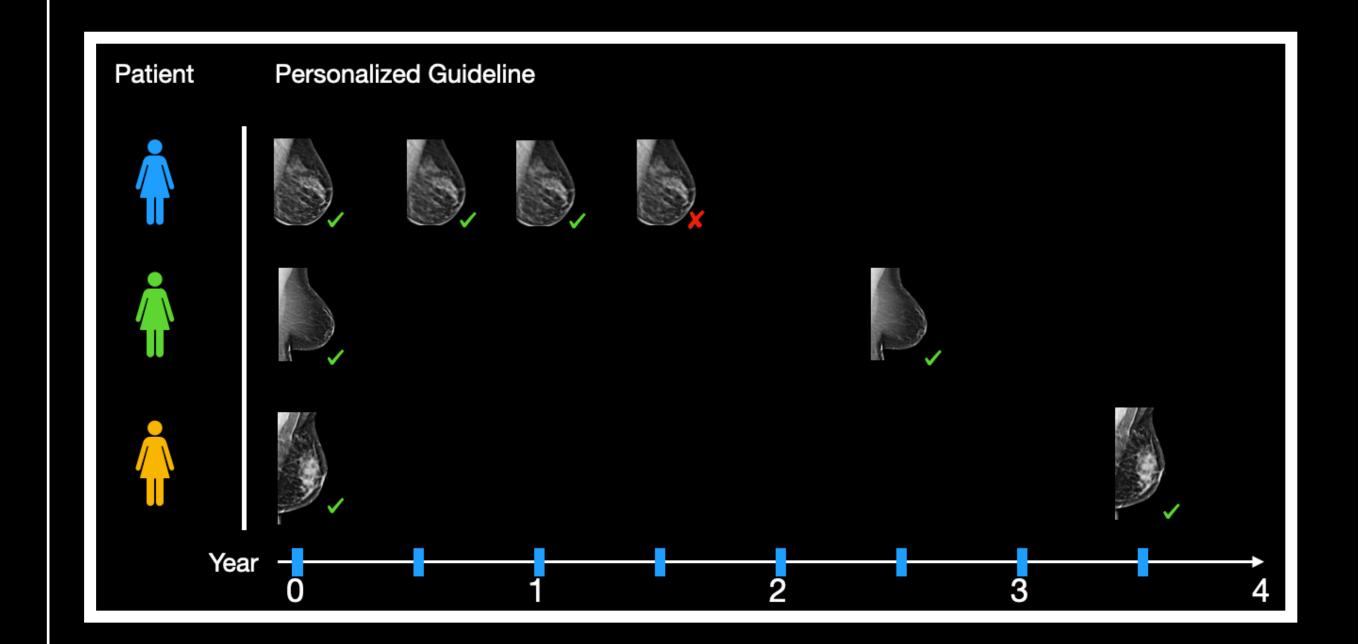


How to catch cancer earlier

Predict Cancer Risk



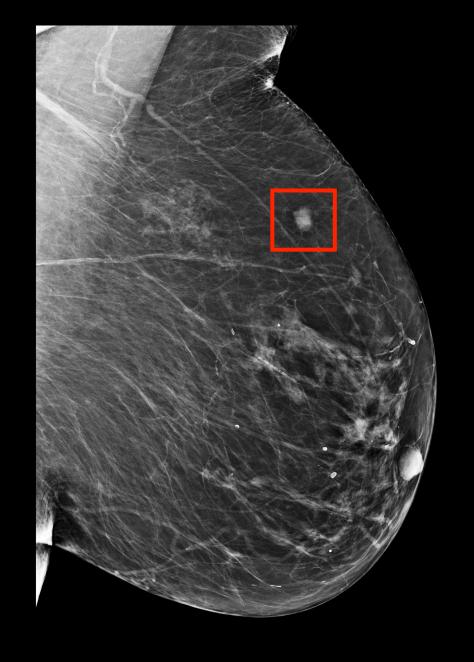
Create personalized screening policy



How to catch cancer earlier

Predict Cancer Risk

- Identify which population is at risk of developing cancer



Year 0

Year 5

Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model

Adam Yala, MEng^{1,2}; Peter G. Mikhael, BS^{1,2}; Fredrik Strand, MD, PhD^{3,4}; Gigin Lin, MD, PhD⁵; Siddharth Satuluru, BS⁶;

SCIENCE TRANSLATIONAL MEDICINE

Toward robust mammography-based models for breast cancer risk

Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}

Radiology

A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

Adam Yala, MEng • Constance Lehman, MD, PhD • Tal Schuster, MS • Tally Portnoi, BS • Regina Barzilay, PhD

Traditional approach: use expert knowledge

Age

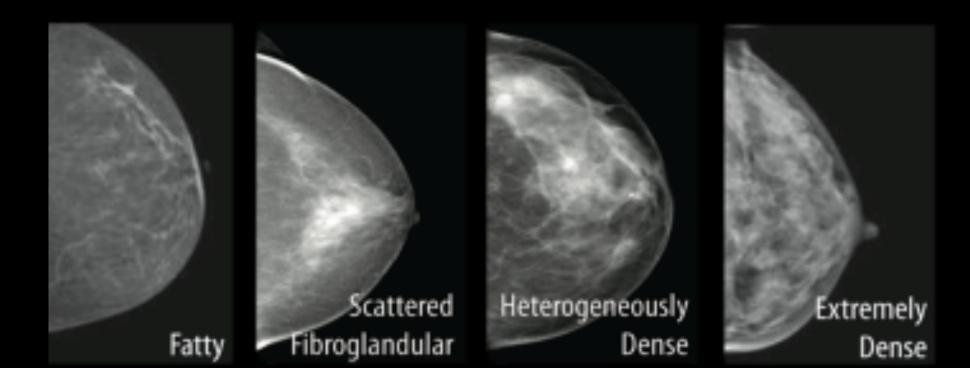
Family History

Prior Breast Procedure

Breast Density

Age

Model → Risk



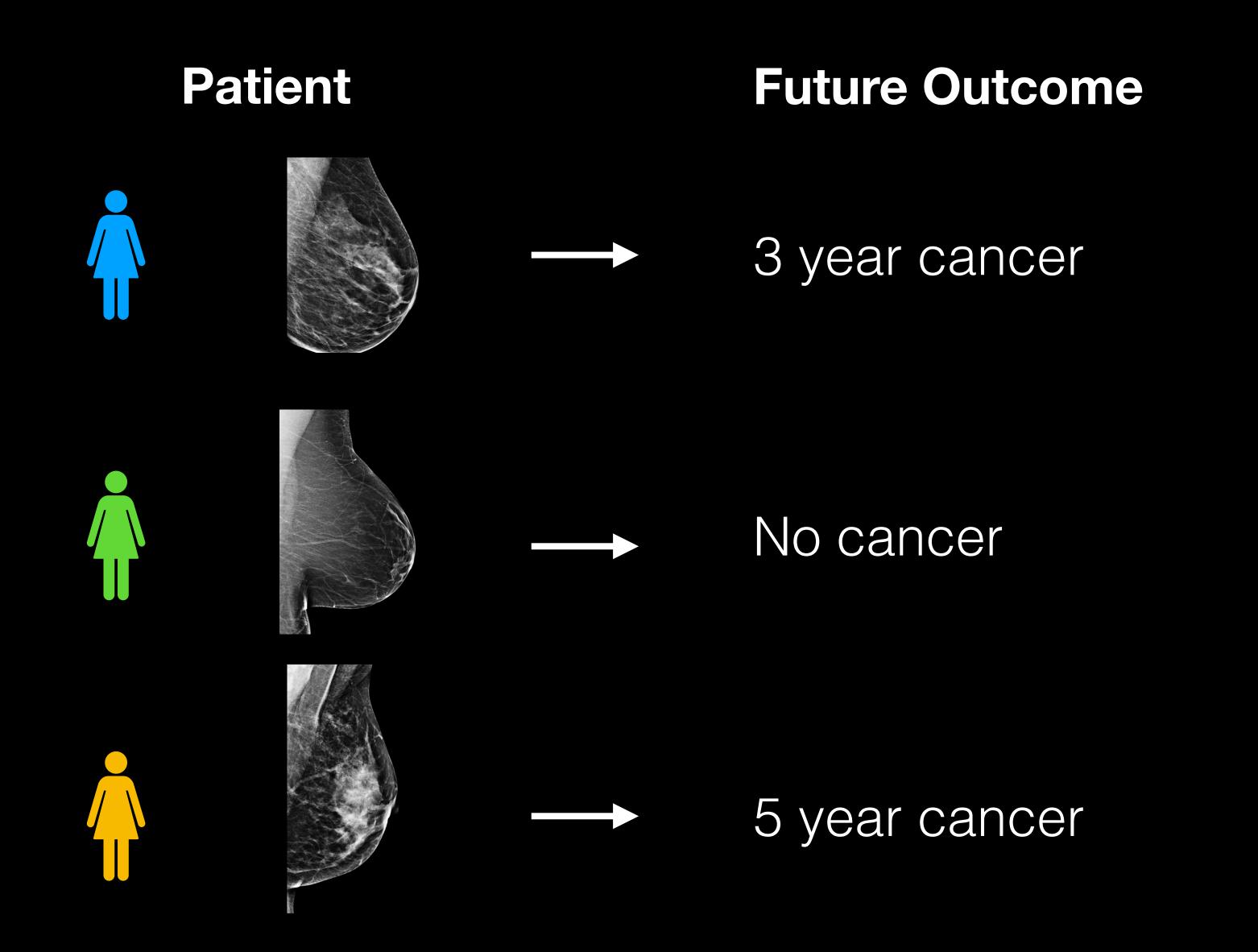
AUC: 0.63

AUC: 0.61 without Density

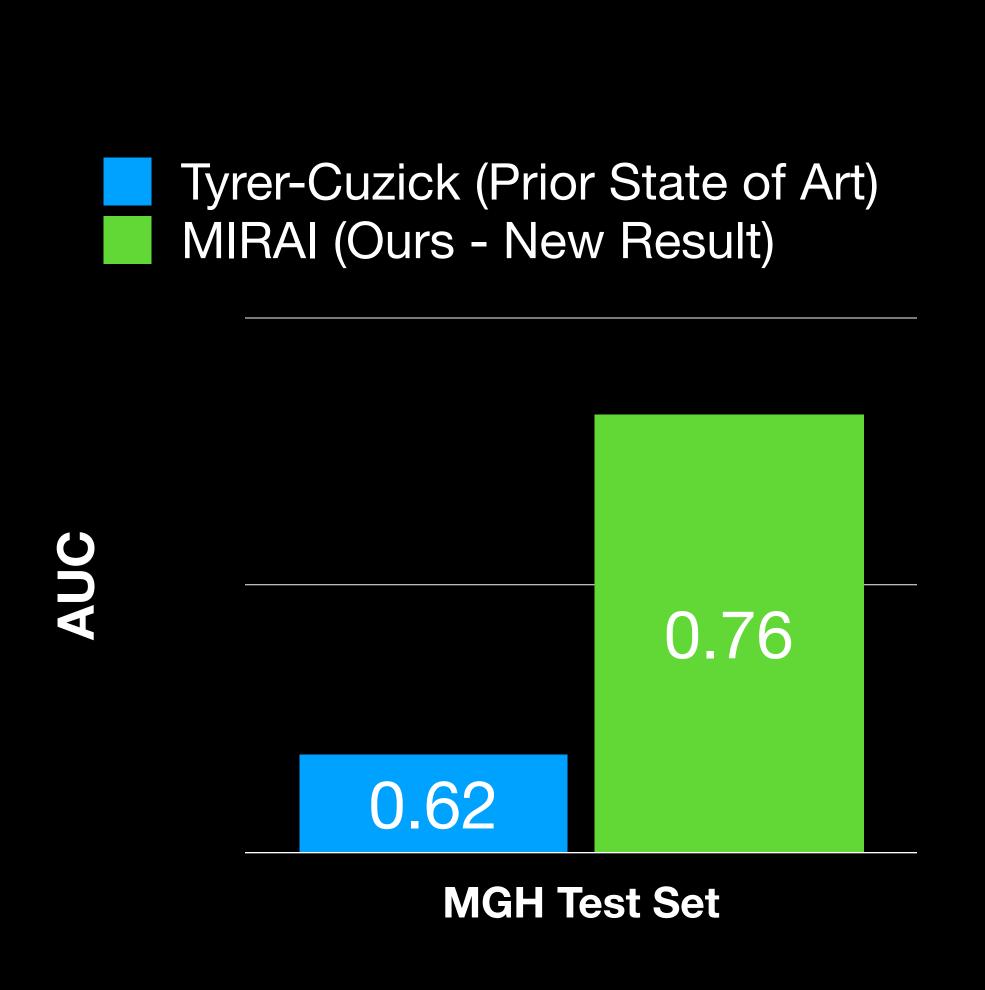
J Natl Cancer Inst. 2006 Sep 6;98(17):1204-14.

Prospective breast cancer risk prediction model for women undergoing screening mammography.

Learning to predict future cancer from imaging



Maintains accuracy across diverse populations



Selecting patients for supplemental imaging



Retrospective analysis

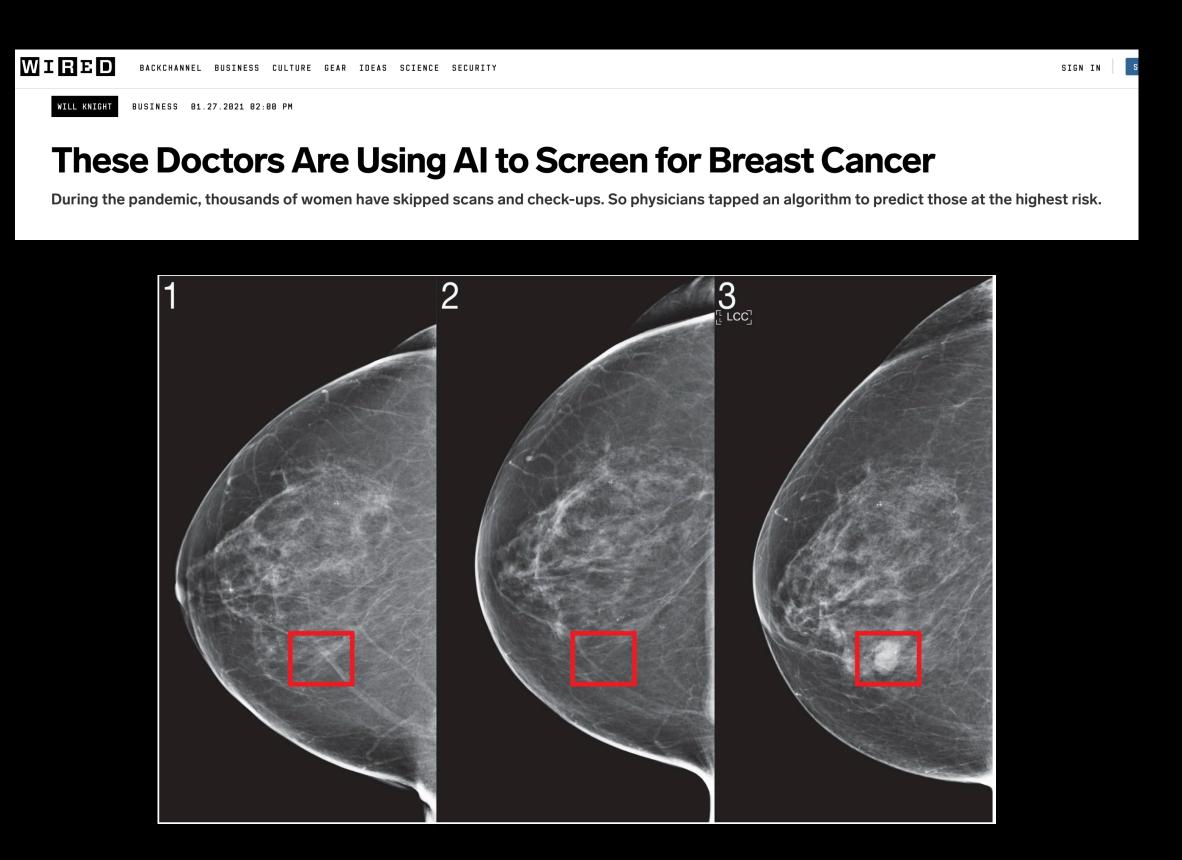
1.7x higher cancer yield, same MRI volume as current care.

Better early detection, same cost.

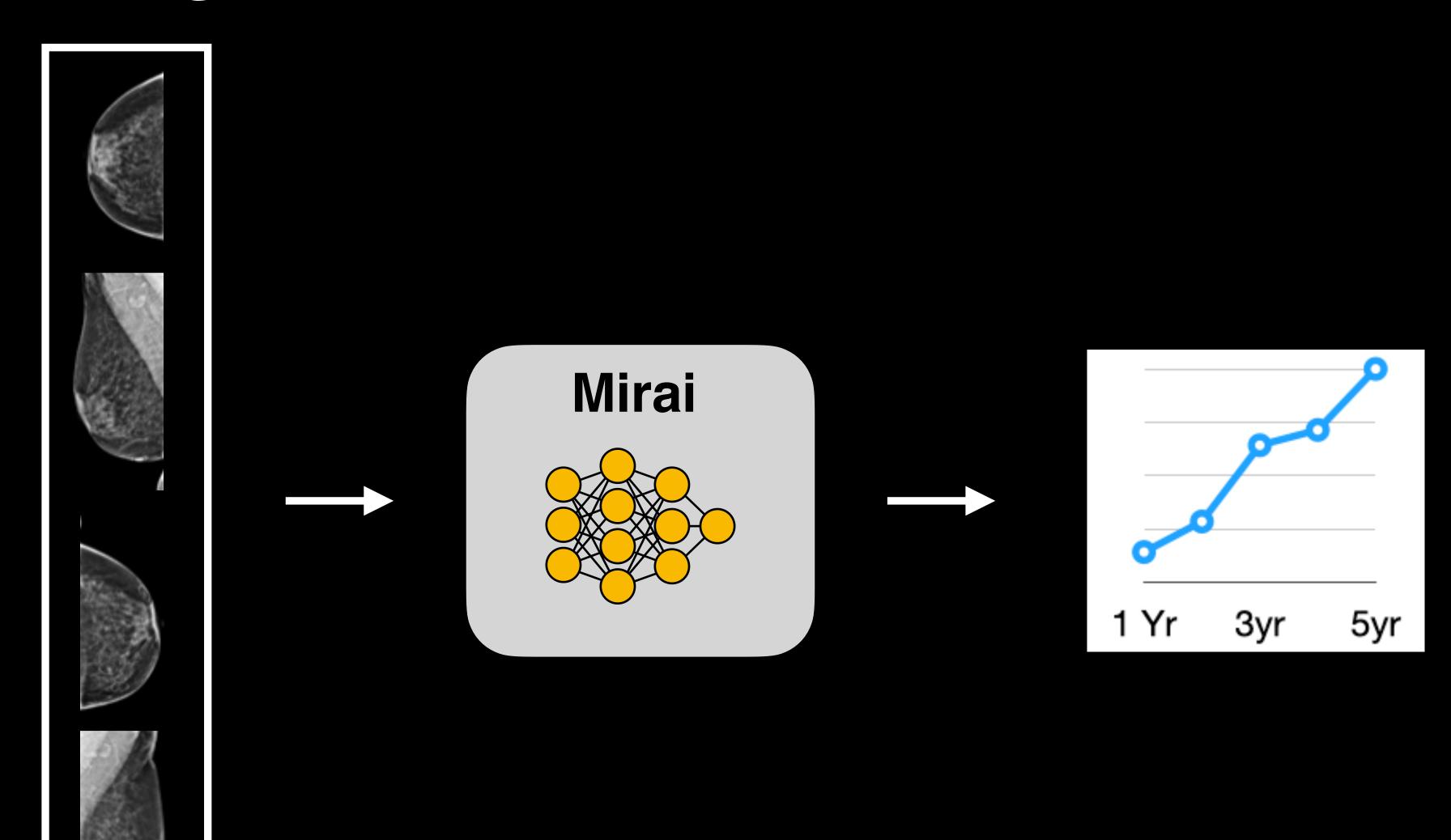
Mirai Use Cases

Organizing prospective trials for multiple use cases

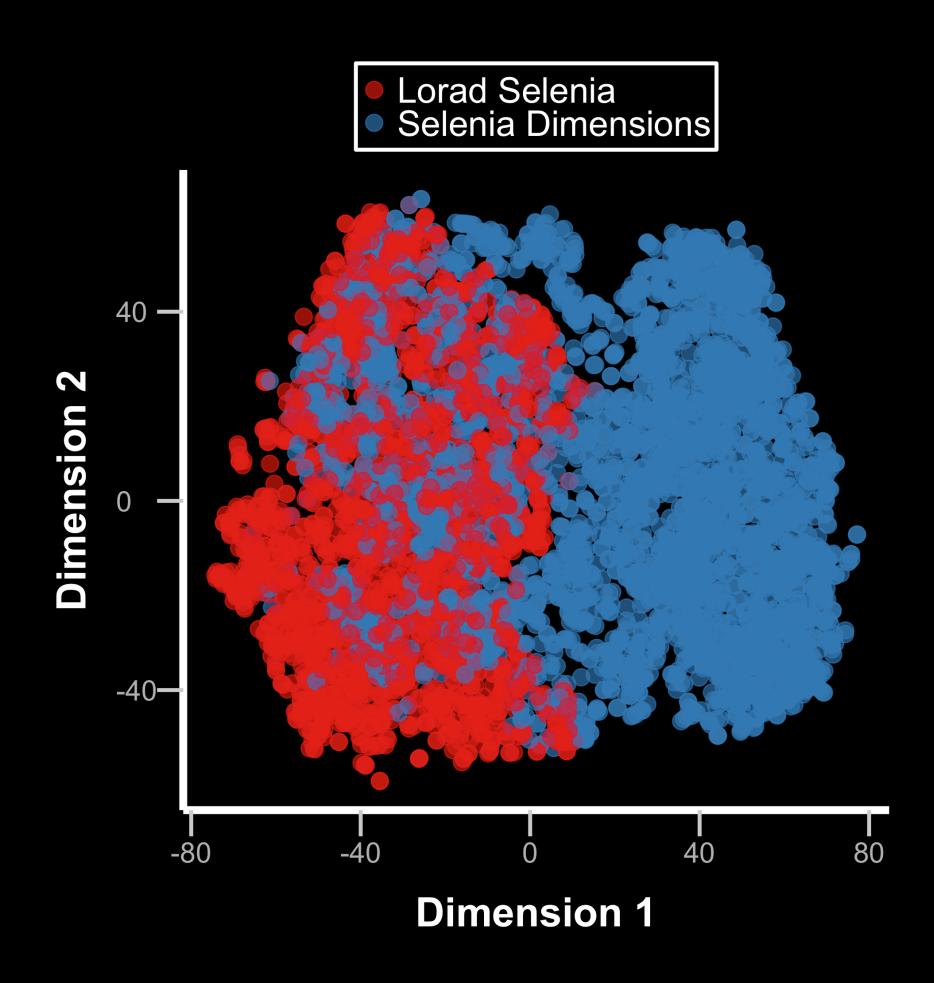
Highlight: Prioritize screening from covid backlog at MGH



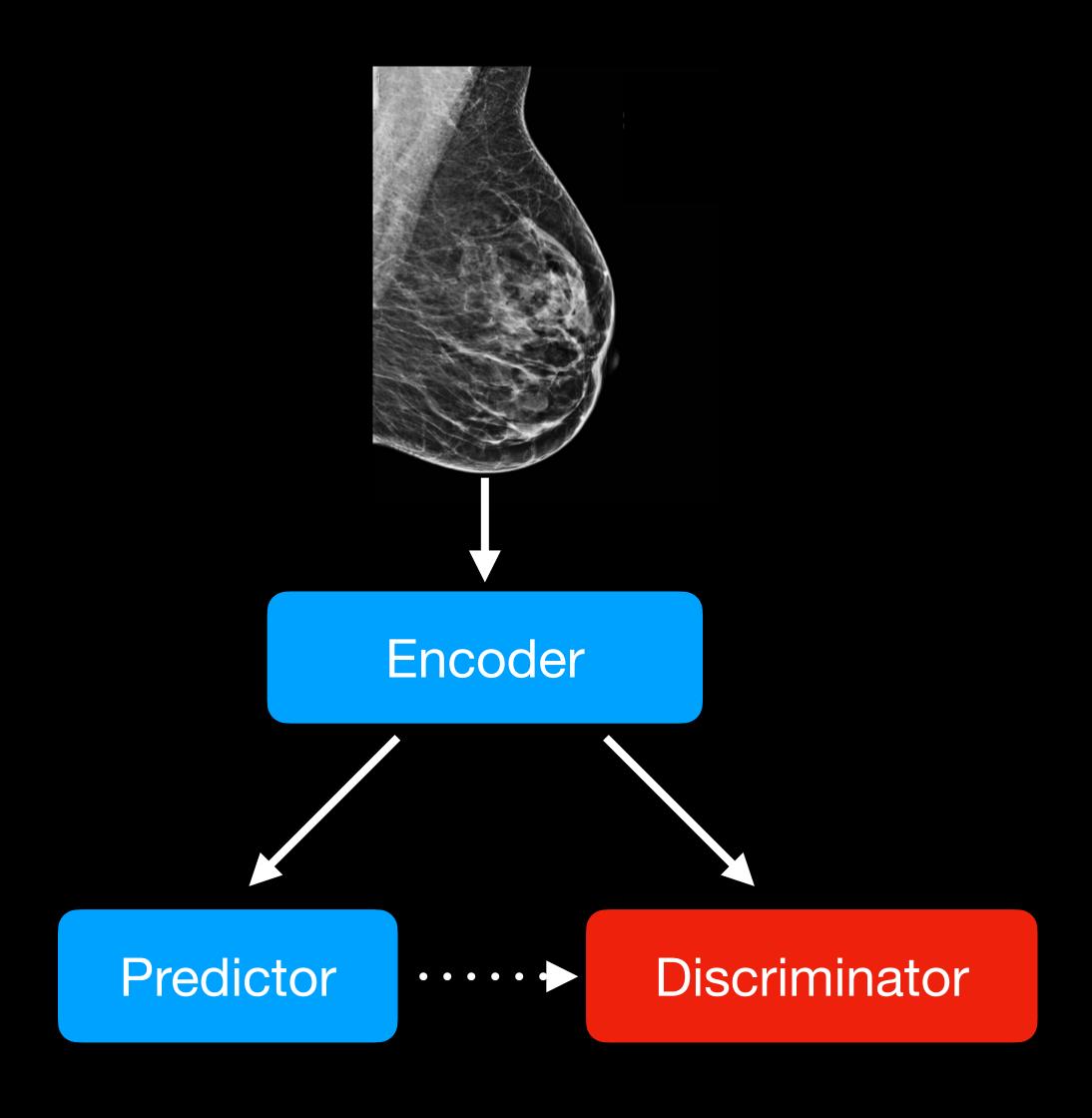
Mirai: Image-based Risk model



Problem 1: Device Invariance



Problem 1: Device Invariance

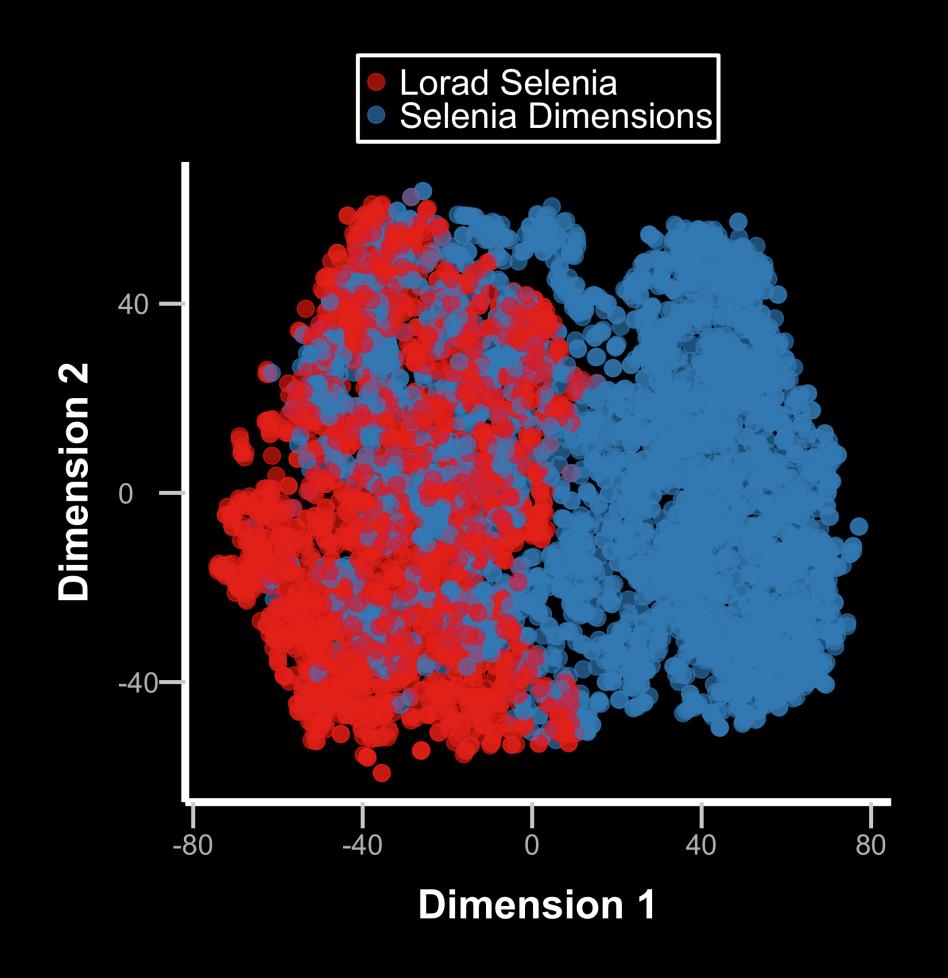


Objective:

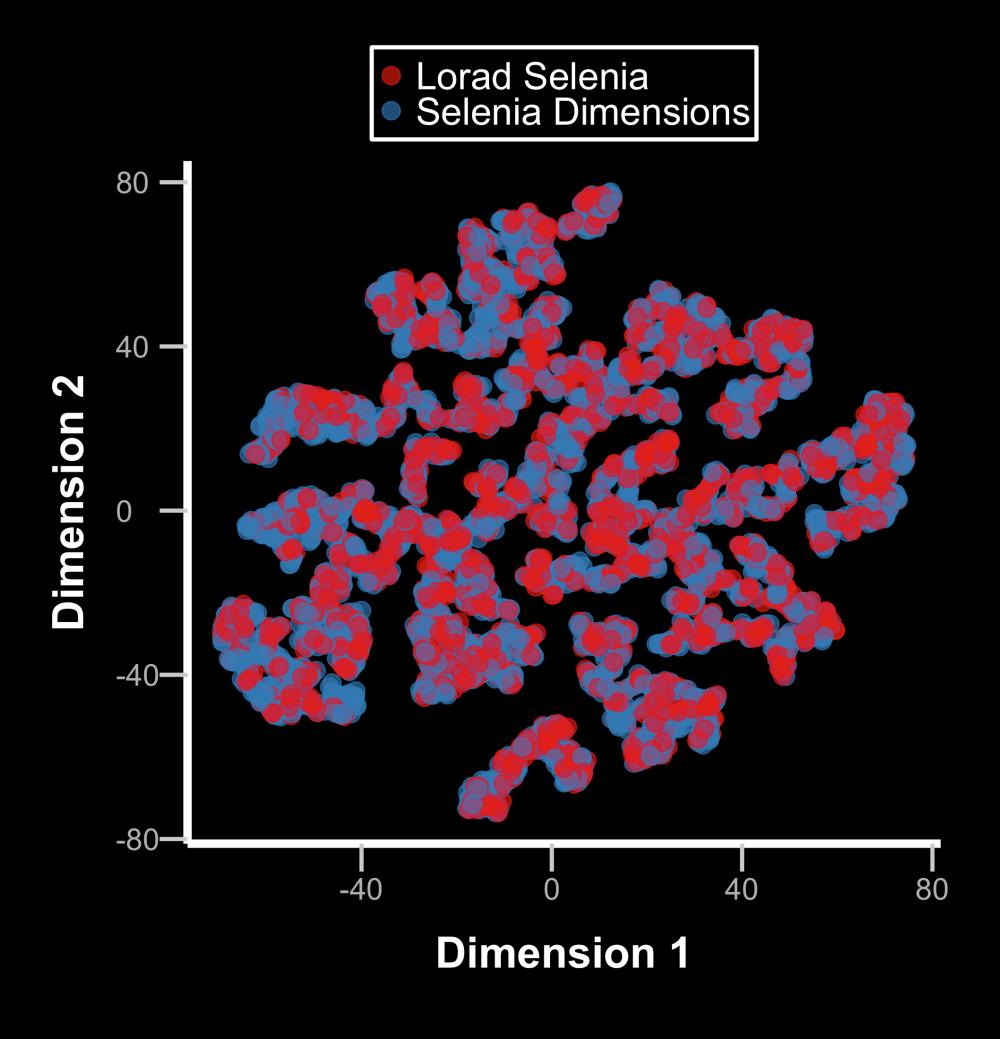
Max accuracy Predictor

Min accuracy Discriminator

Problem 1: Device Invariance

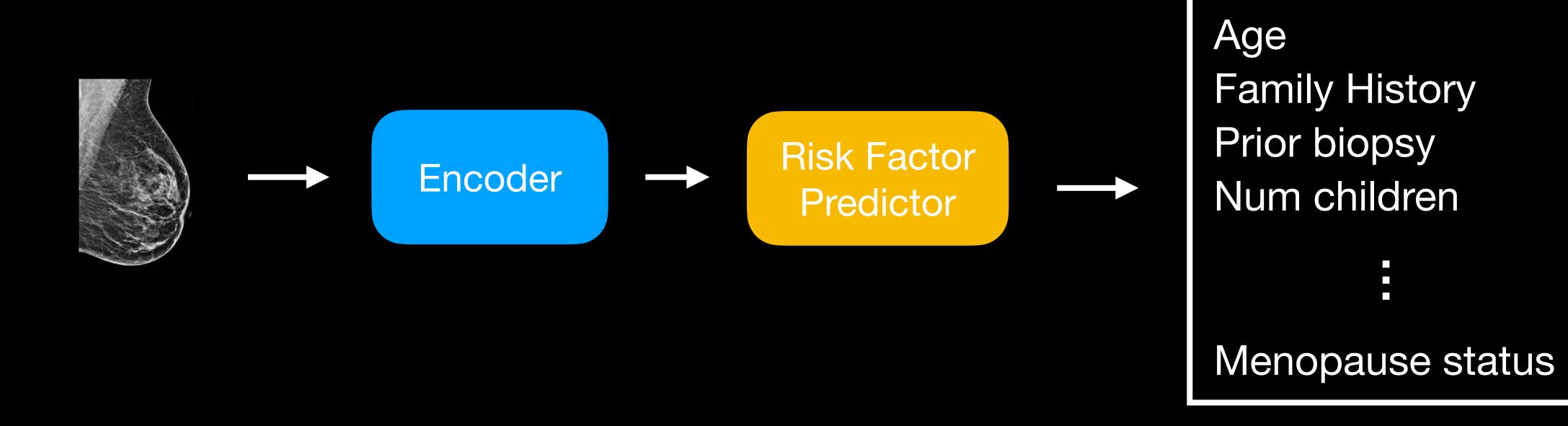


Without Adversary



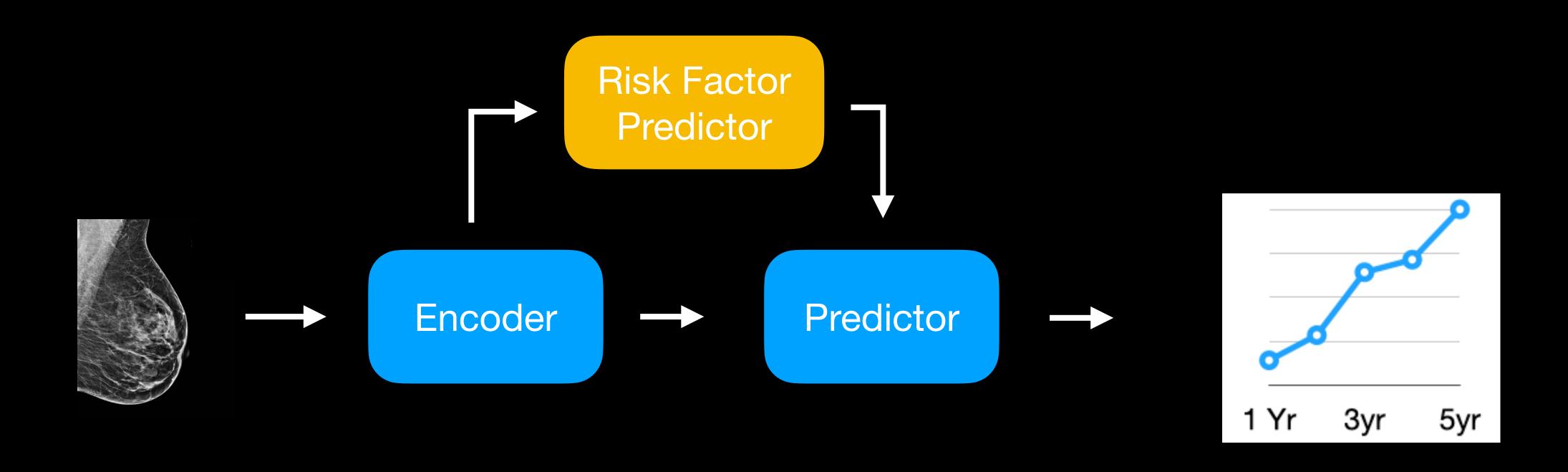
With Adversary

Problem 2: Missing risk factor data

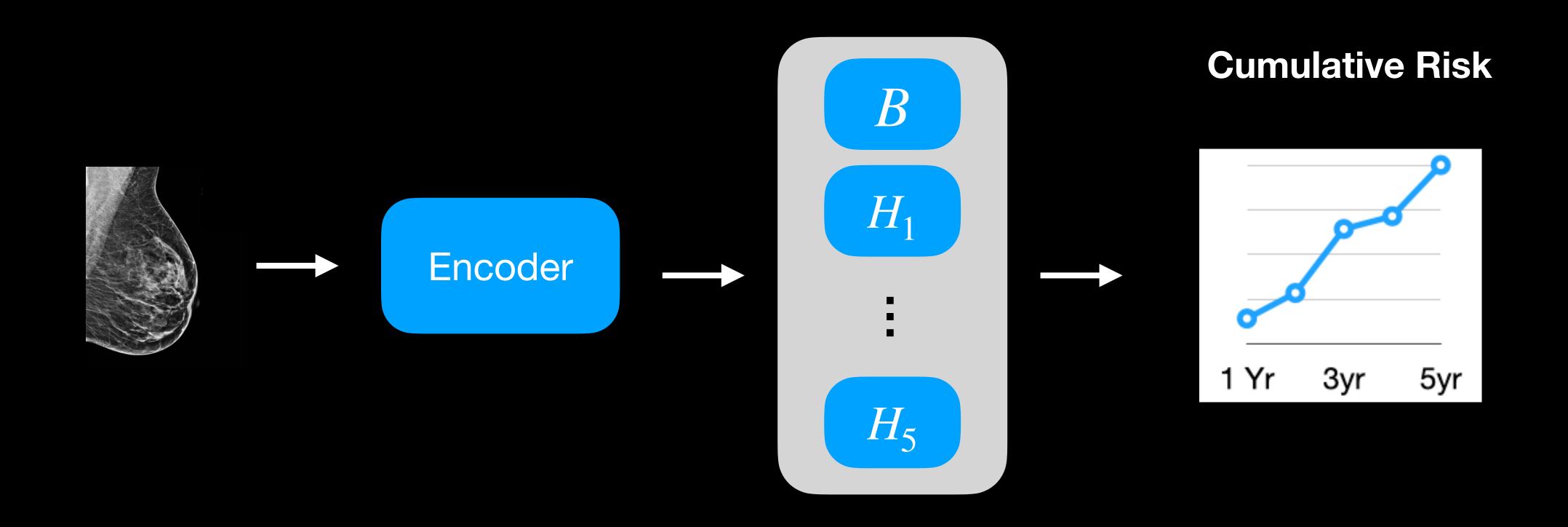


Risk Factors

Problem 2: Missing risk factor data

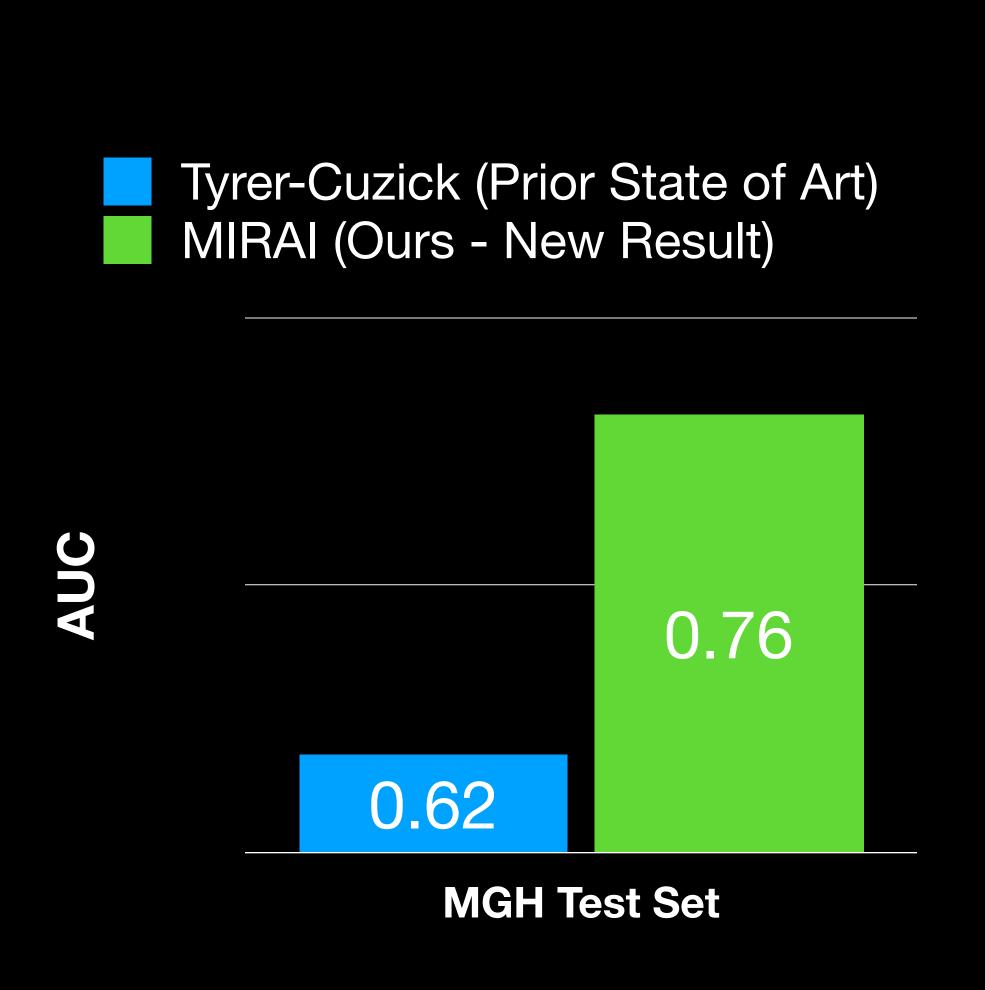


Problem 3: Modeling risk over time



$$P(t_{cancer} = k \mid x) = B(E(x)) + \sum_{i=1}^{n} H_i(E(x))$$

Maintains accuracy across diverse populations

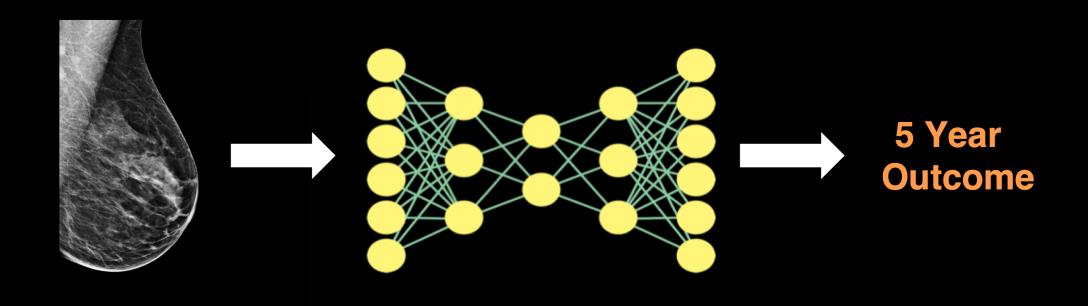


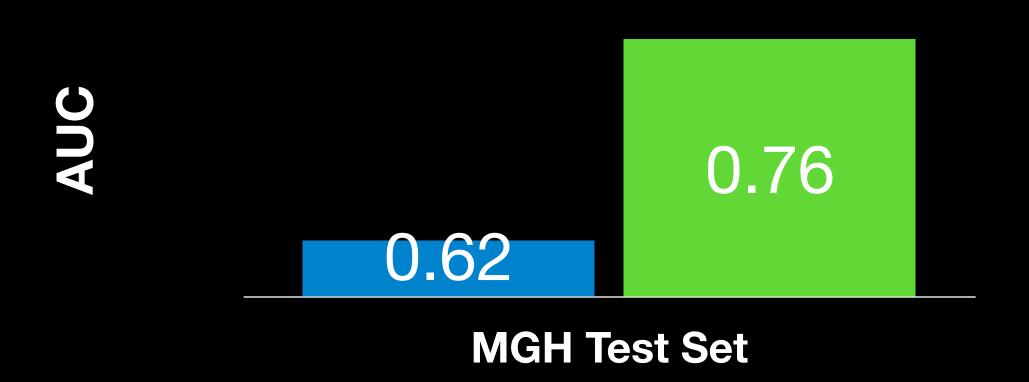
SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Toward robust mammography-based models for breast cancer risk

Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Wan⁵, Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}

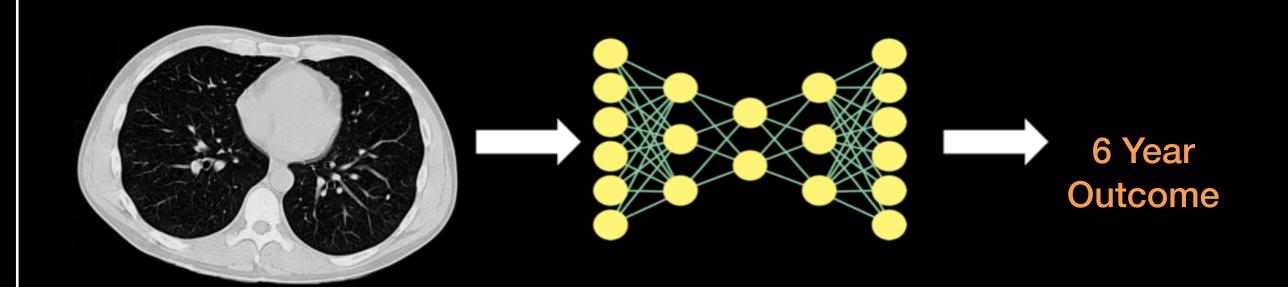




Under Review

Ask Sybil: Predicting Lung Cancer Risk with Low-dose Chest Computed Tomography

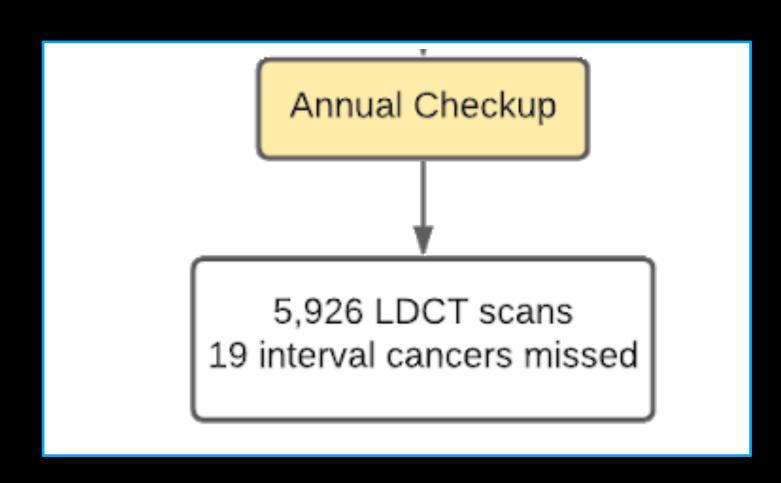
Peter G. Mikhael 1,2,1,*, Jeremy Wohlwend 1,2,1, Adam Yala 1,2, Justin Xiang 1,2, Angelo K. Takigami 3,4, Patrick P. Bourgouin 3,4, PuiYee Chan 5, Sofiane Mrah 4, Lecia V. Sequist 3,5, Florian J. Fintelmann 3,4,4, Regina Barzilay



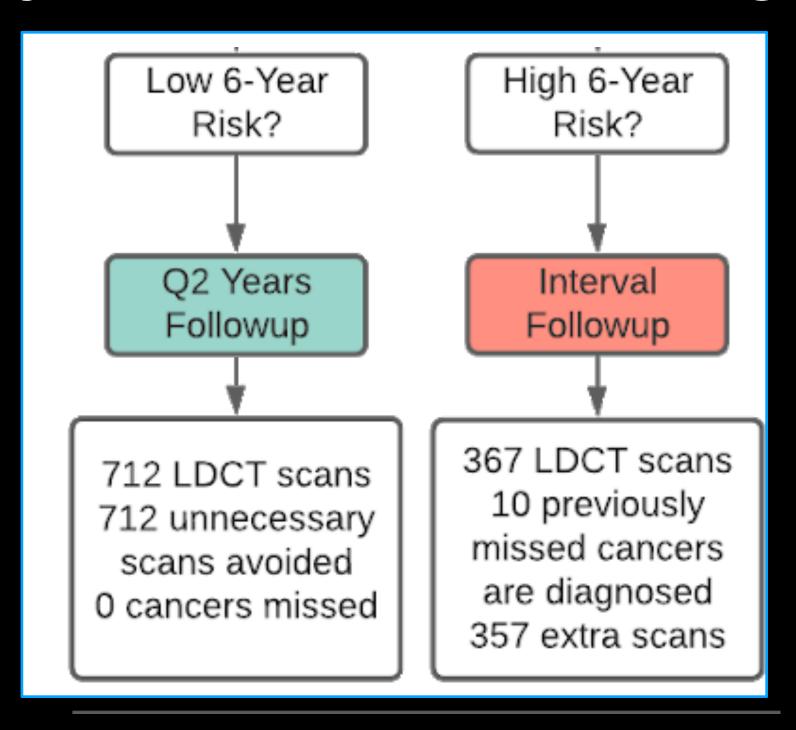
Sybil Clinical Impact: Workflow

Improve early detection and lower screening cost with risk-based followup.

Standard of Care

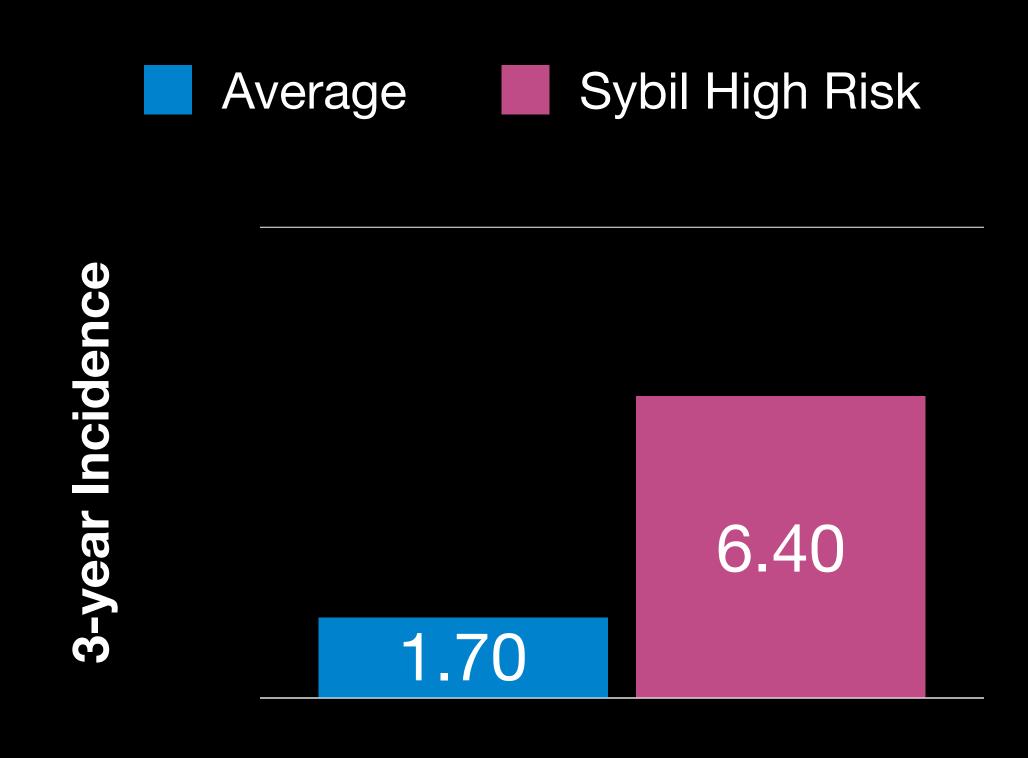


Sybil risk based screening



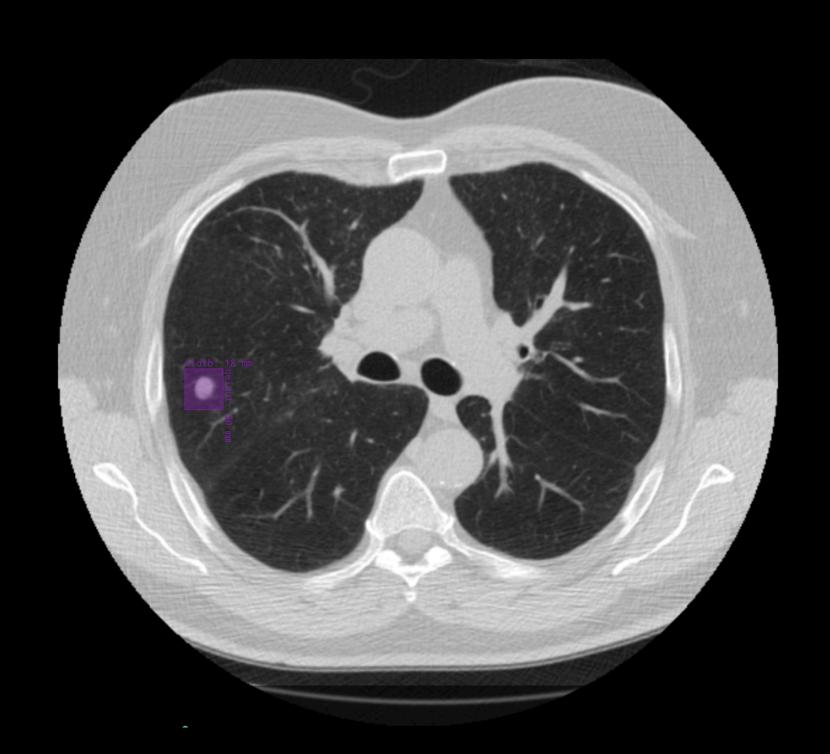
Sybil Clinical Impact: Prevention

Identifying high risk cohorts for clinical trails



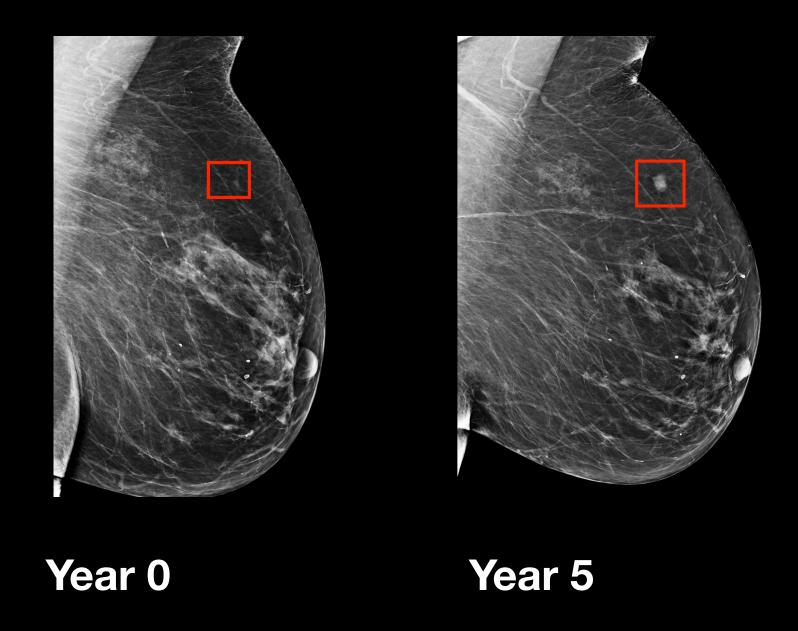
Identifying future cancer location

83% accurate predicting future cancer side

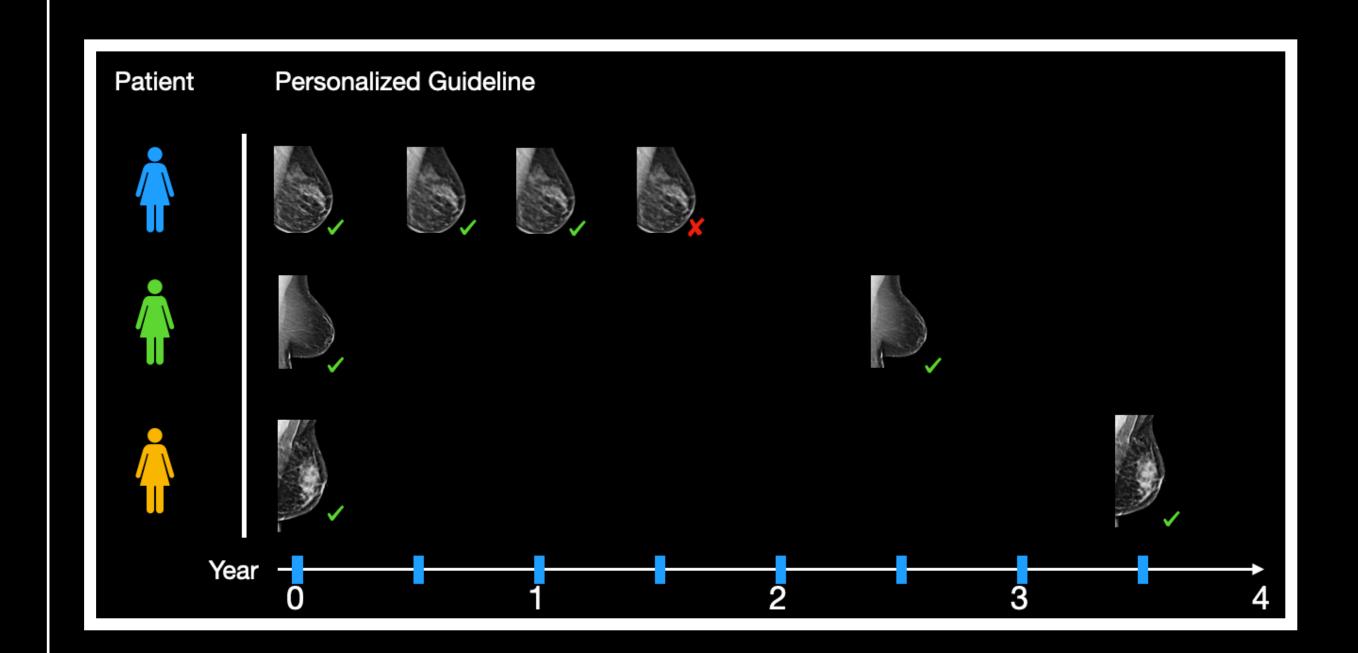


How to catch cancer earlier

Predict Cancer Risk

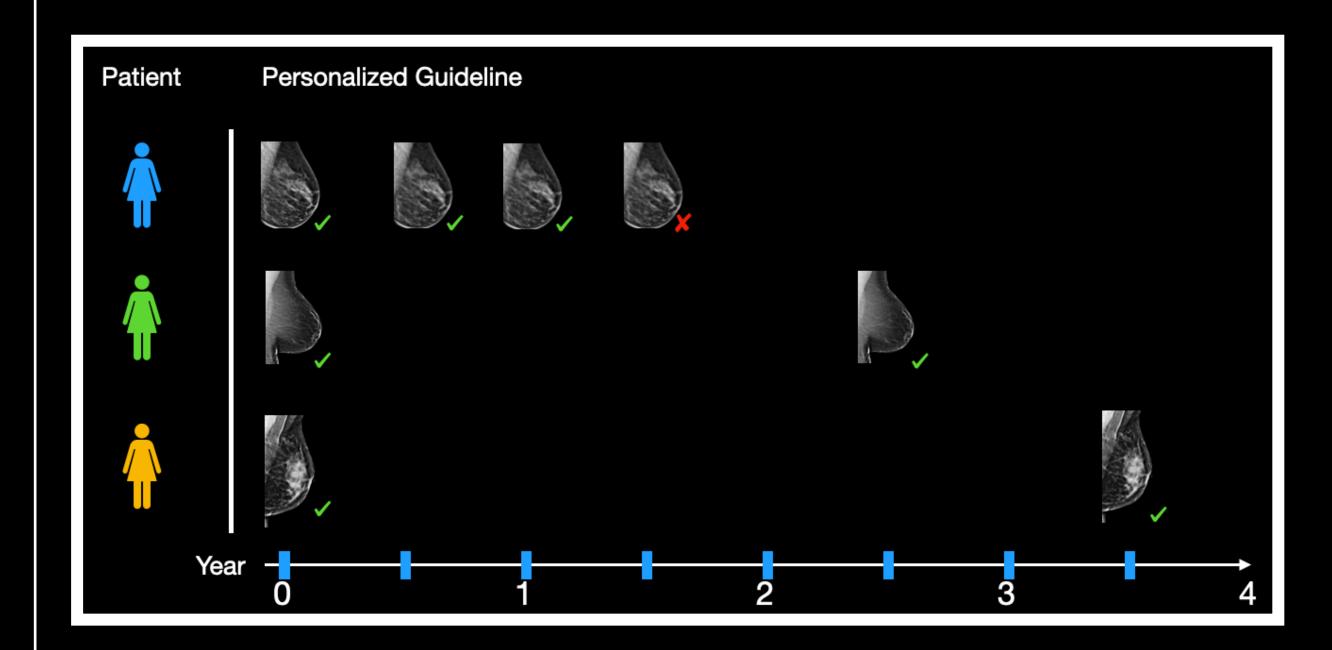


Create personalized screening policy

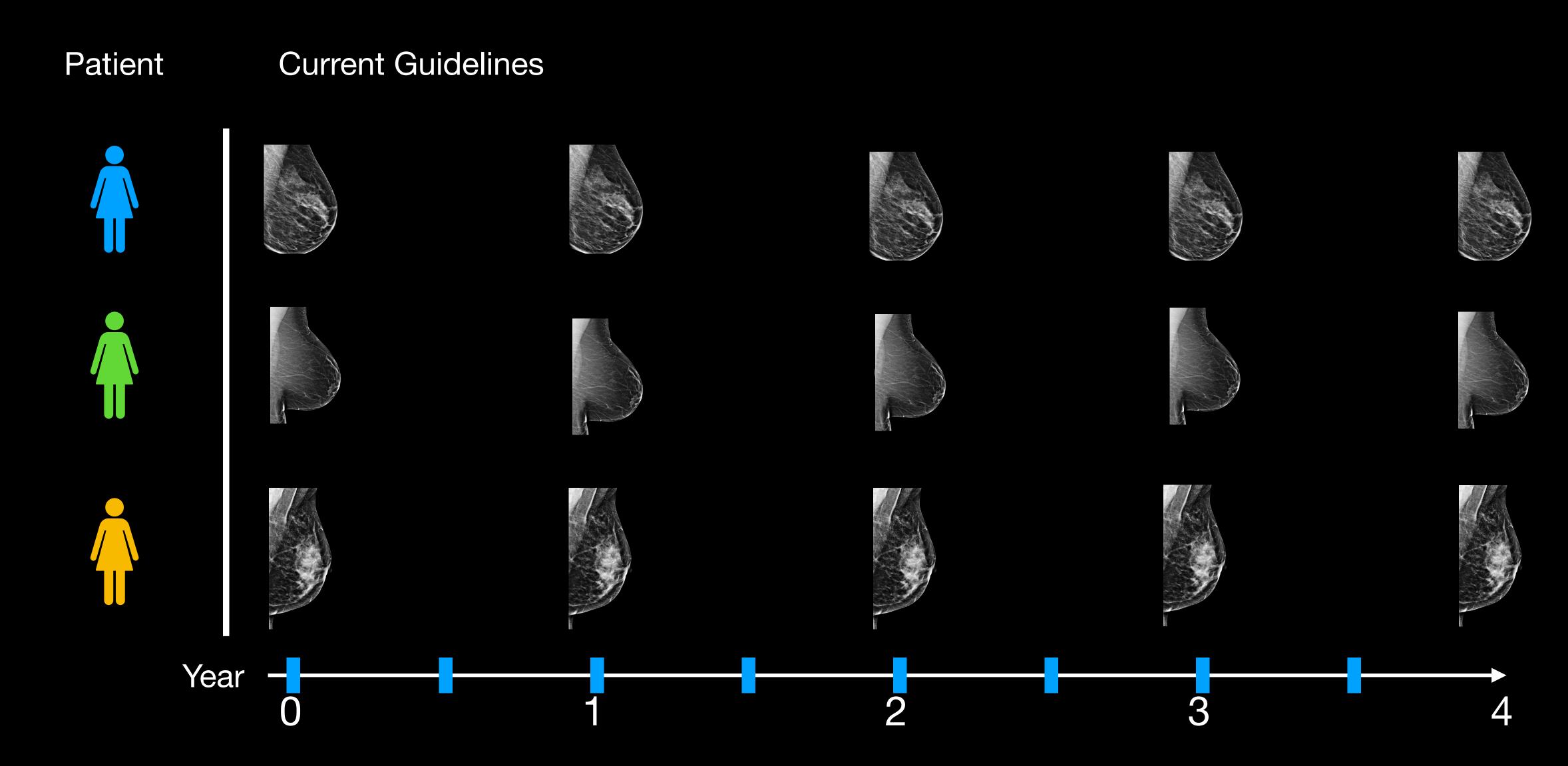


How to catch cancer earlier

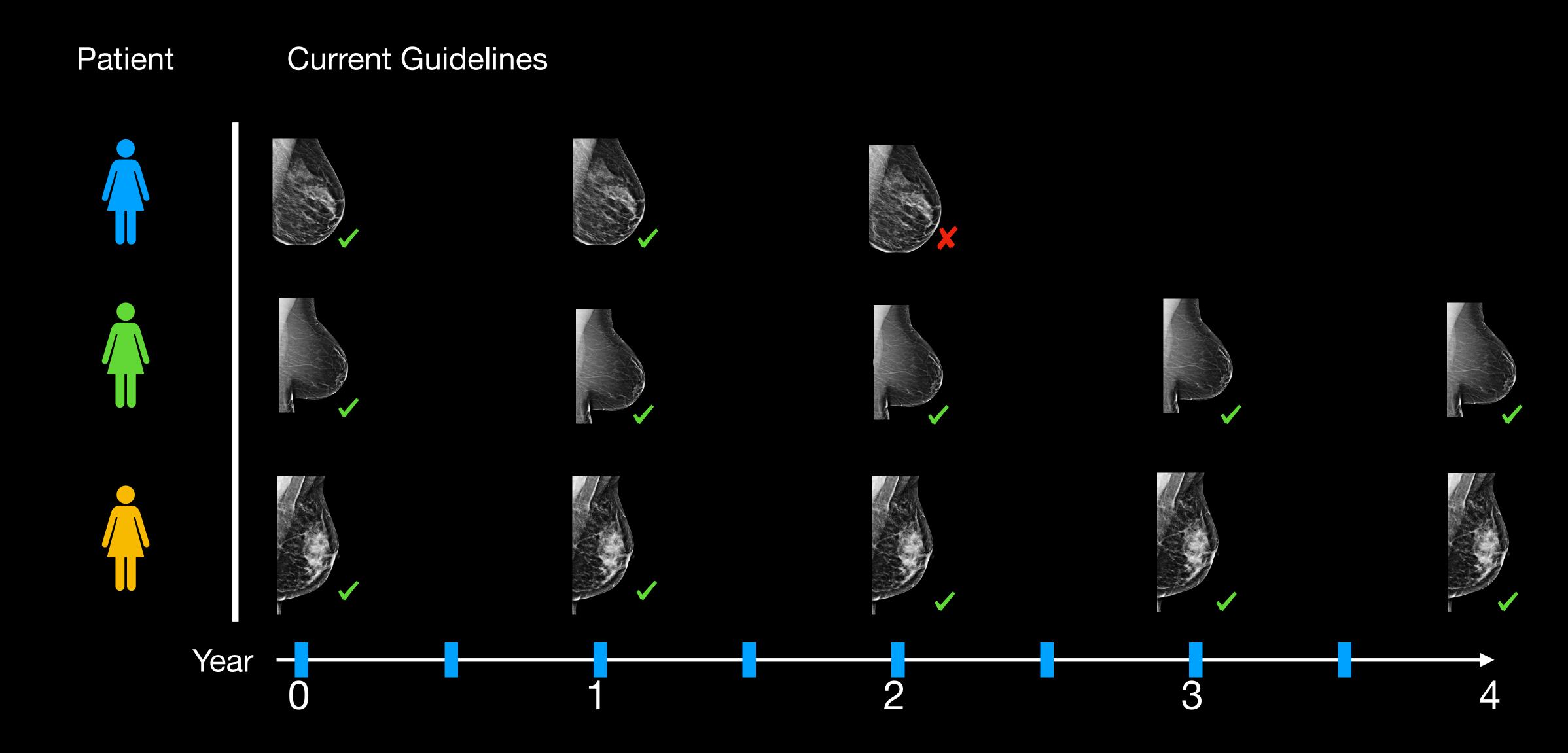
Create personalized screening policy



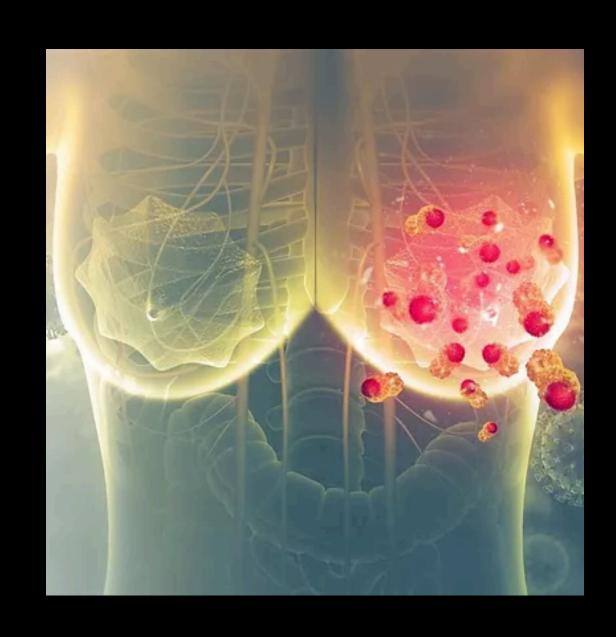
Screening today



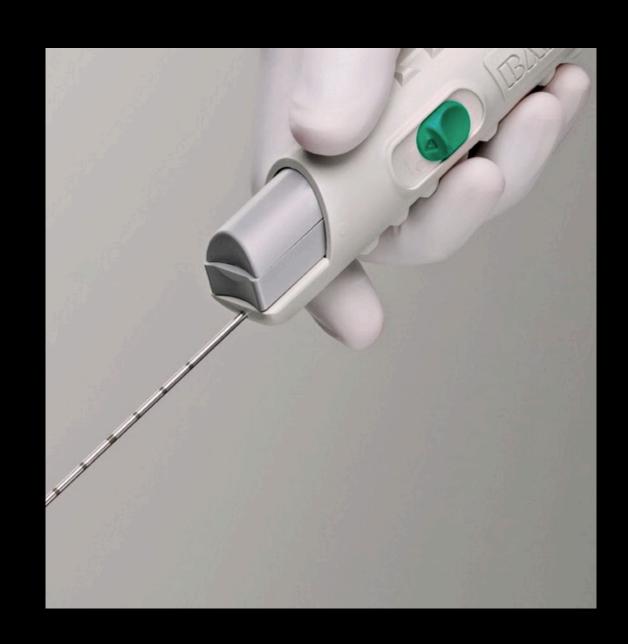
Same screening, different outcomes



Challenges in current screening



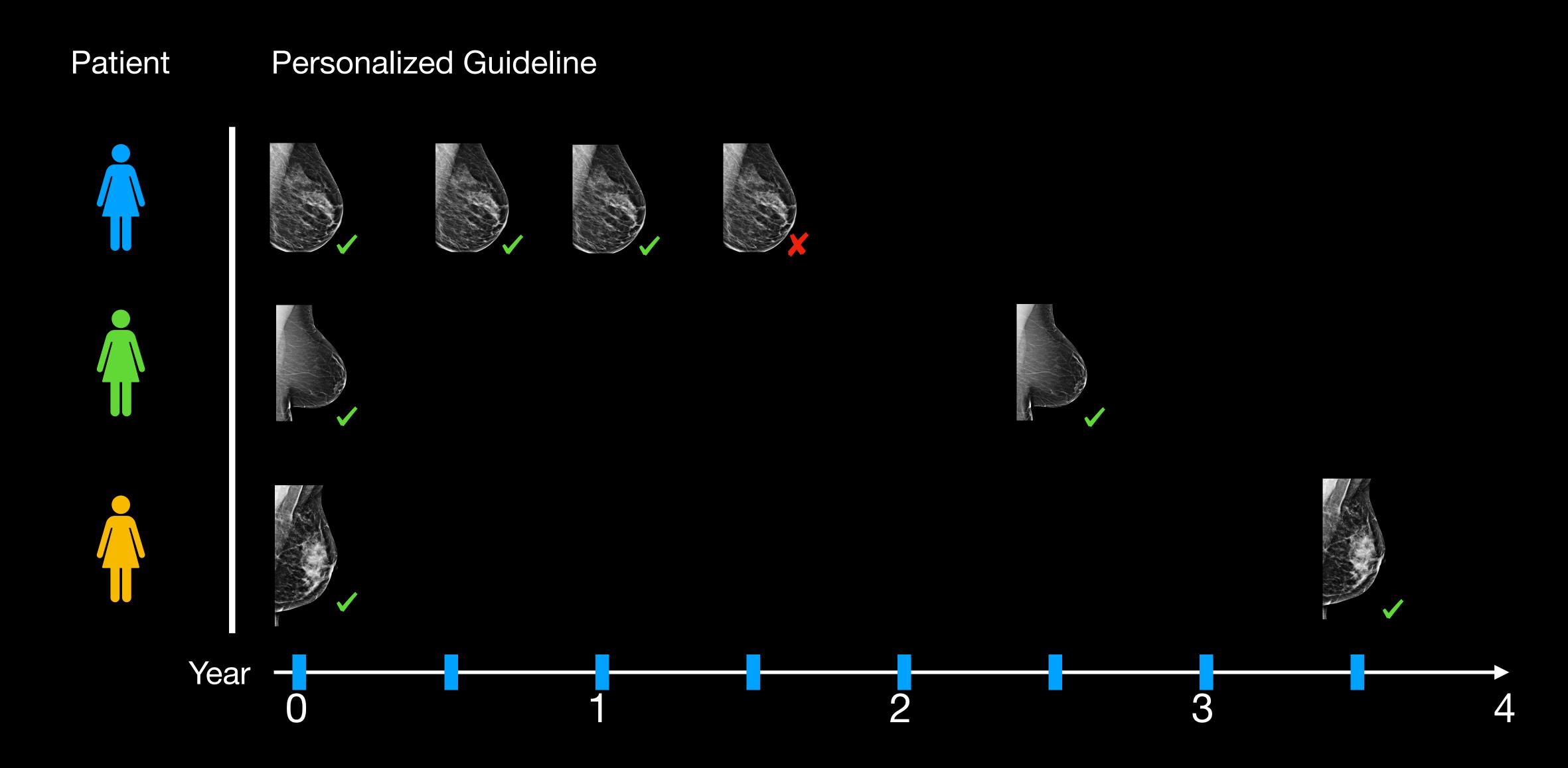
Late Detection



Over Screening

Health Disparities

Tailor screening regime to patient need



Current processes for policy design

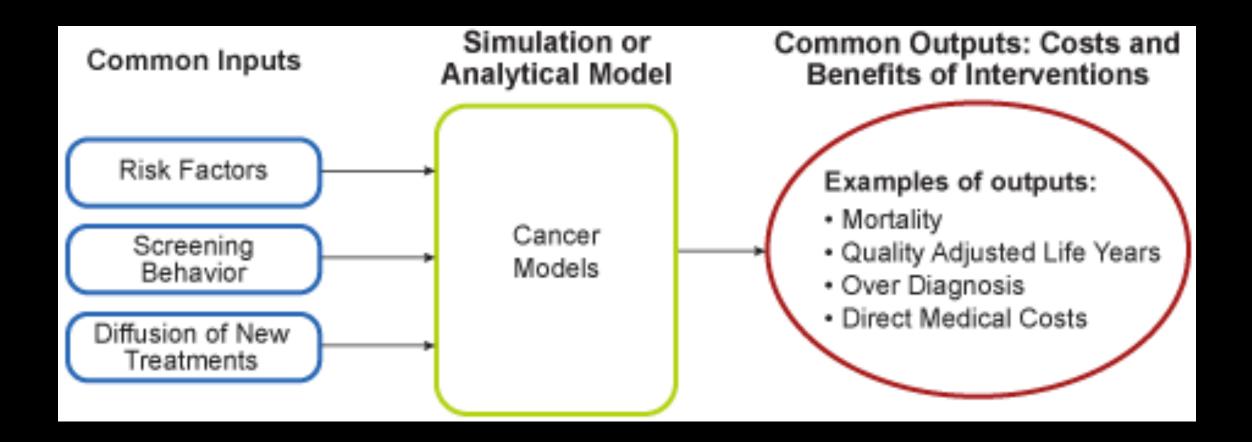
Expert panel meetings by physician organizations

Most meet every five years

Multiple conflicting one-size fits all guidelines

No explicit validation across populations. Health disparities grow

Modeling for clinical guidelines



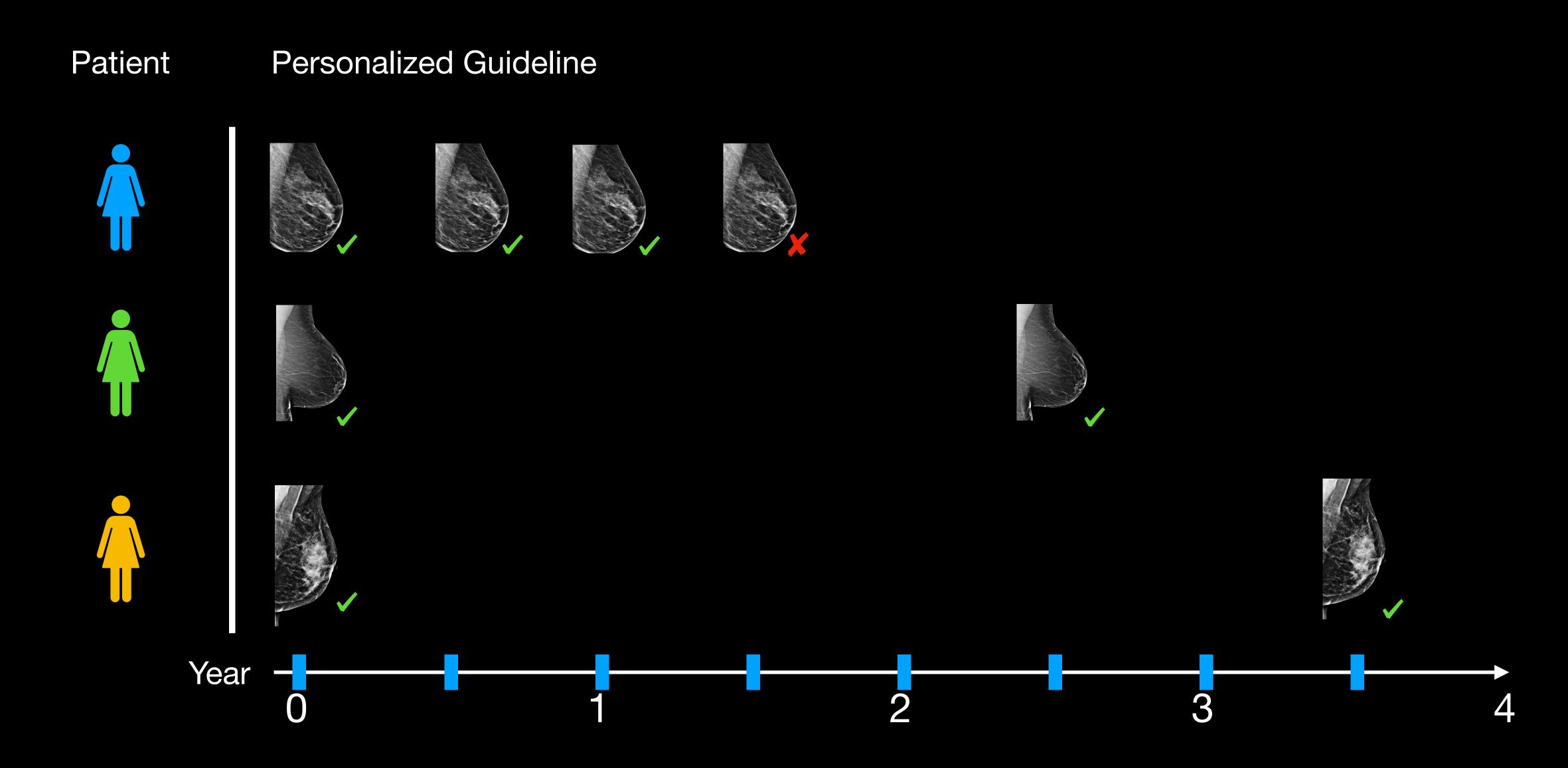
Assume full probabilistic models of disease

Simulate hypothetical patients under screening strategies

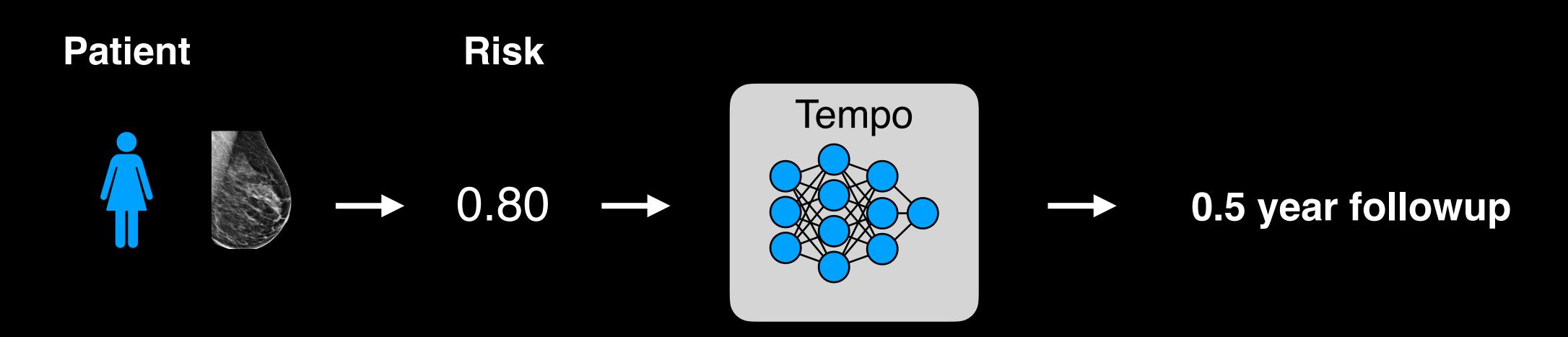
Suggest "correct" trade-off

Cannot incorporate new risk models or evaluated on real patients

Tailor screening regime to patient need



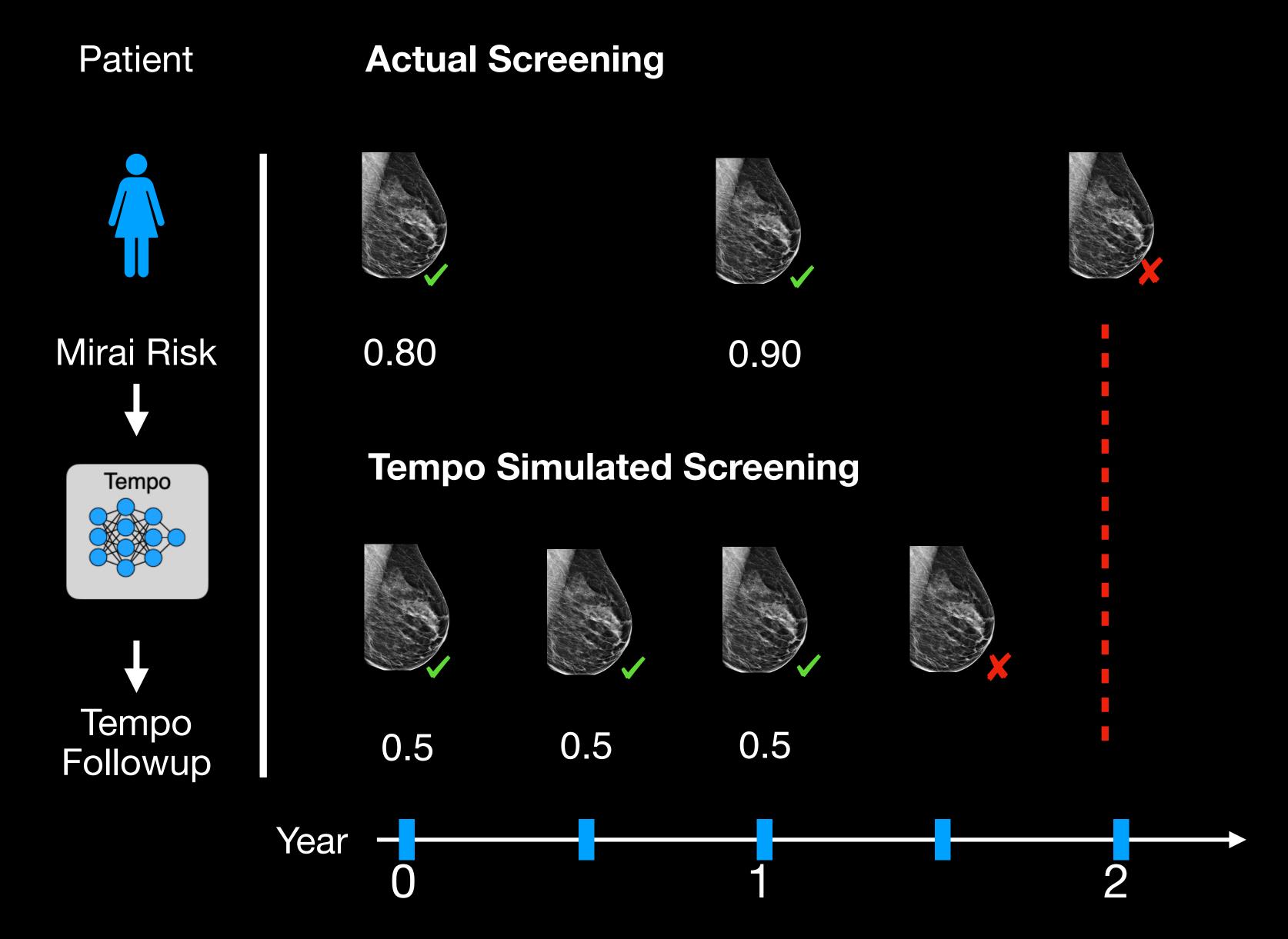
Policy Design as a Learning Task



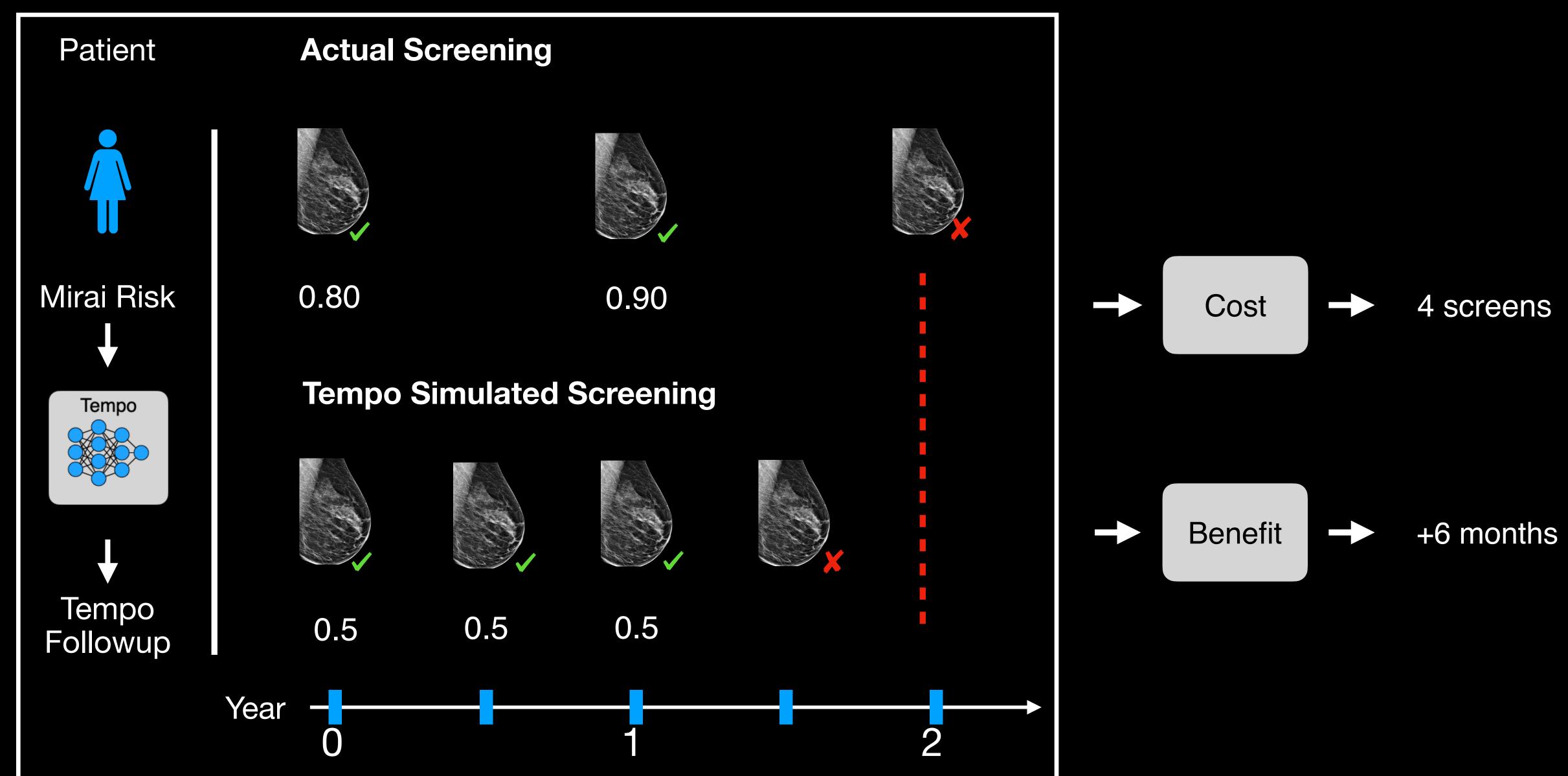
Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

Desiderata: Testable, Adaptive, Flexible

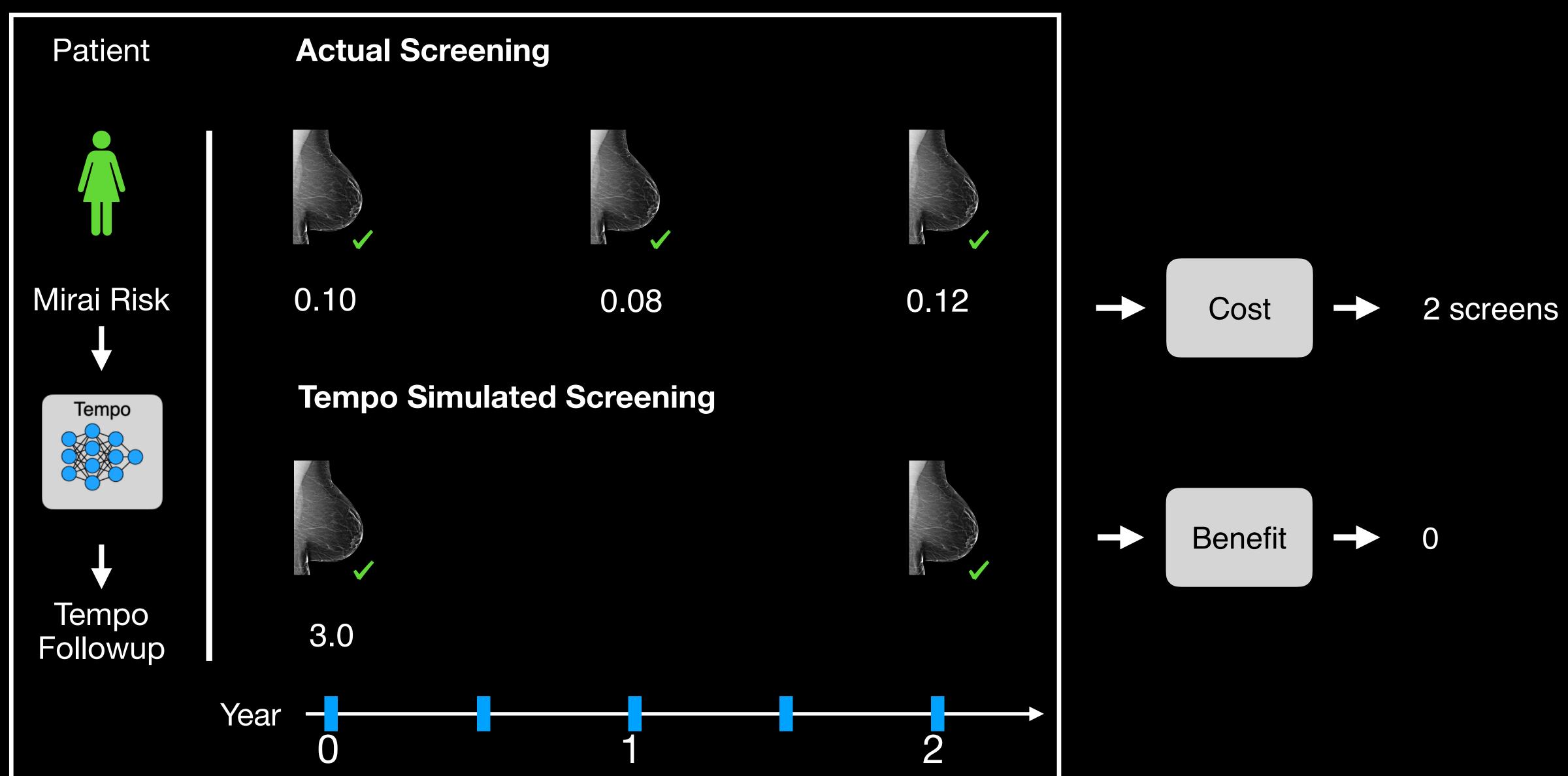
Simulate patient trajectories



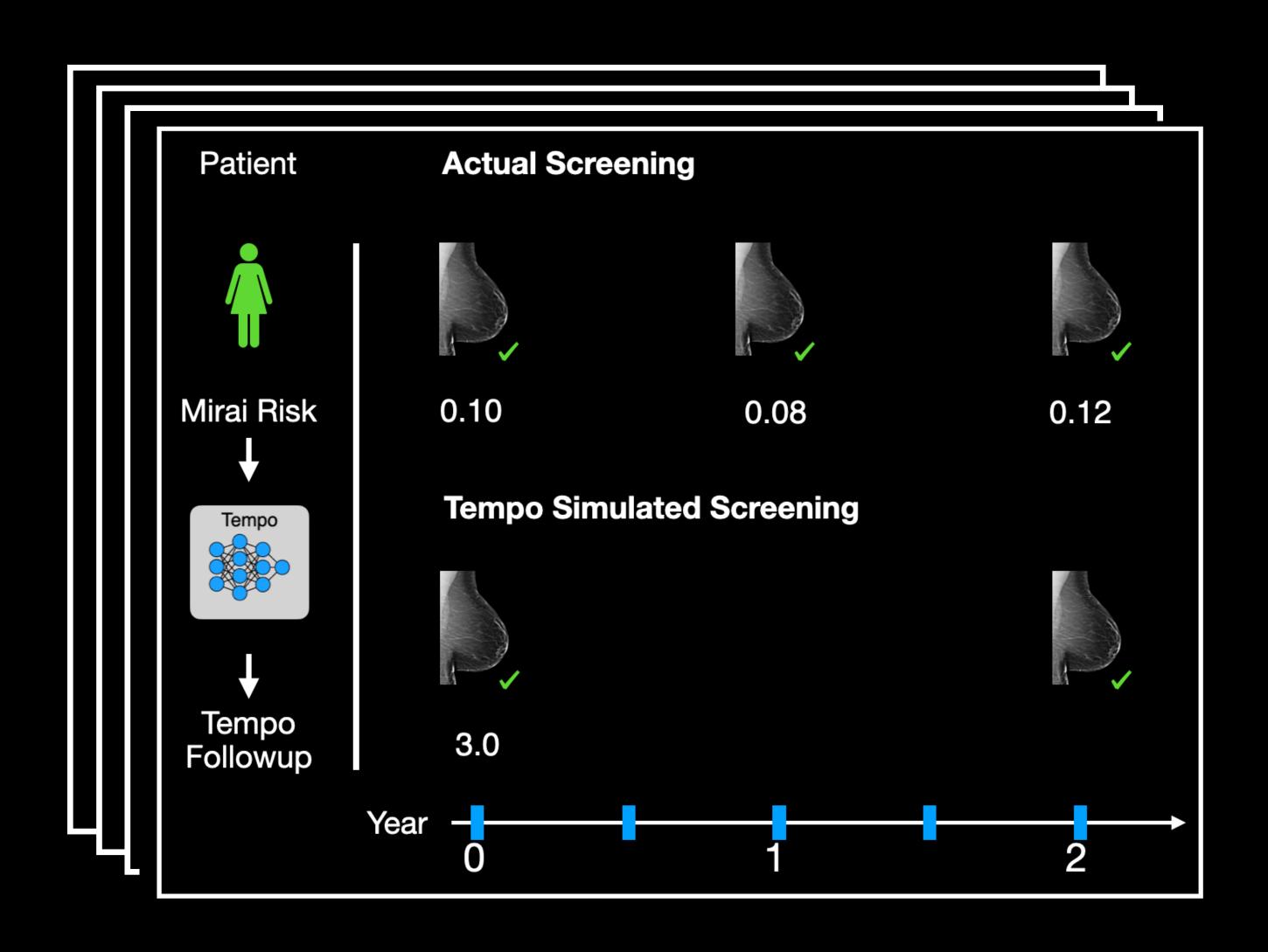
Evaluate individual impact

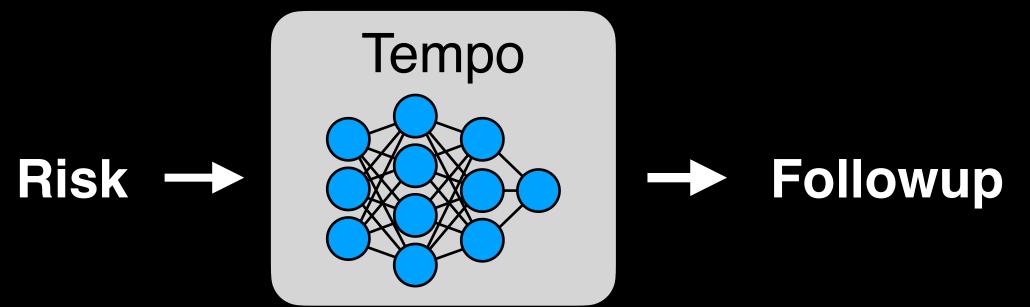


Evaluate individual impact

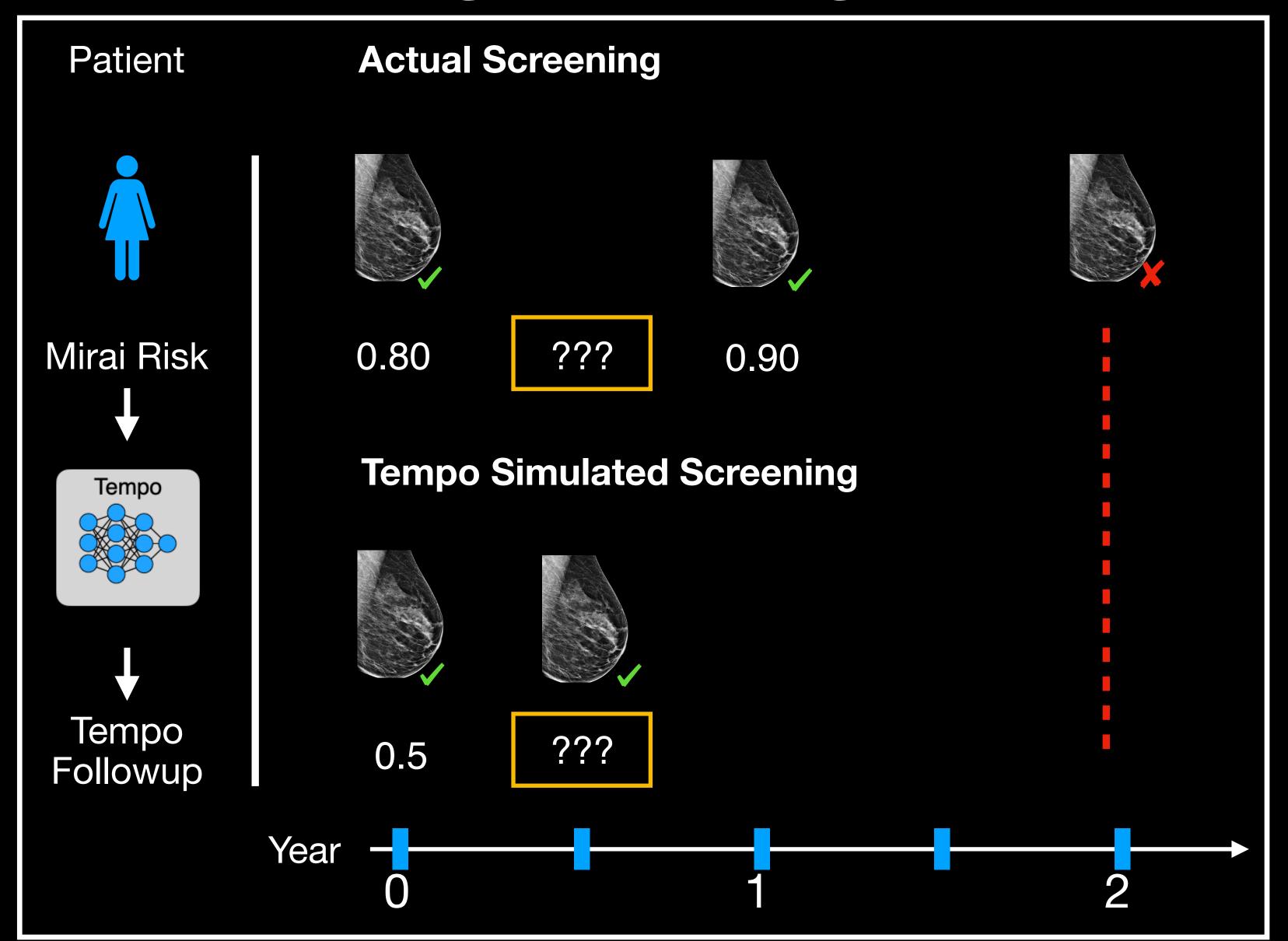


Optimized over population screening

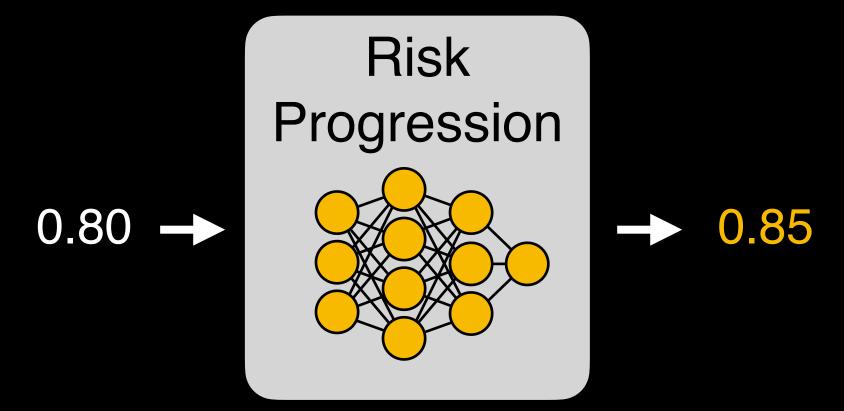




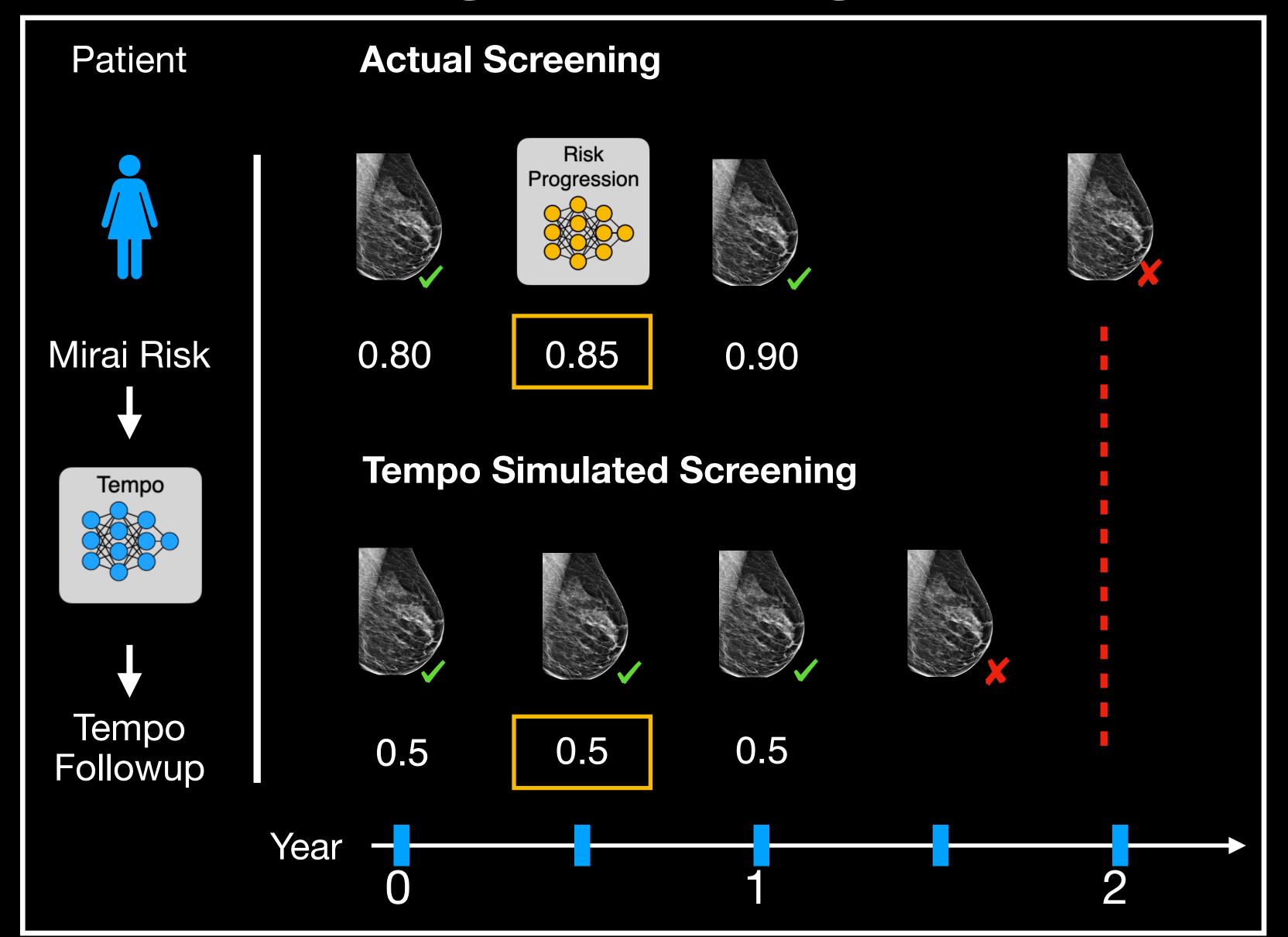
Estimating missing risk assessments



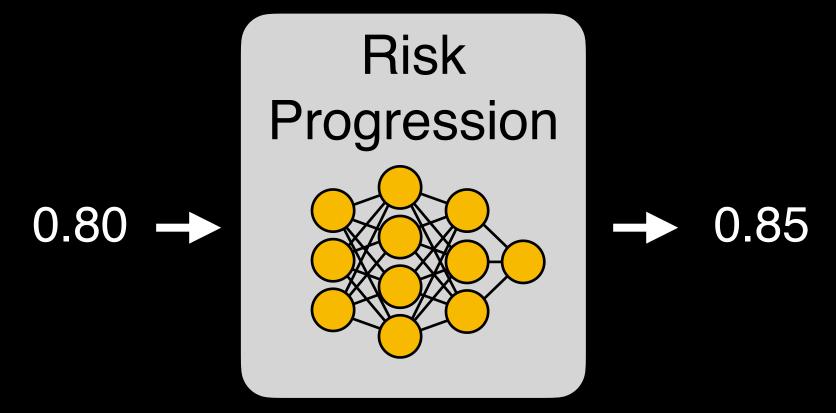
Learn $P(r_t | r_{t-1}, r_{t-2}, \dots, r_0)$



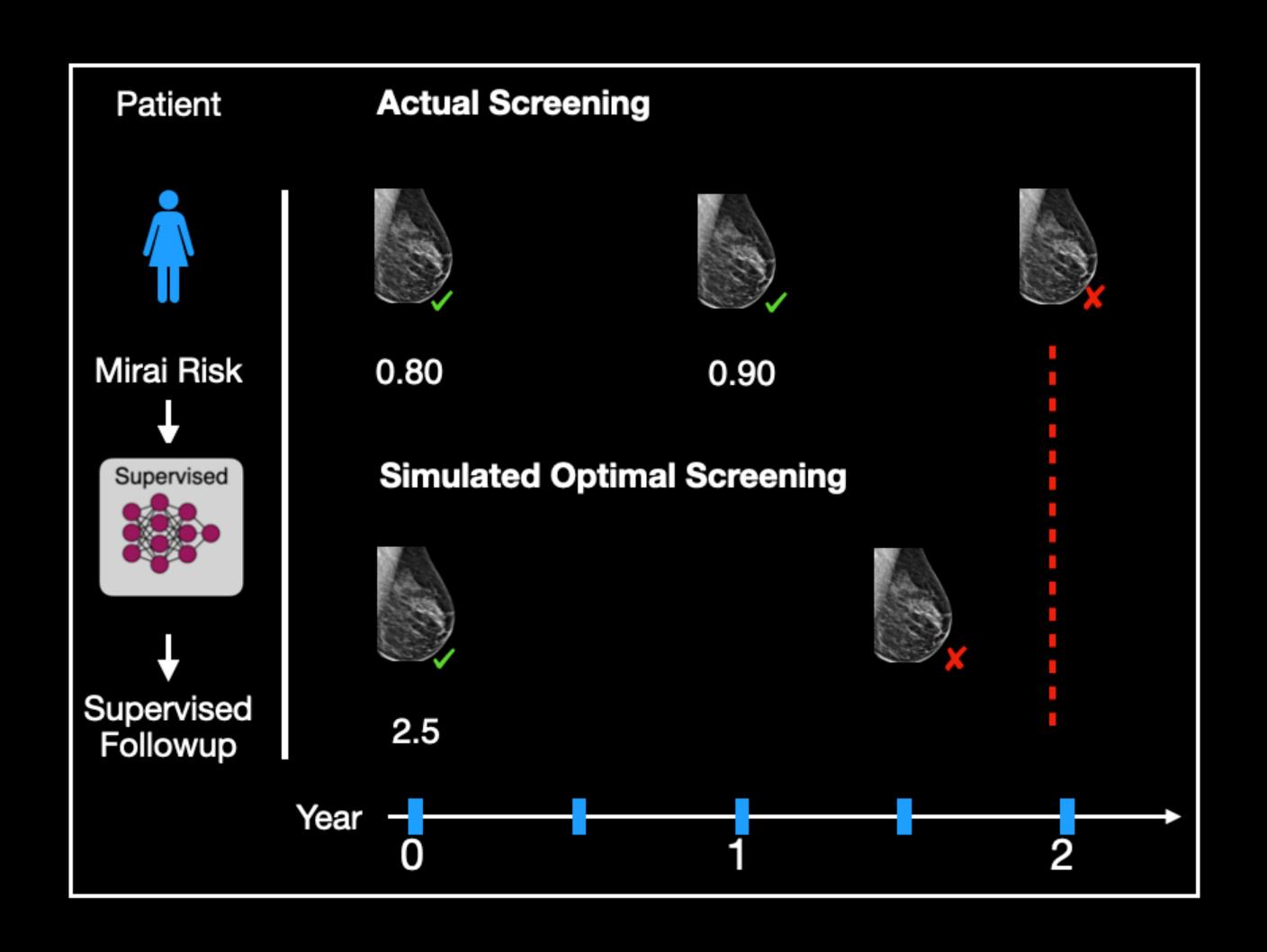
Estimating missing risk assessments

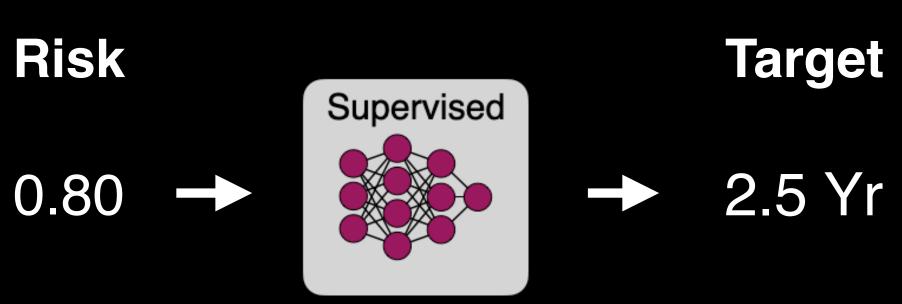


Learn $P(r_t | r_{t-1}, r_{t-2}, \dots, r_0)$



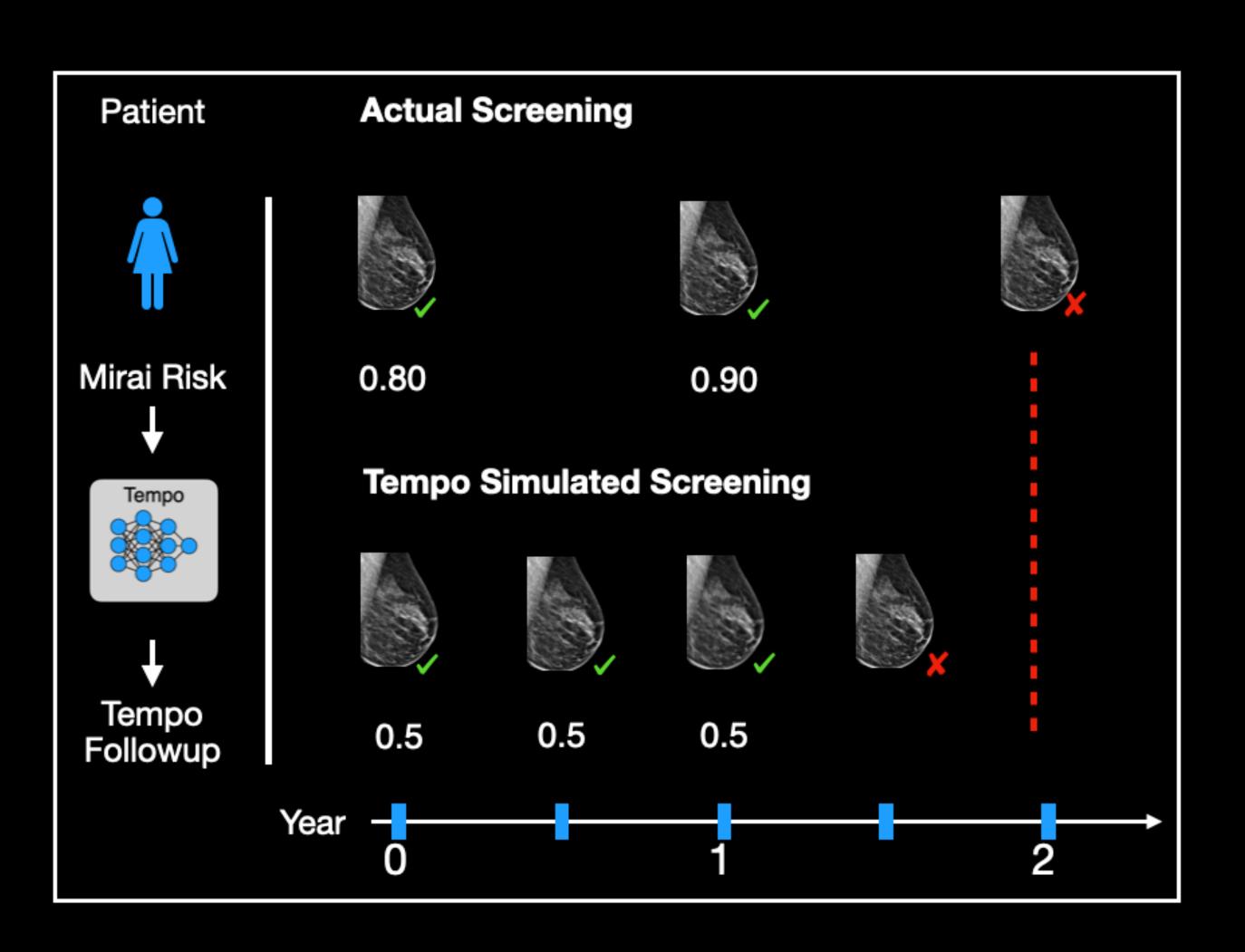
Baseline: Policy Design as Imitation

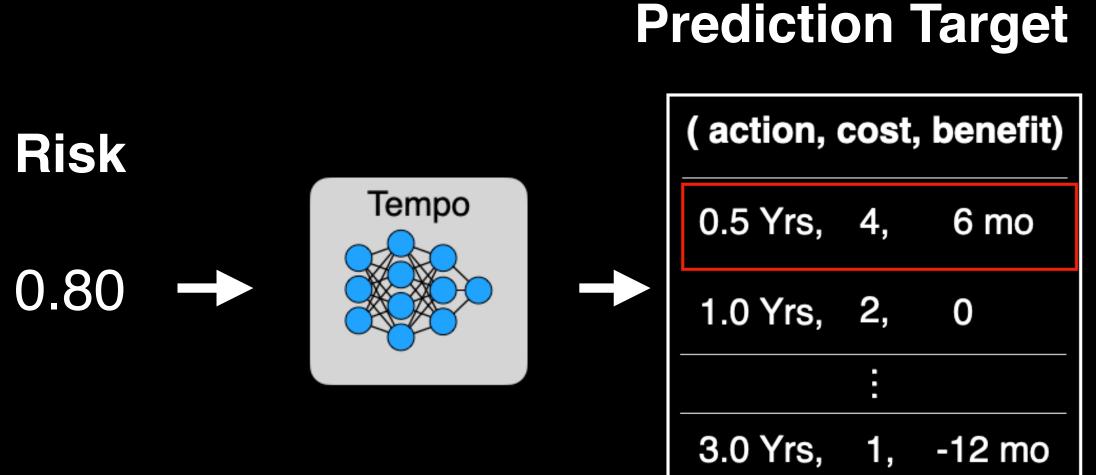




Reward = - | Prediction - Target |

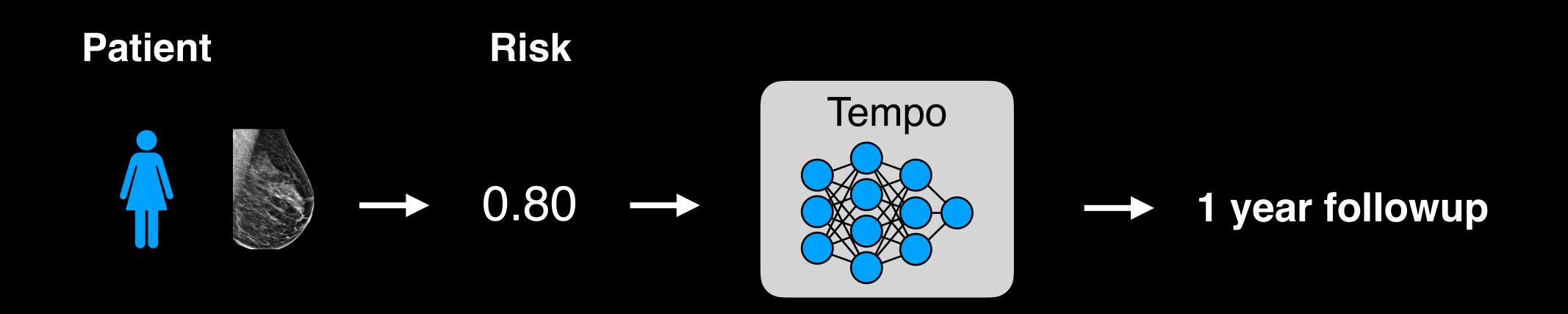
Tempo: Policy Design as Reinforcement Learning





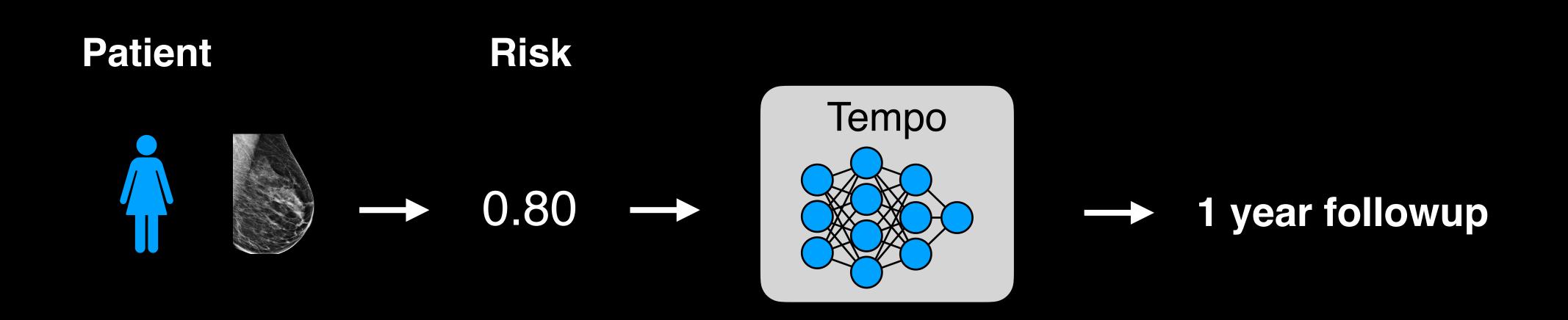
Reward = λ_1 Benefit - λ_2 Cost

Learning for a fixed preference



Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

Learning for a fixed preference: Q Learning

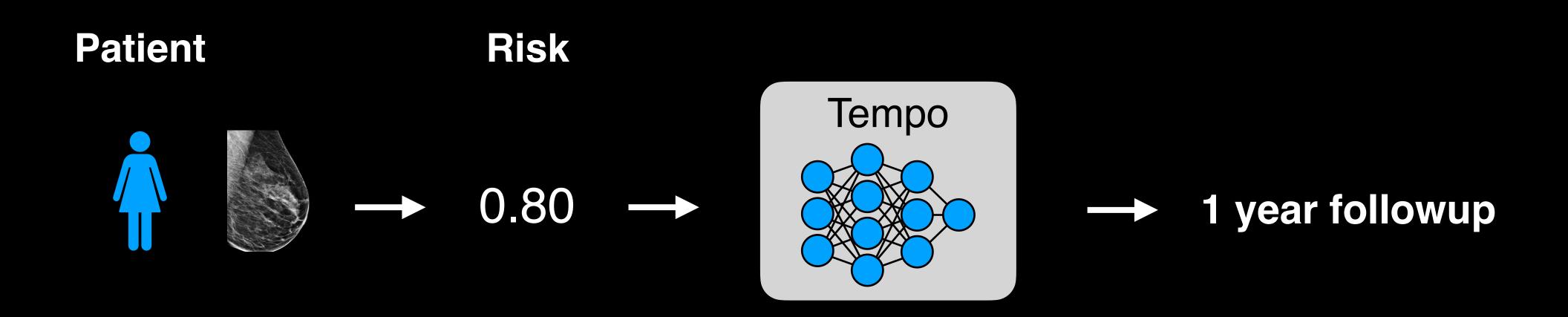


Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

$$Q(s, a) = R(s, a) + \gamma \max_{a} Q(s', a)$$

$$\mathcal{L}(s, a) = ||R(s, a) + \max_{a} Q(s', a) - Q(s, a)||^{2}$$

Tricks for stable training

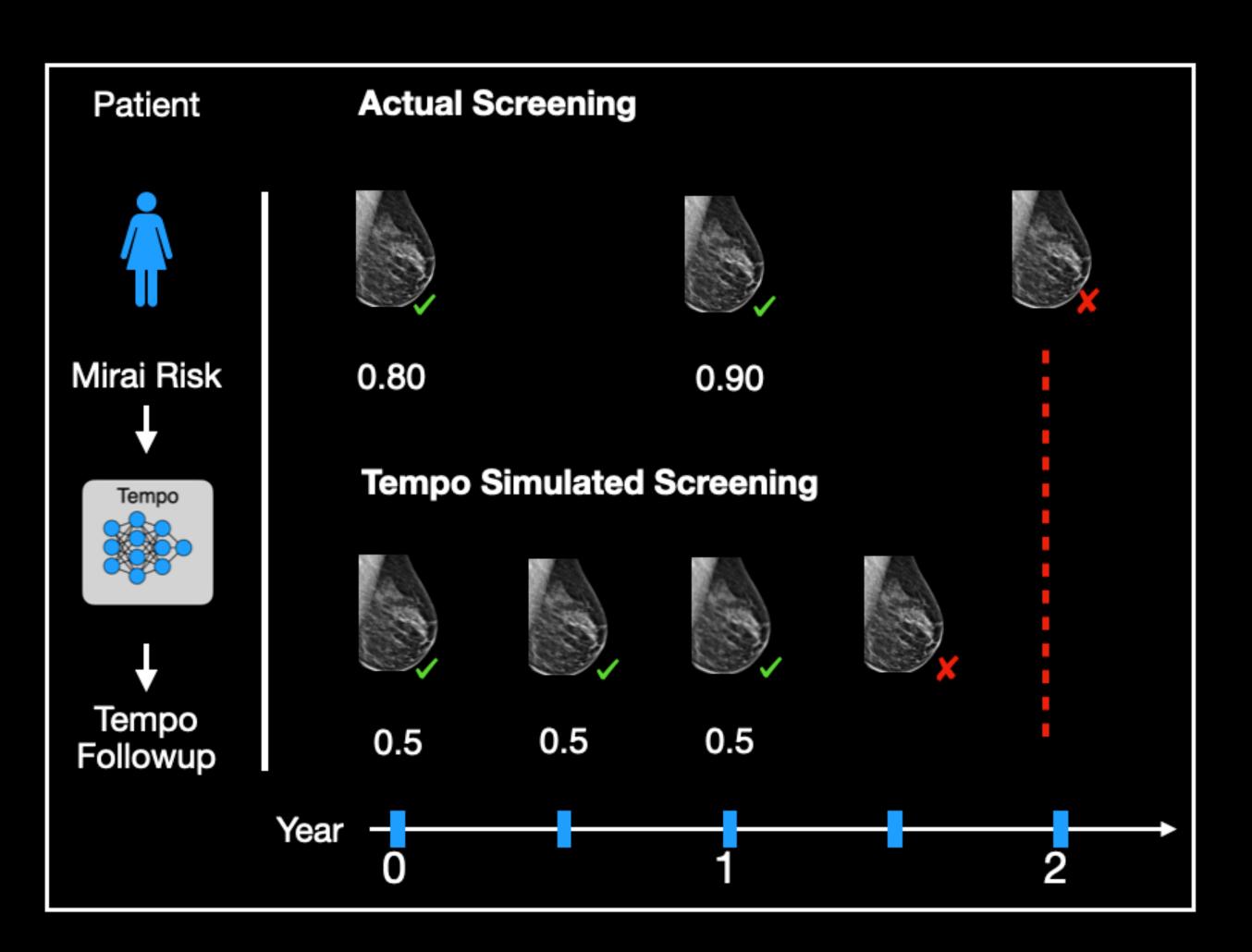


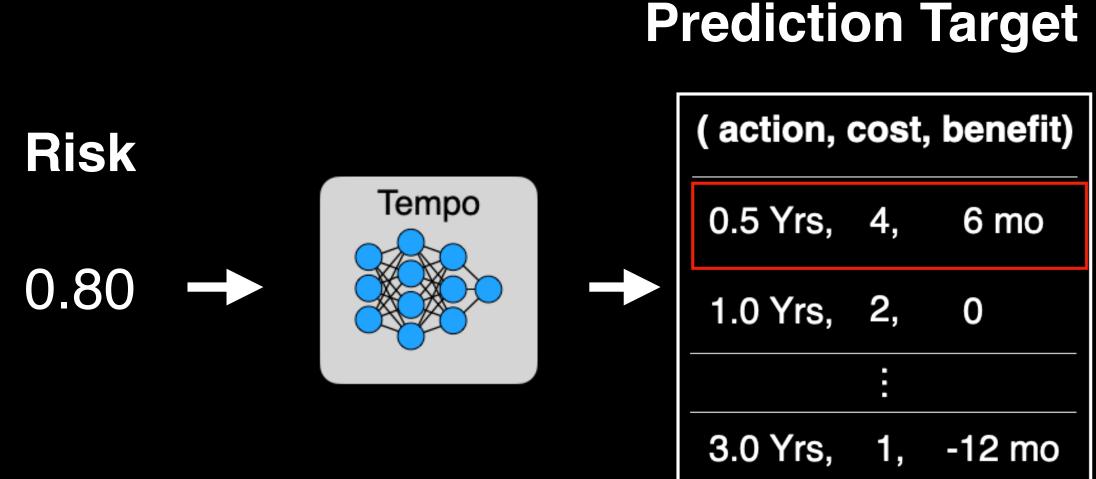
Randomly sample transitions from Experience Replay Buffers

Use slowly updated target network (i.e. copy Q every 100~ steps)

$$\mathcal{L}(s, a) = ||R(s, a) + \max_{a} Q_{target}(s', a) - Q(s, a)||^{2}$$

Scaling to unknown preferences

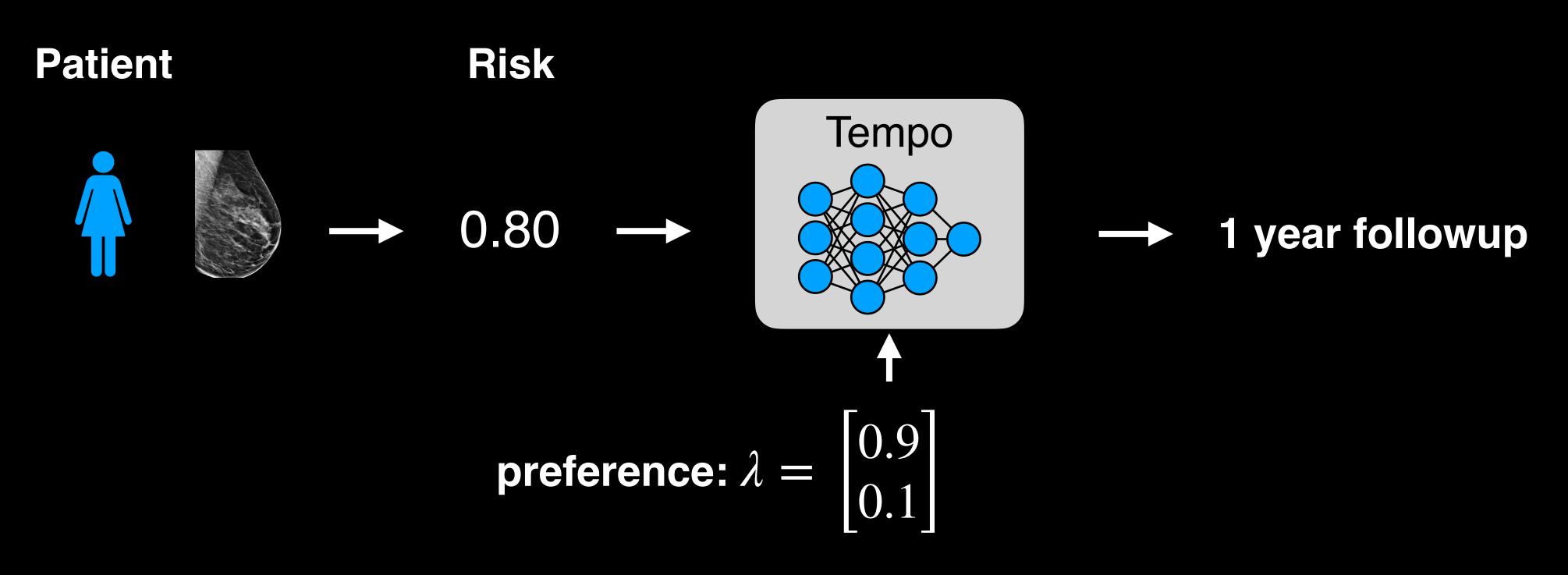




Reward = λ_1 Benefit - λ_2 Cost

- 1 unknown at training time
- + We have access to [Benefit, Cost]

Supporting diverse clinical requirements

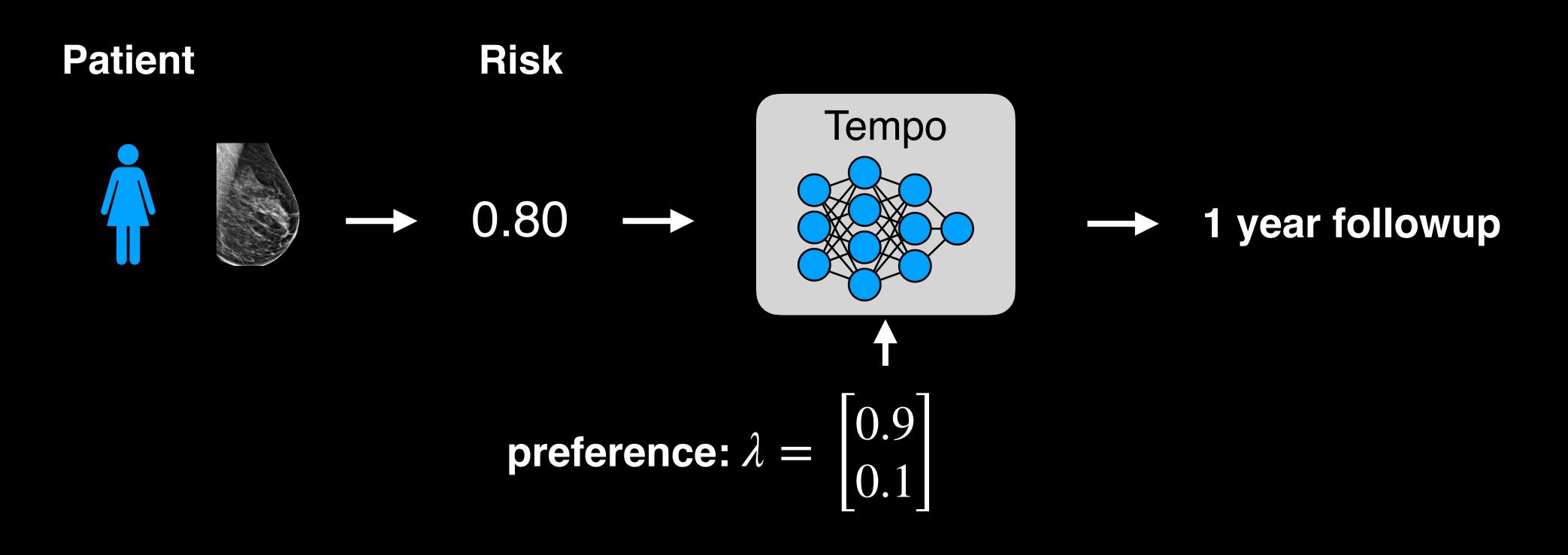


 $\vec{r}(s, a) = [Early Detection, Screening Cost]$

Trained across possible (λ_1, λ_2) to maximize:

 $\lambda \cdot \vec{r} = \lambda_1$ Early Detection Benefit - λ_2 Screening Cost

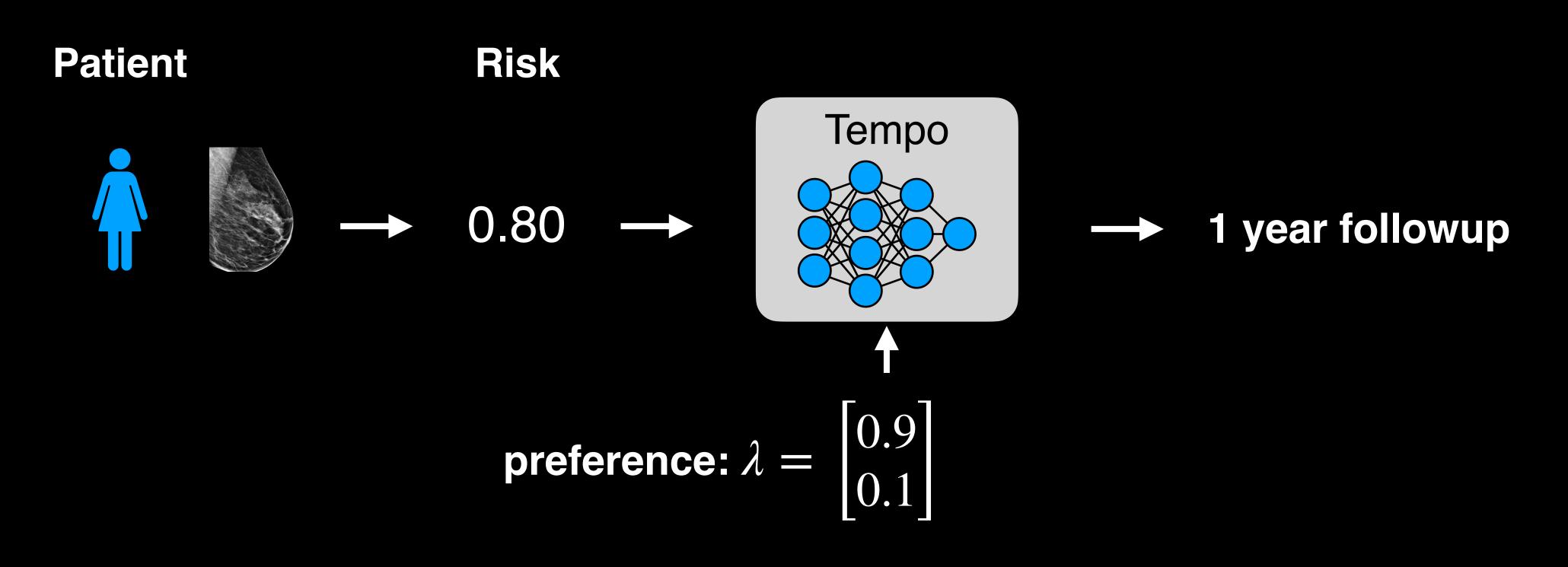
Towards multi-objective RL: Scalarized updates



$$\vec{r}(s, a) = [\text{Early Detection, Screening Cost}]$$

$$Q(s, a, \lambda) = \lambda \vec{r}(s, a) + \gamma \lambda \max_{a} Q(s', a, \lambda)$$

Towards multi-objective RL: Scalarized updates

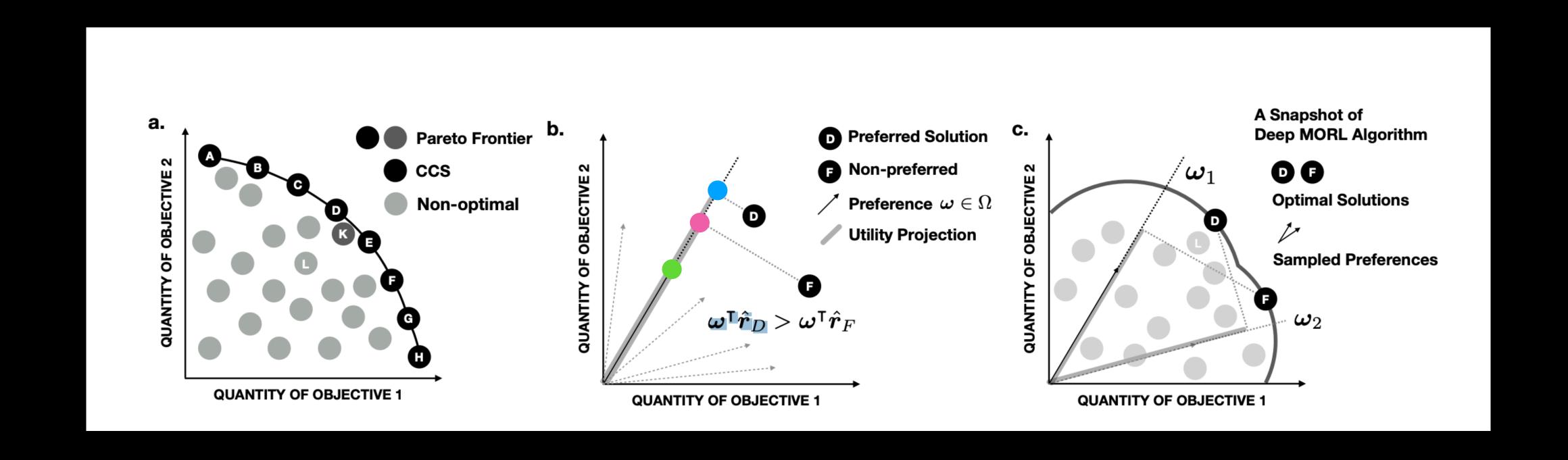


$$\vec{r}(s, a) = [Early Detection, Screening Cost]$$

$$Q(s, a, \lambda) = \lambda \vec{r}(s, a) + \gamma \lambda \max_{a} Q(s', a, \lambda)$$

Doesn't use relationship between λ

Envelope Q-Learning



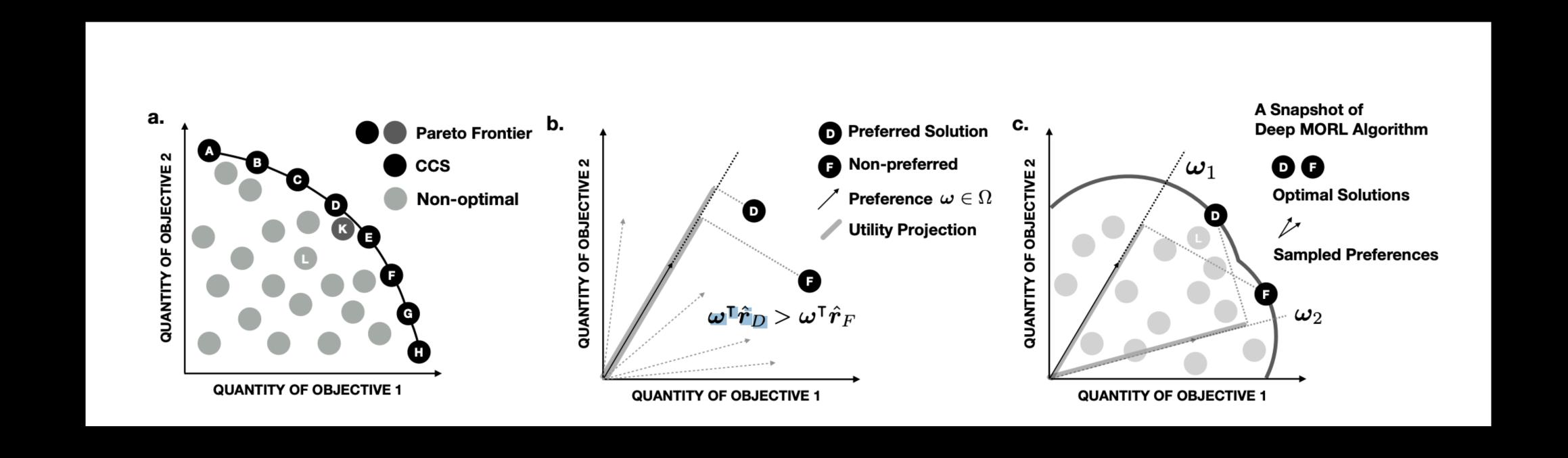
Search envelope of policy:

Identify λ' more effective for true target λ

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Runzhe Yang, Xingyuan Sun, Karthik Narasimhan

Envelope Q-Learning

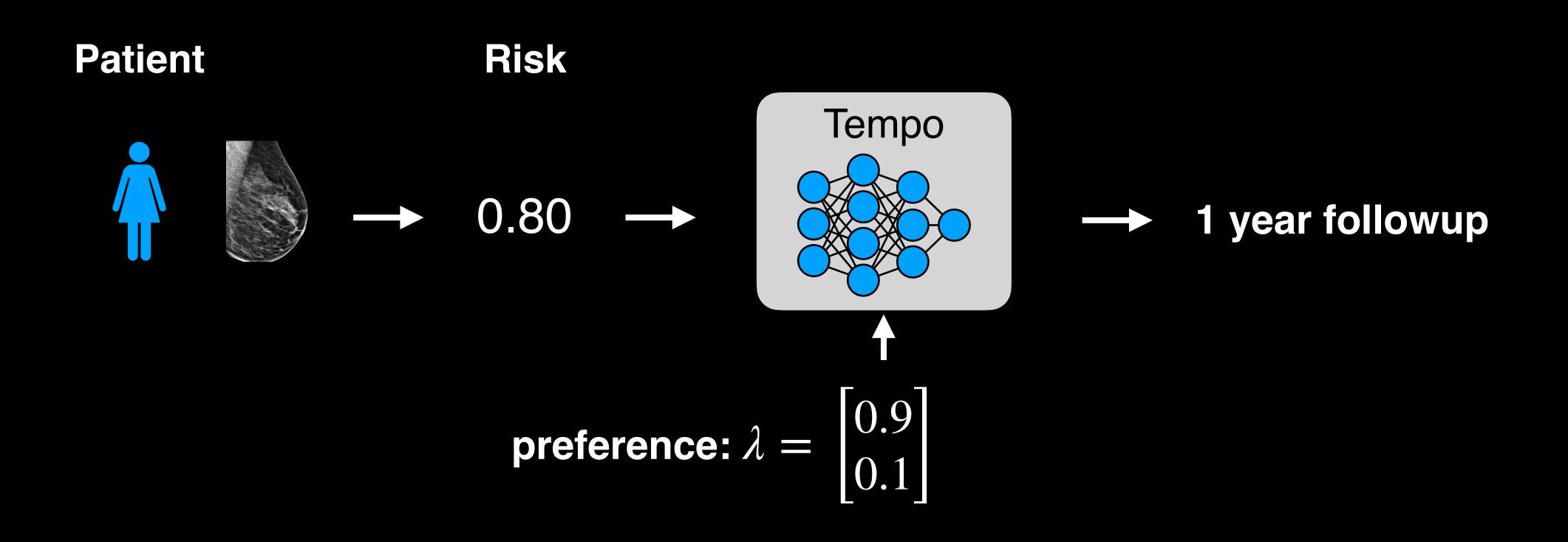


$$y = \vec{r}(s, a) + \gamma \arg_{Q} \max_{a, \lambda'} \lambda^{t} Q(s', a, \lambda')$$

$$\mathcal{L}(s, a, \lambda) = ||y - Q(s, a, \lambda)||^2$$

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Supporting diverse clinical requirements



Trained across possible (λ_1, λ_2) to maximize:

 λ_1 Early Detection Benefit - λ_2 Screening Cost

Experimental Setup

Train all models on MGH training set

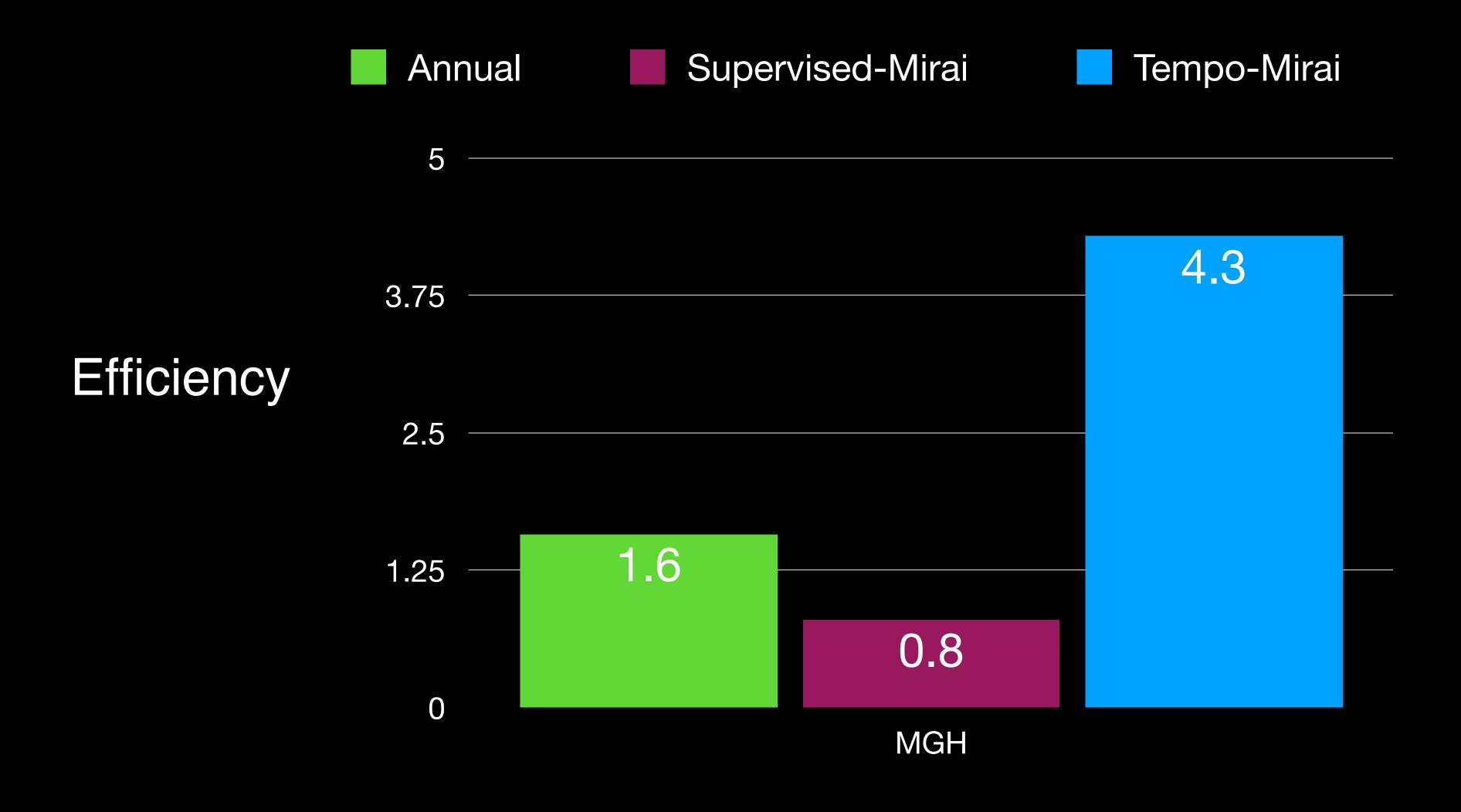
Test on MGH, Emory, Karolinska, and CGMH

Evaluate Screening Efficiency:

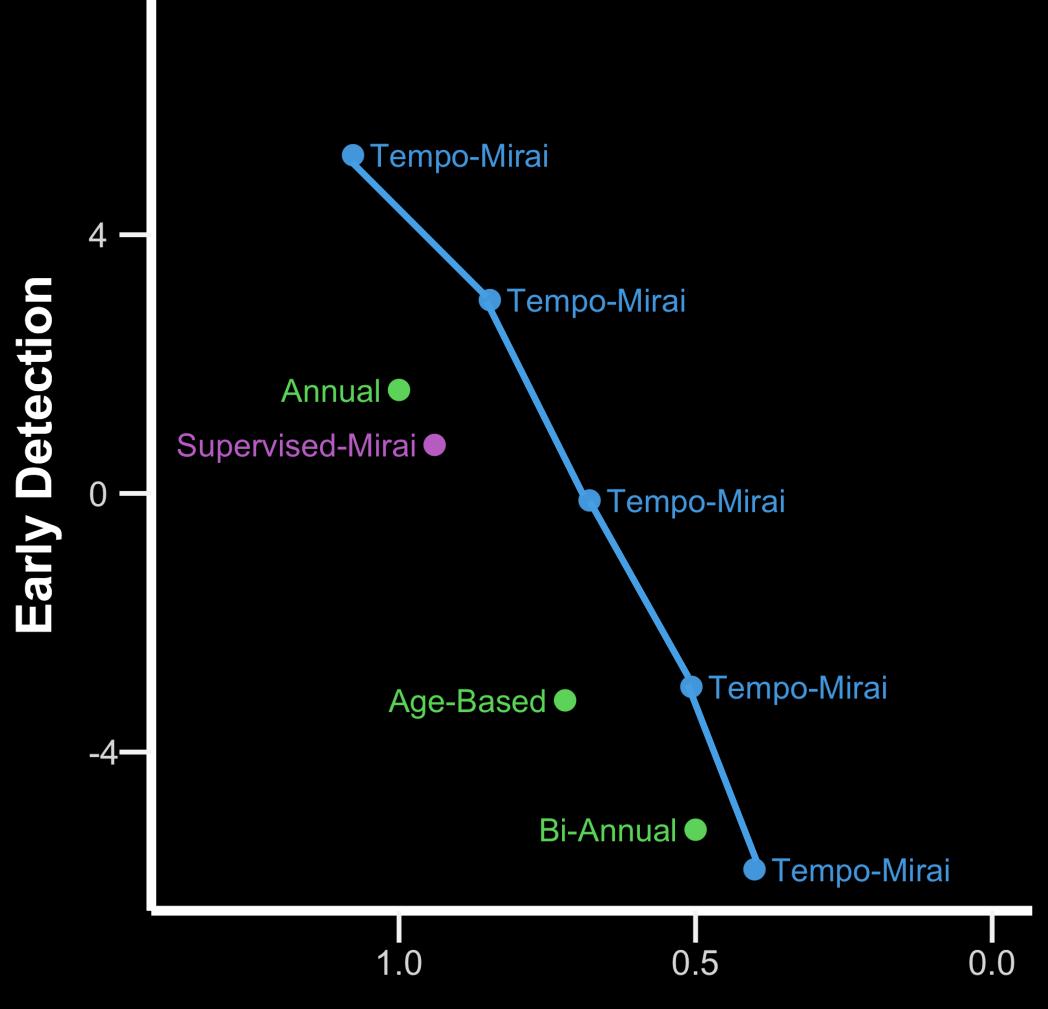
Early Detection

Avg Mammo per Year

Results: MGH Screening Efficiency



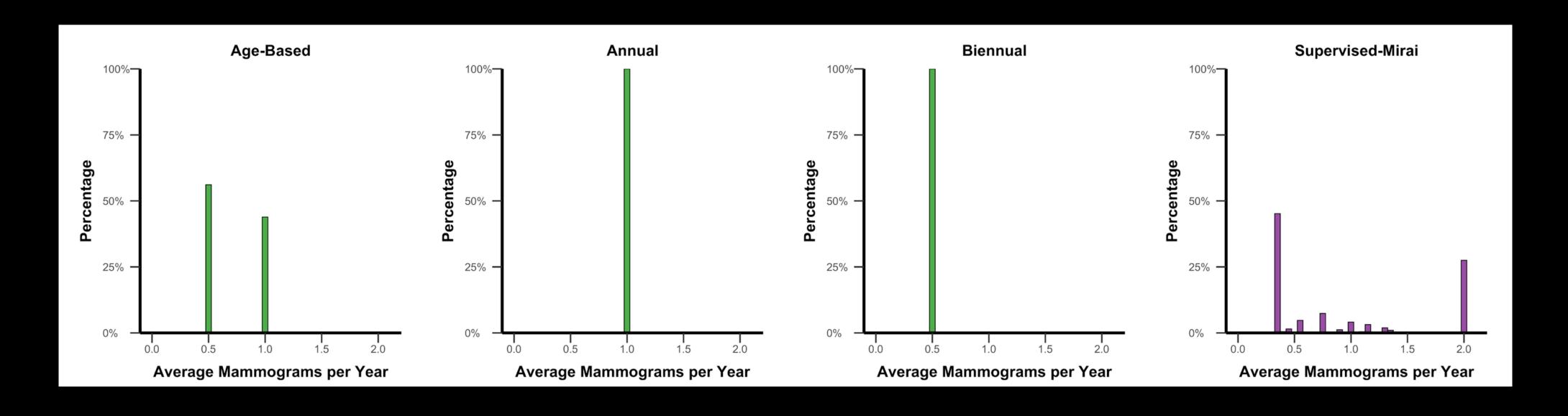
Supporting diverse clinical needs

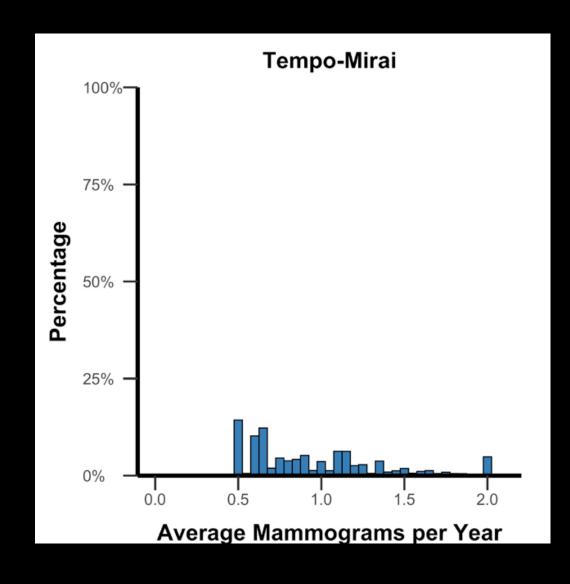


Average Mammograms Per Year

MGH Test Set

How do the policy behave?



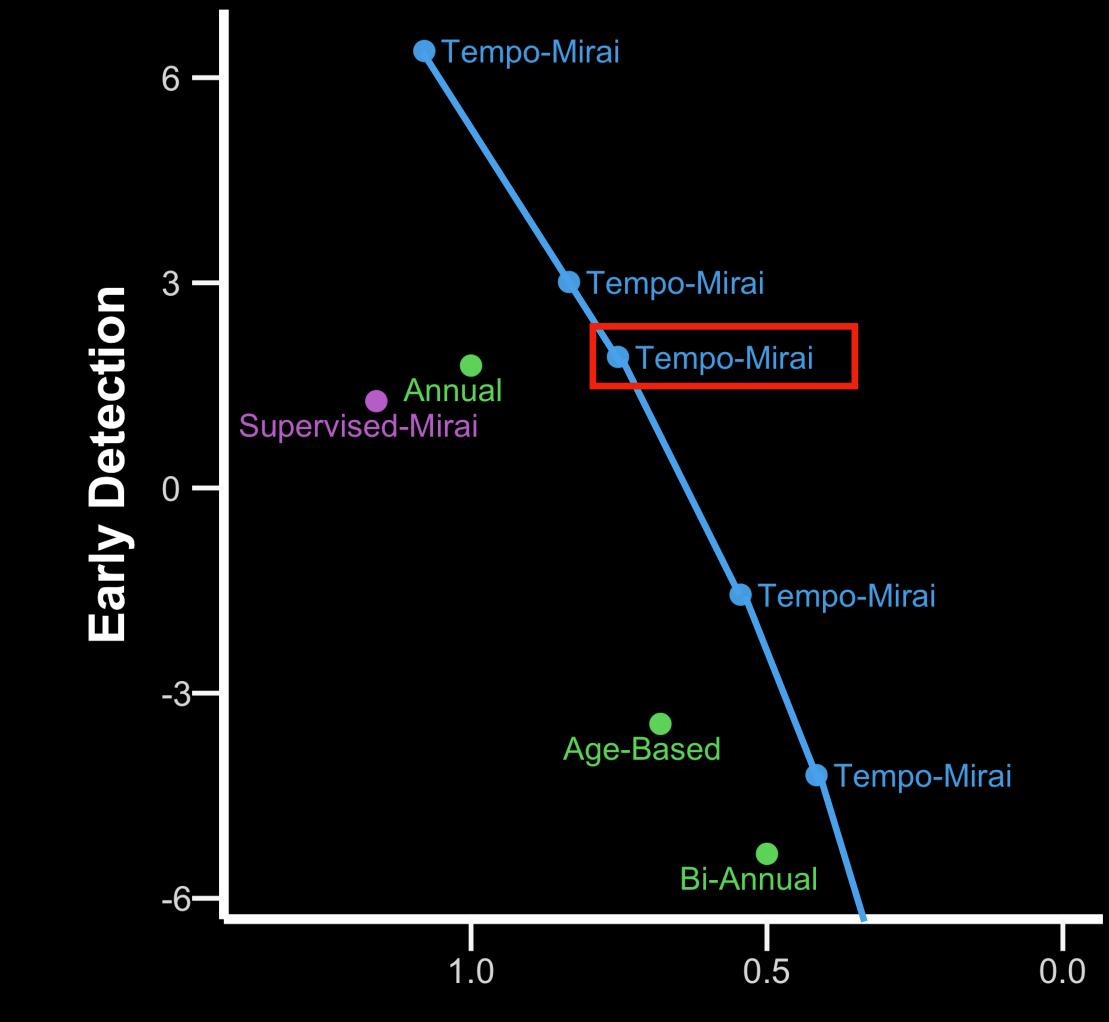


How to Deploy?

Validate on retrospective data

Choose desired operating point

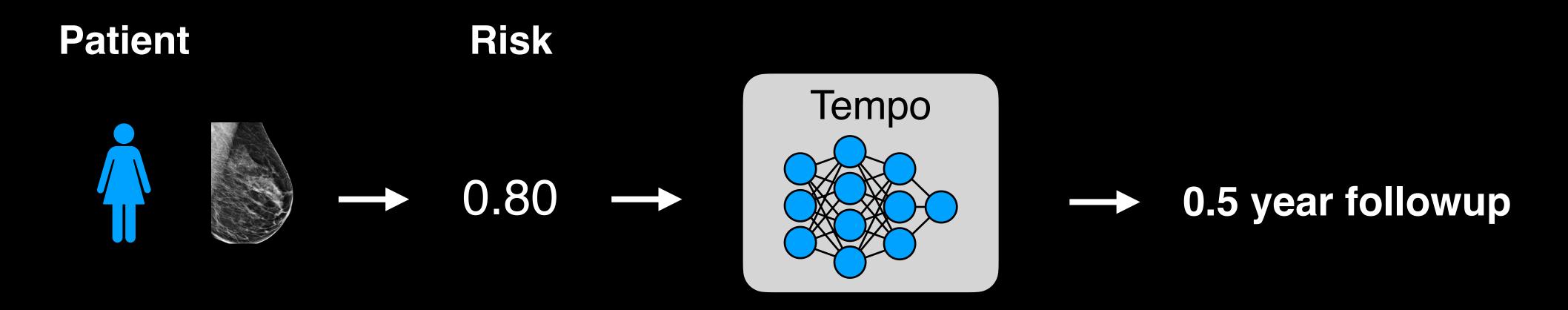
Run prospective trials



Average Mammograms Per Year

Emory Test Set

Summary

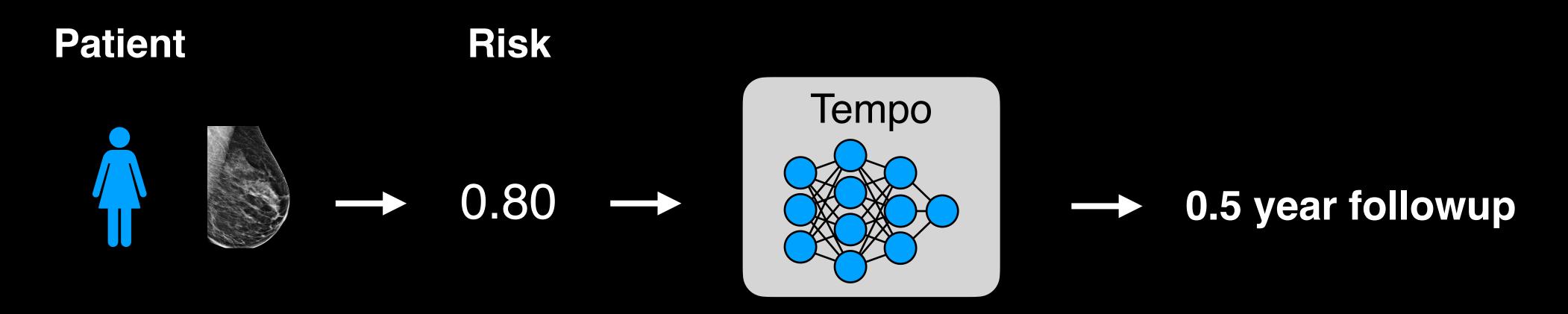


Learn personalized screening policies by modeling individuals

Applicable with arbitrary reward design / choice of risk model

Better early detection and less overscreening

What's missing?

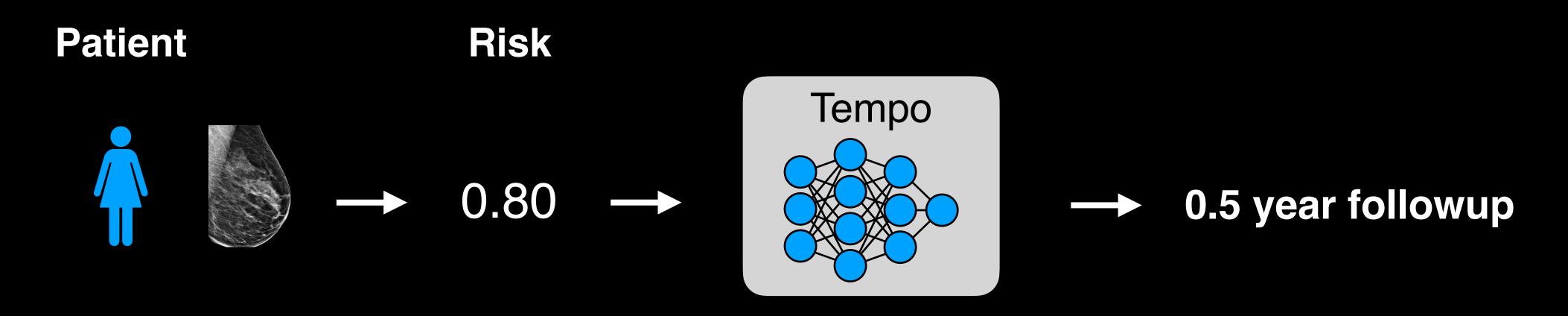


Robustness to risk progression

Preference elicitation

Understanding causal effects from real trajectories

What's missing?

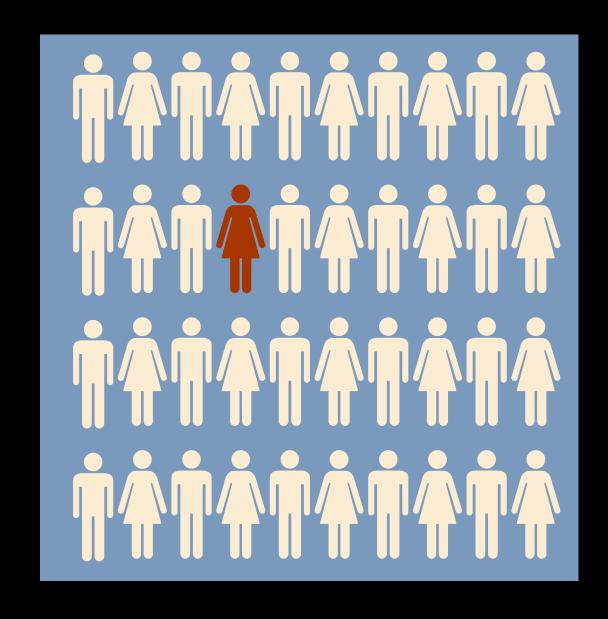


Modeling patient data directly for policy design

Hierarchical Action Spaces

Deployment Safety

What if we succeed?



Rethink screening criteria / guidelines across diseases

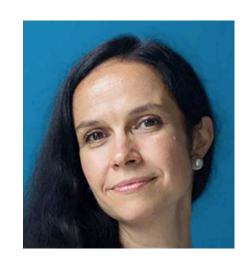
Early detection for "unscreeneable" diseases

New doors for prevention and therapeutic development

Thank you to my collaborators

Regina Barzilay MIT

Tommi Jaakkola MIT



Muriel Medard MIT

Tal Schuster
Google

Peter Mikhael MIT

Victor Quach MIT

Kevin Hughes MGH

Fredrik Strand Karolinska

Gigin Lin CGMH

Judy Gichoya Emory

Hari Traveri Emory

Michal Guindy Maccabi

Join us!

computationalhealth.berkeley.edu

Prospective PhD students: Join my lab!

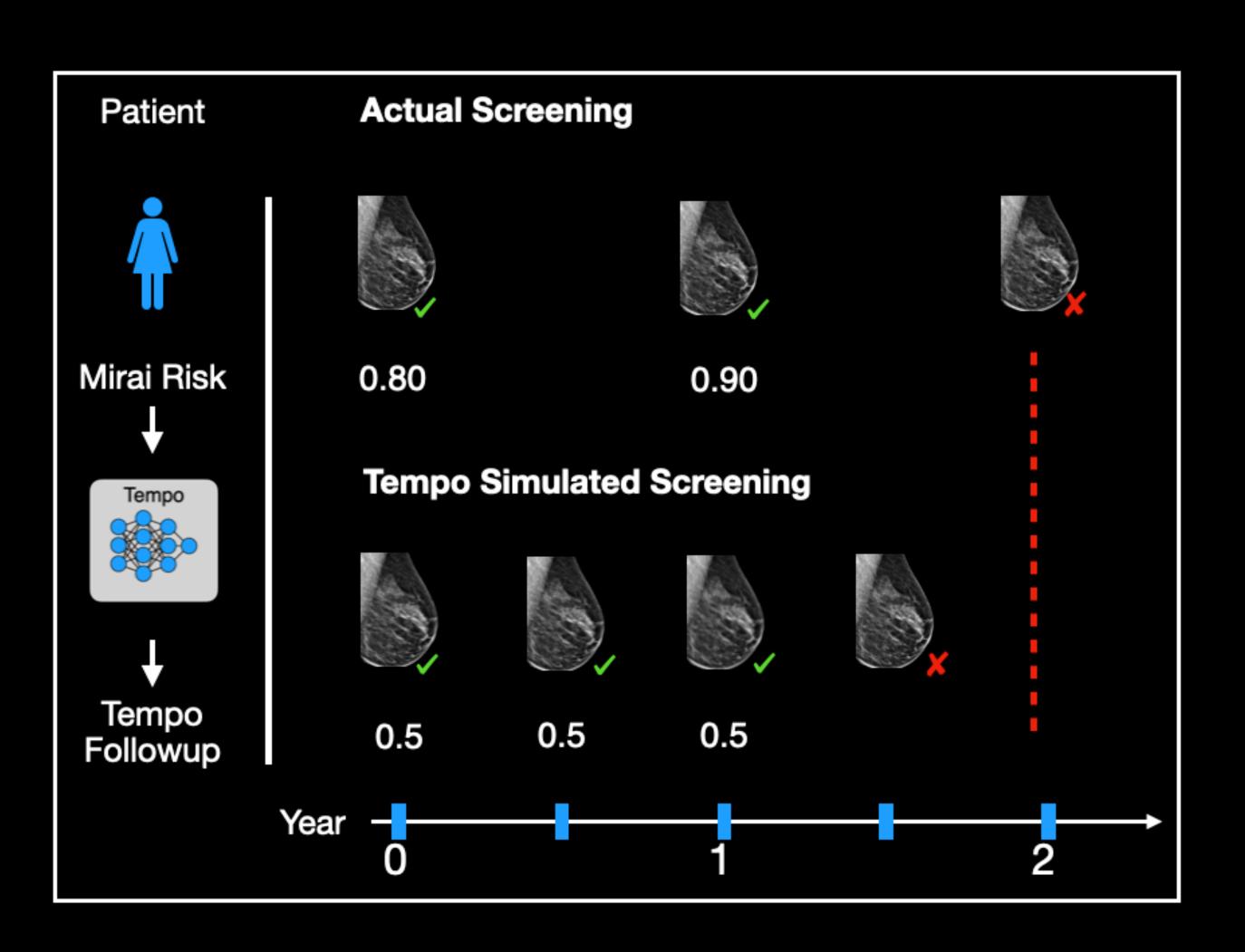
Prospective Faculty: We are now recruiting!

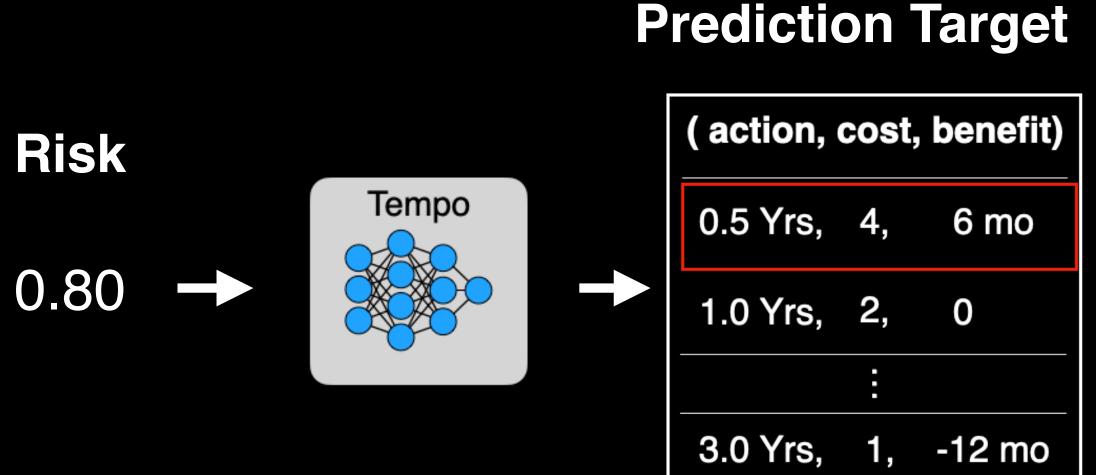
Questions?

Appendix Slides

Early Detection Appendix Slides

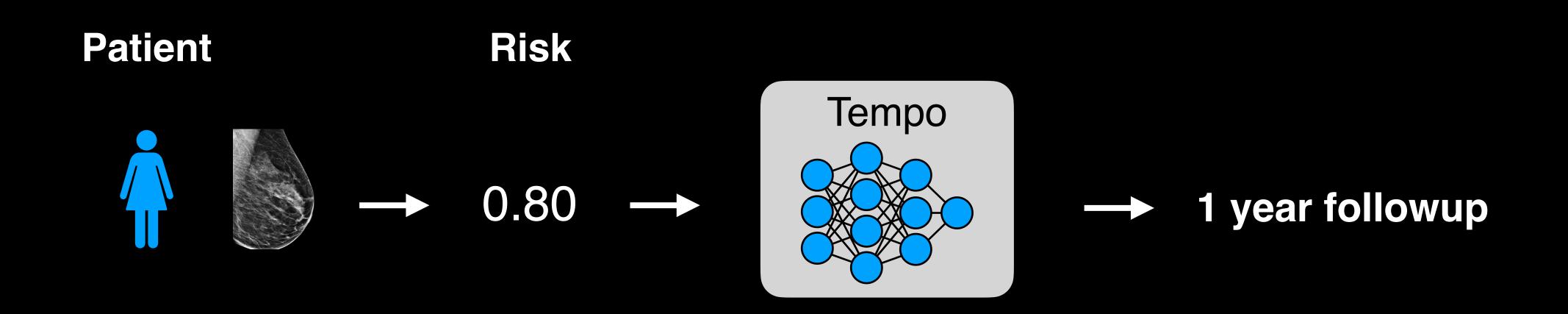
Tempo: Policy Design as Reinforcement Learning





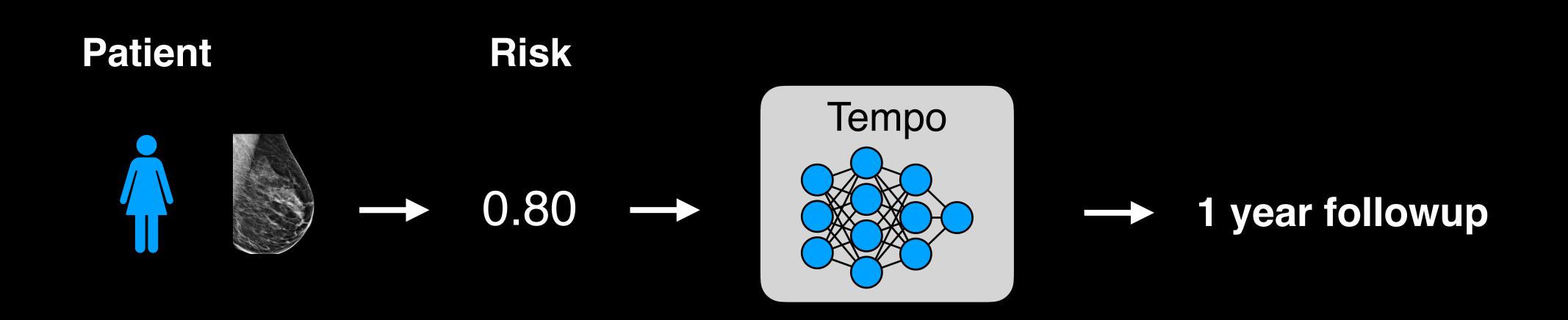
Reward = λ_1 Benefit - λ_2 Cost

Learning for a fixed preference



Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

Learning for a fixed preference: Q Learning

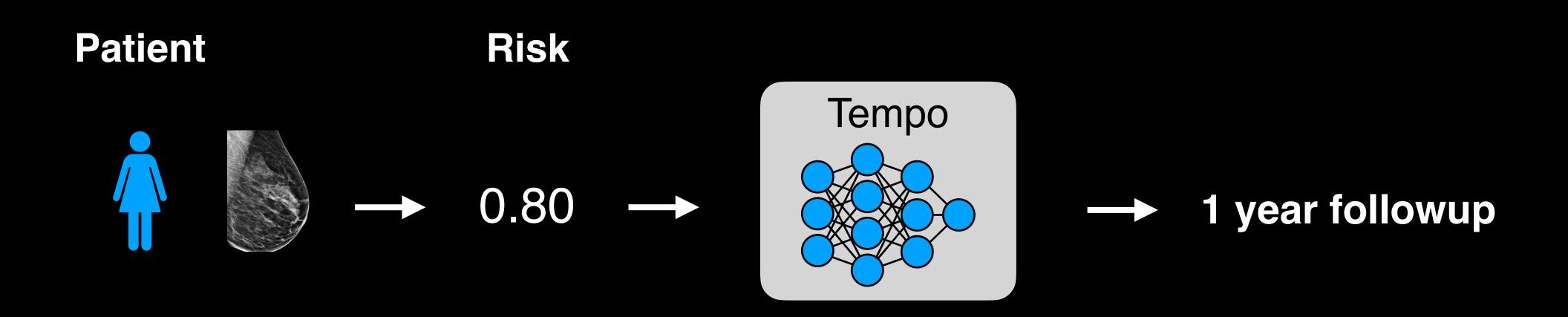


Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

$$Q(s, a) = R(s, a) + \gamma \max_{a} Q(s', a)$$

$$\mathcal{L}(s, a) = ||R(s, a) + \max_{a} Q(s', a) - Q(s, a)||^{2}$$

Tricks for stable training

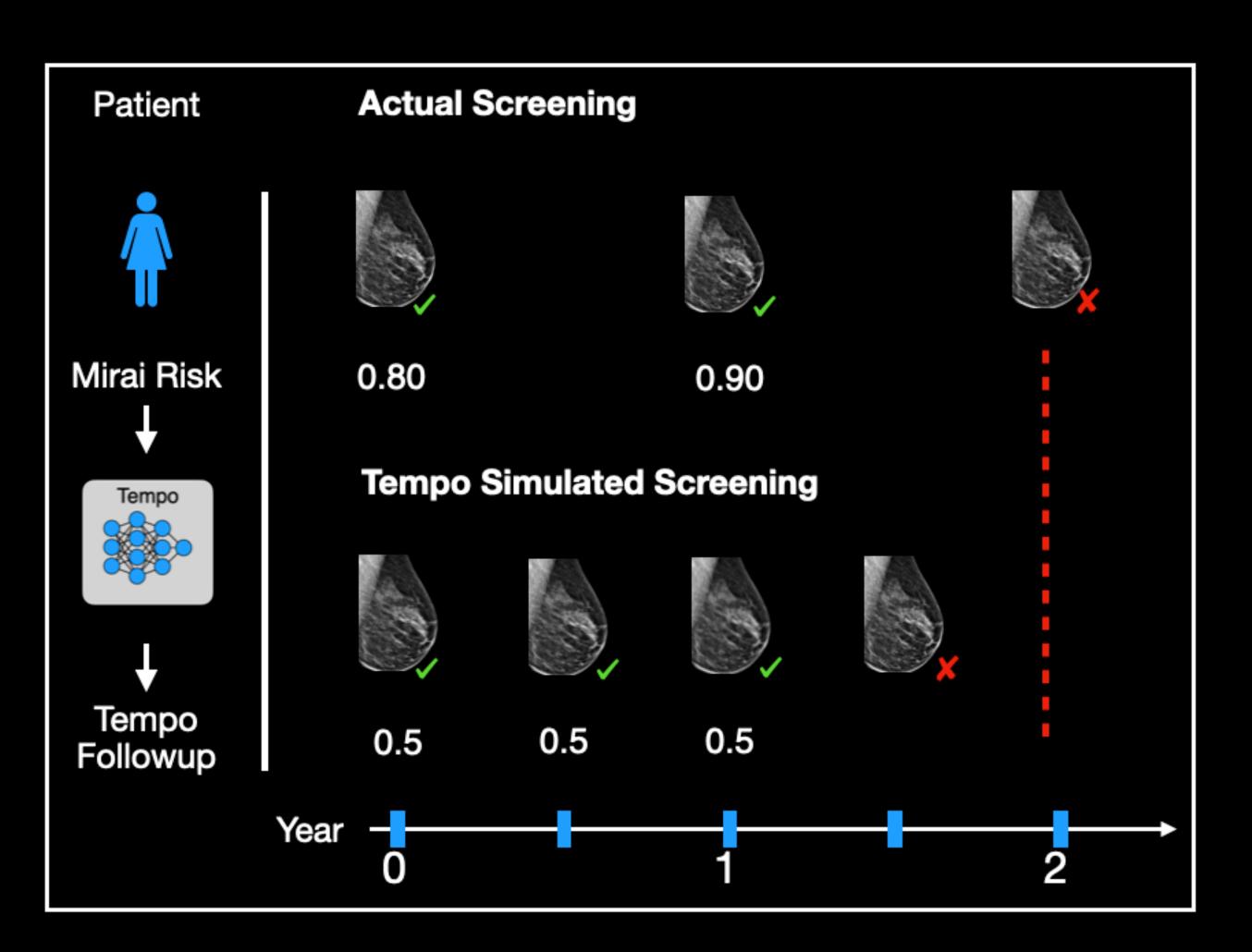


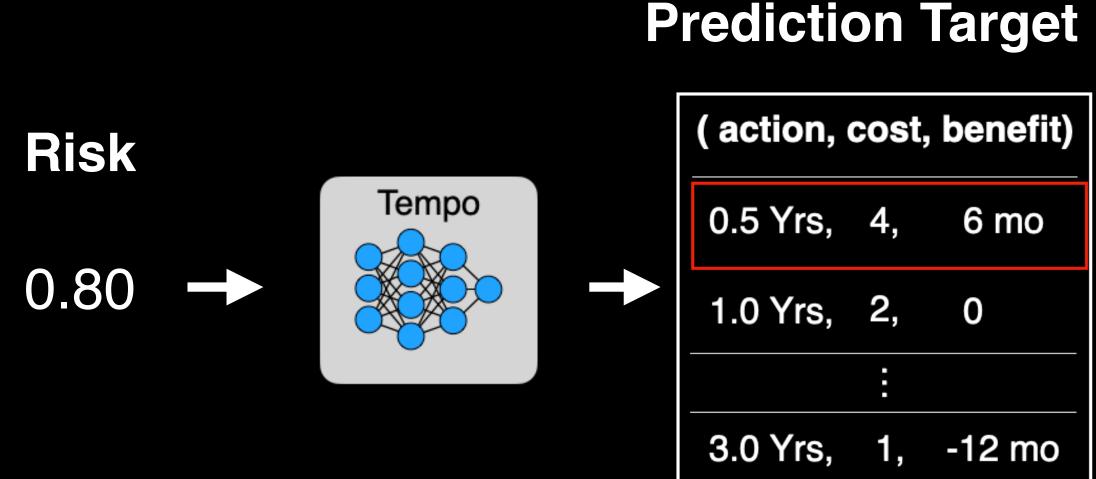
Randomly sample transitions from Experience Replay Buffers

Use slowly updated target network (i.e. copy Q every 100~ steps)

$$\mathcal{L}(s, a) = ||R(s, a) + \max_{a} Q_{target}(s', a) - Q(s, a)||^{2}$$

Scaling to unknown preferences

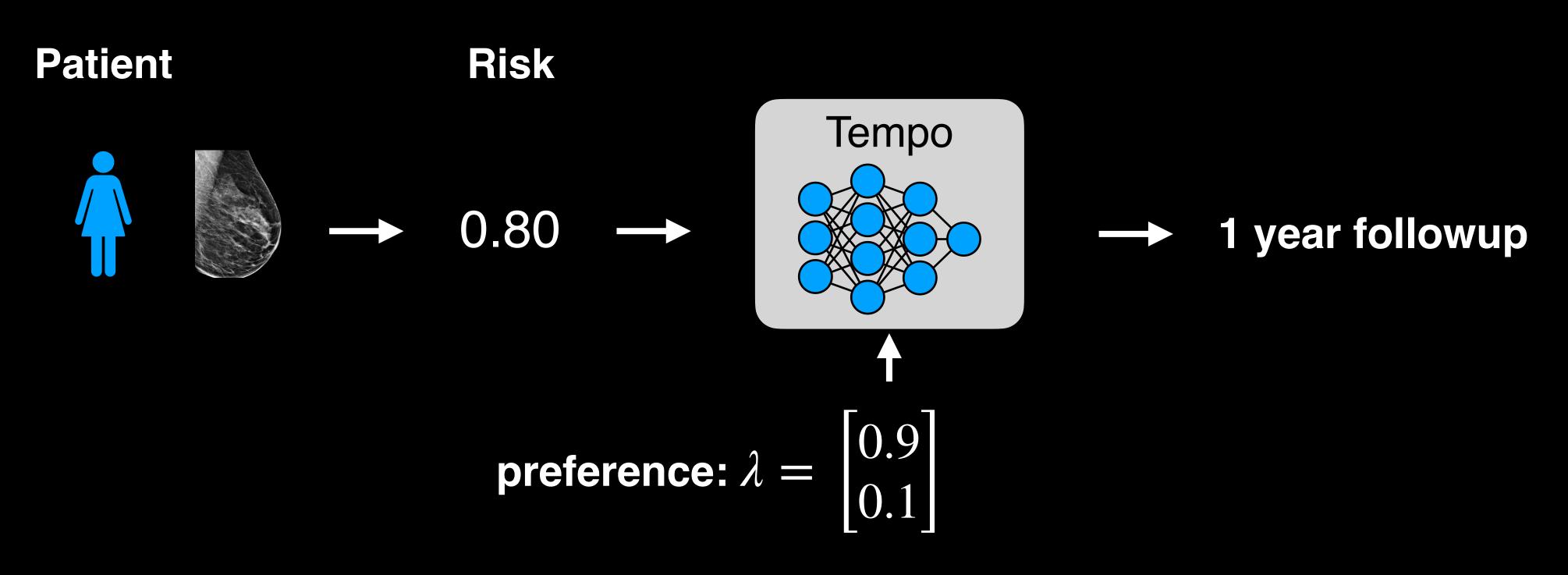




Reward = λ_1 Benefit - λ_2 Cost

- 1 unknown at training time
- + We have access to [Benefit, Cost]

Supporting diverse clinical requirements

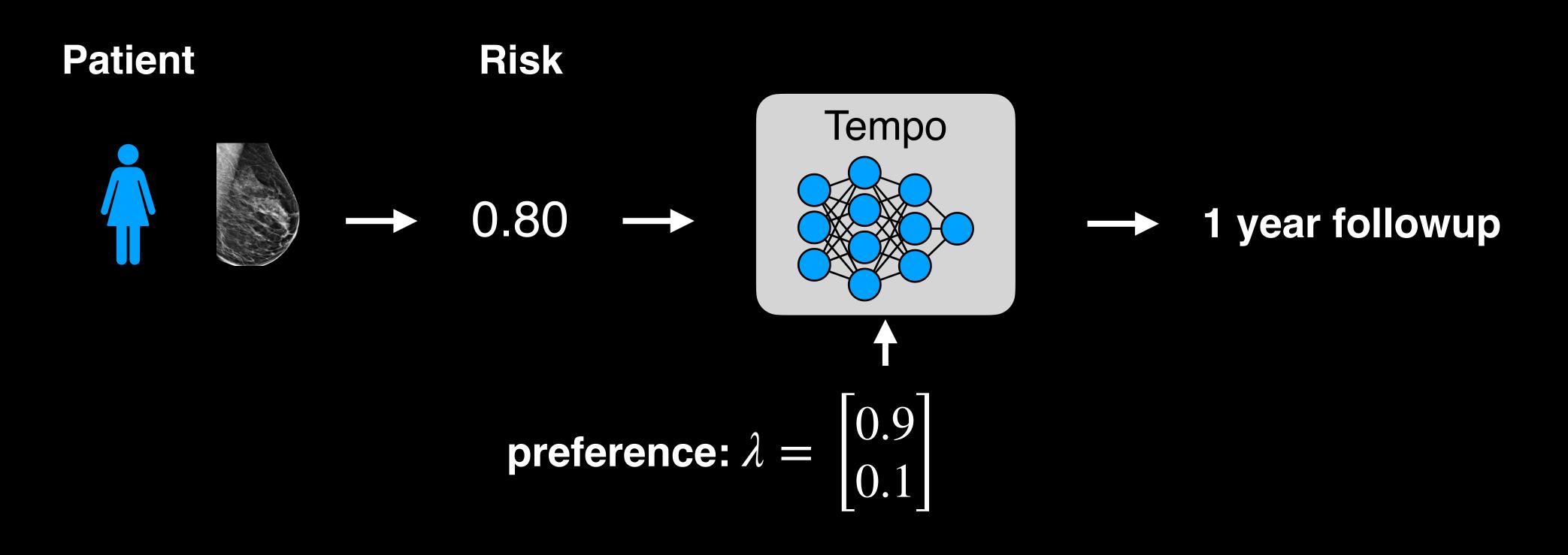


 $\vec{r}(s, a) = [Early Detection, Screening Cost]$

Trained across possible (λ_1, λ_2) to maximize:

 $\lambda \cdot \vec{r} = \lambda_1$ Early Detection Benefit - λ_2 Screening Cost

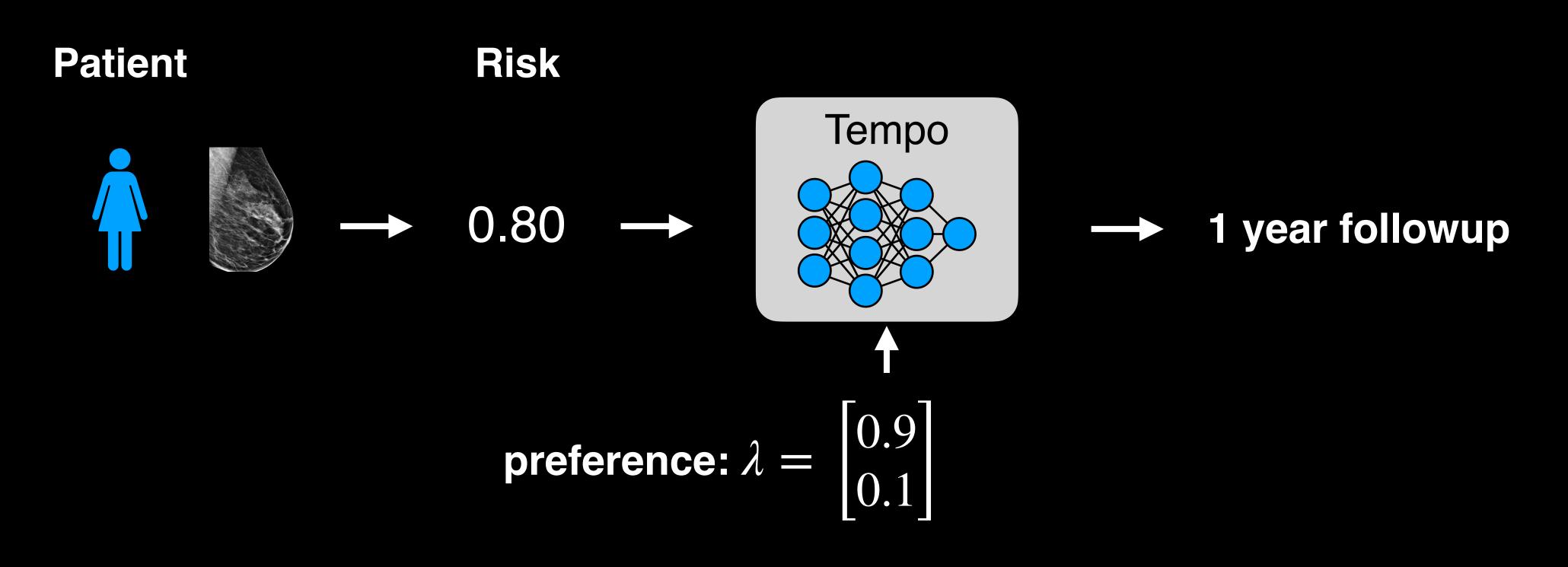
Towards multi-objective RL: Scalarized updates



$$\vec{r}(s, a) = [\text{Early Detection, Screening Cost}]$$

$$Q(s, a, \lambda) = \lambda \vec{r}(s, a) + \gamma \lambda \max_{a} Q(s', a, \lambda)$$

Towards multi-objective RL: Scalarized updates

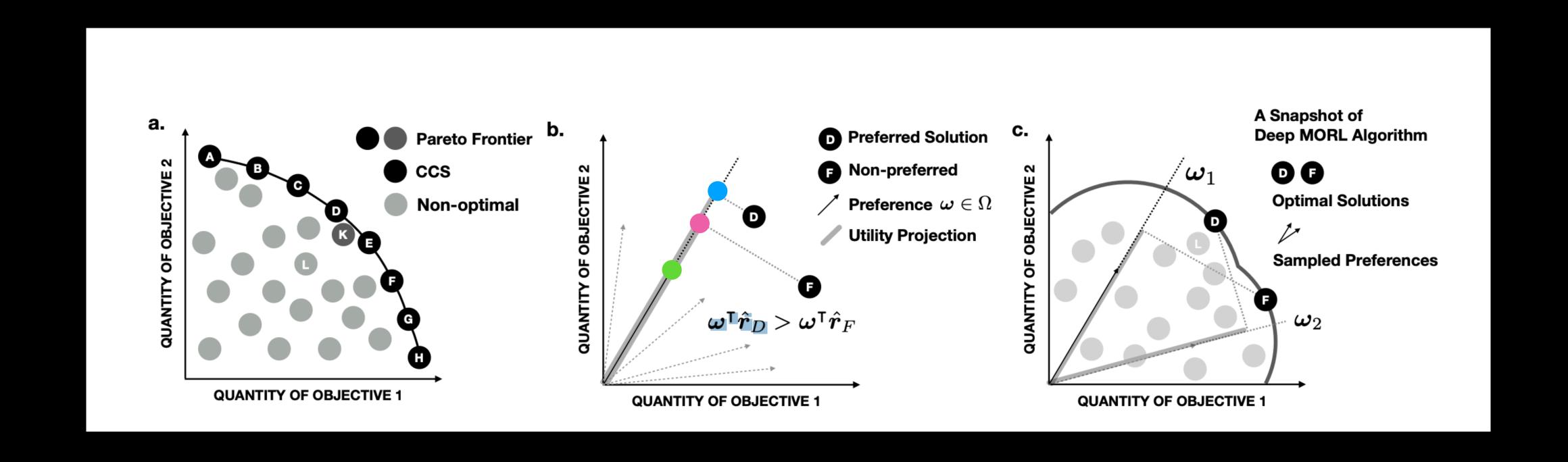


$$\vec{r}(s, a) = [Early Detection, Screening Cost]$$

$$Q(s, a, \lambda) = \lambda \vec{r}(s, a) + \gamma \lambda \max_{a} Q(s', a, \lambda)$$

Doesn't use relationship between λ

Envelope Q-Learning



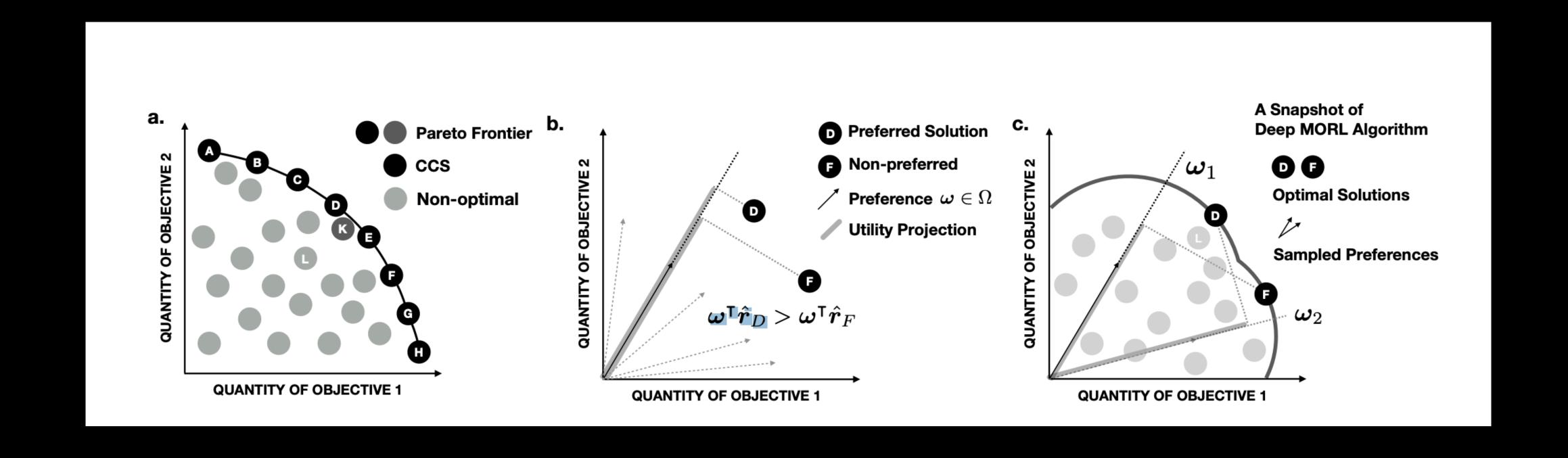
Search envelope of policy:

Identify λ' more effective for true target λ

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Runzhe Yang, Xingyuan Sun, Karthik Narasimhan

Envelope Q-Learning

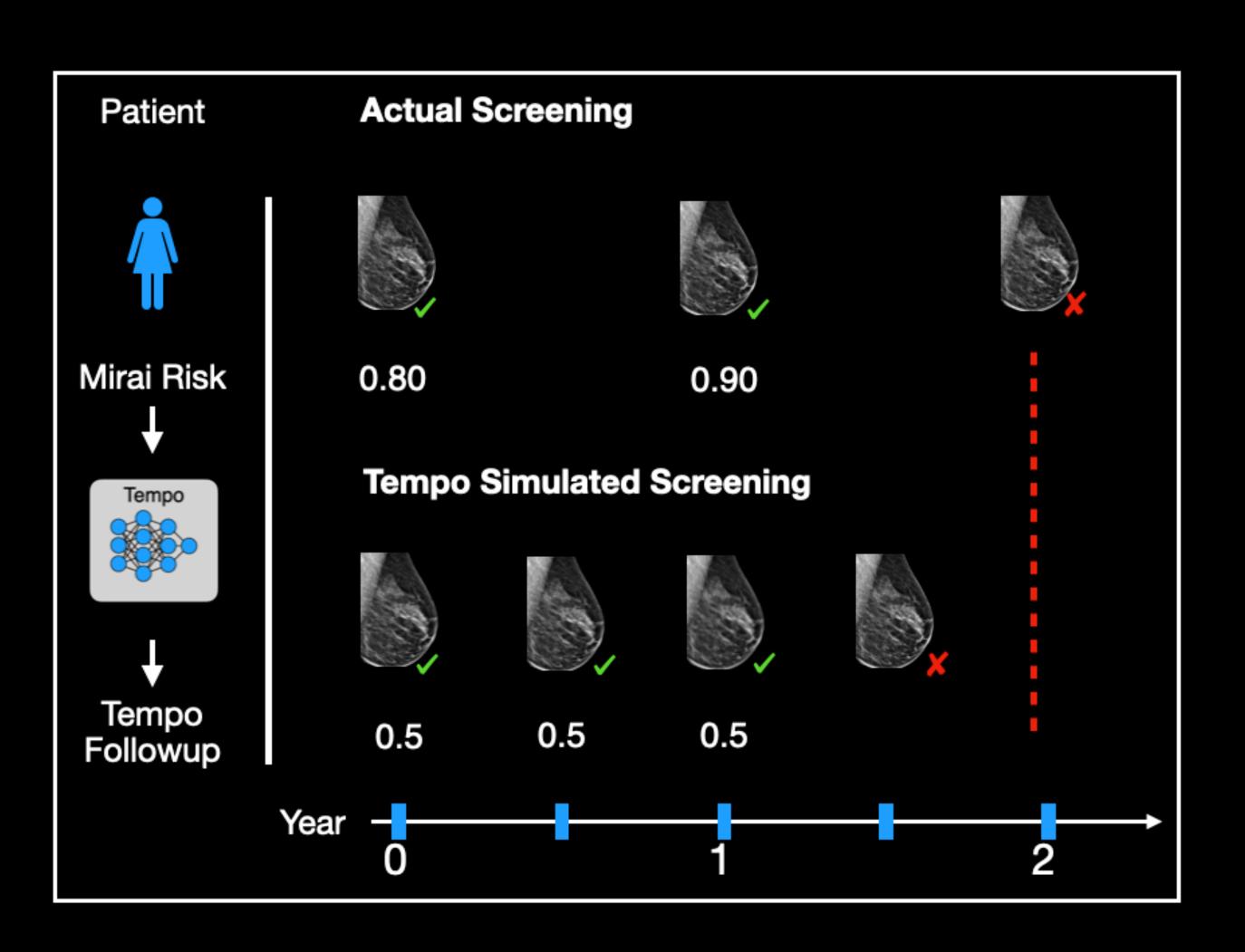


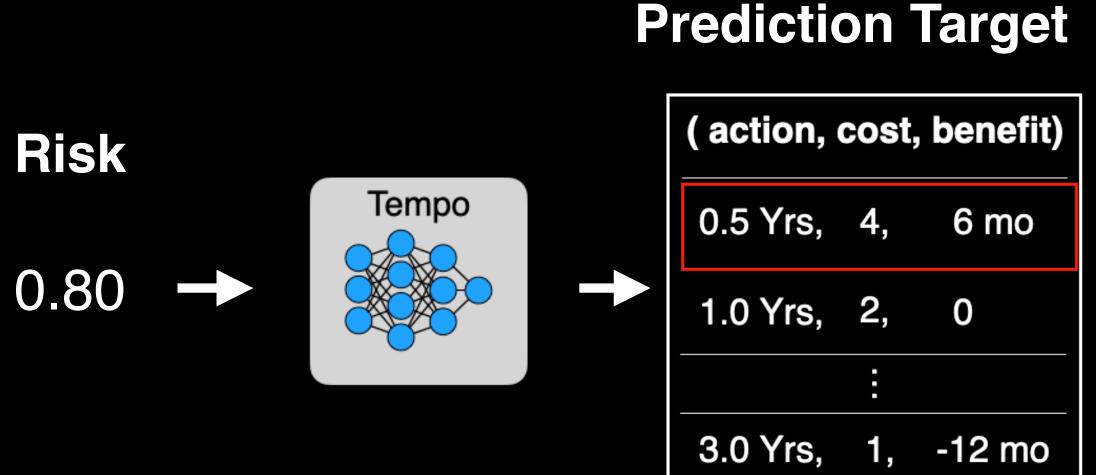
$$y = \vec{r}(s, a) + \gamma \arg_{Q} \max_{a, \lambda'} \lambda^{t} Q(s', a, \lambda')$$

$$\mathcal{L}(s, a, \lambda) = ||y - Q(s, a, \lambda)||^2$$

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

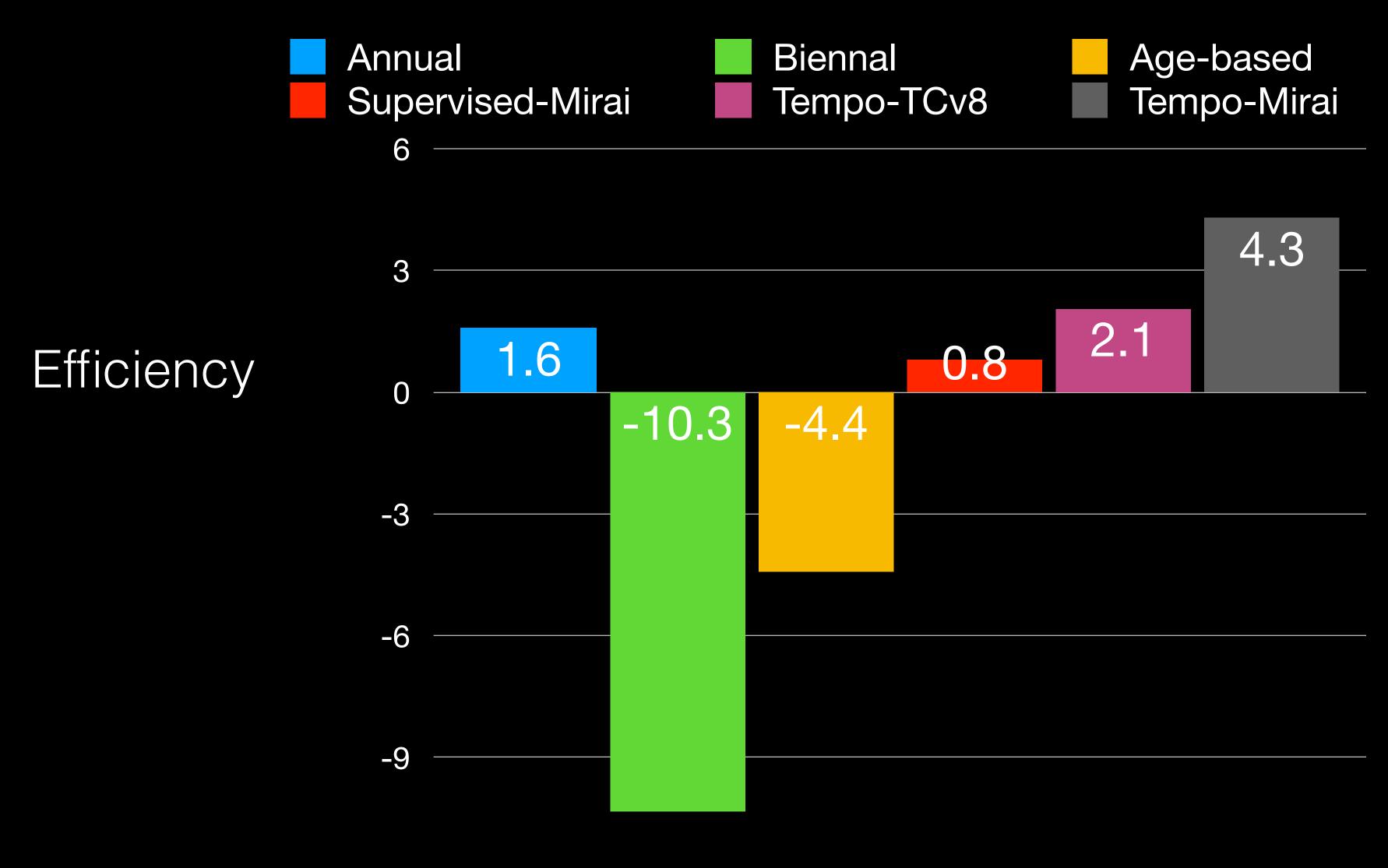
Tempo: Policy Design as Reinforcement Learning



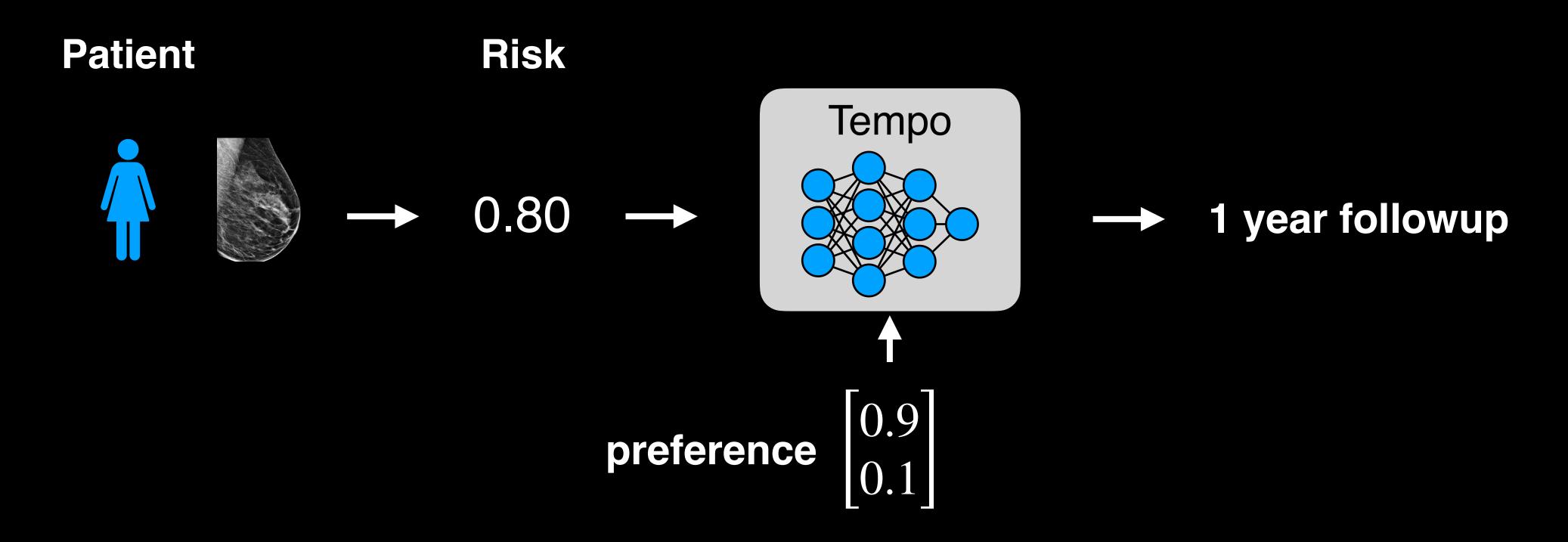


Reward = λ_1 Benefit - λ_2 Cost

Results: MGH Screening Efficiency



Supporting diverse clinical requirements

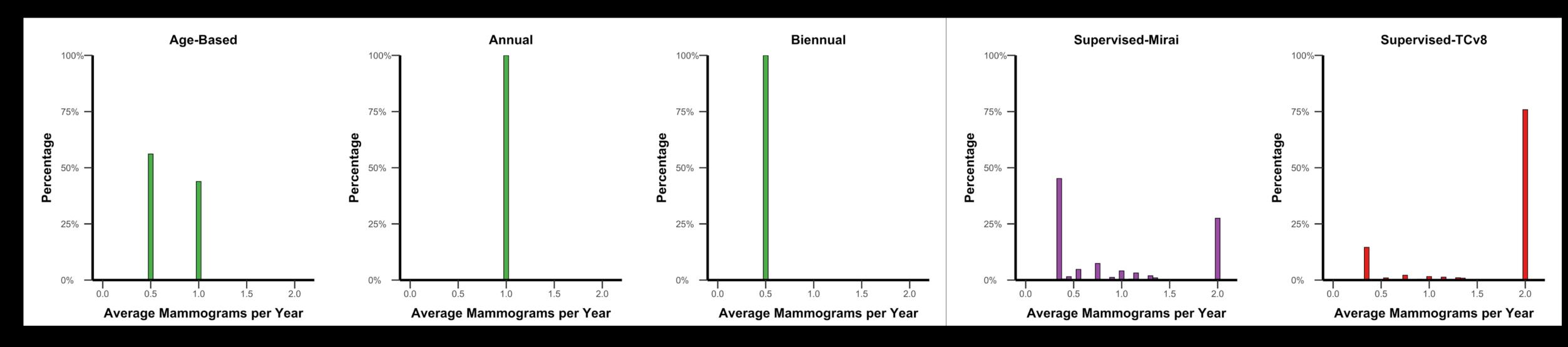


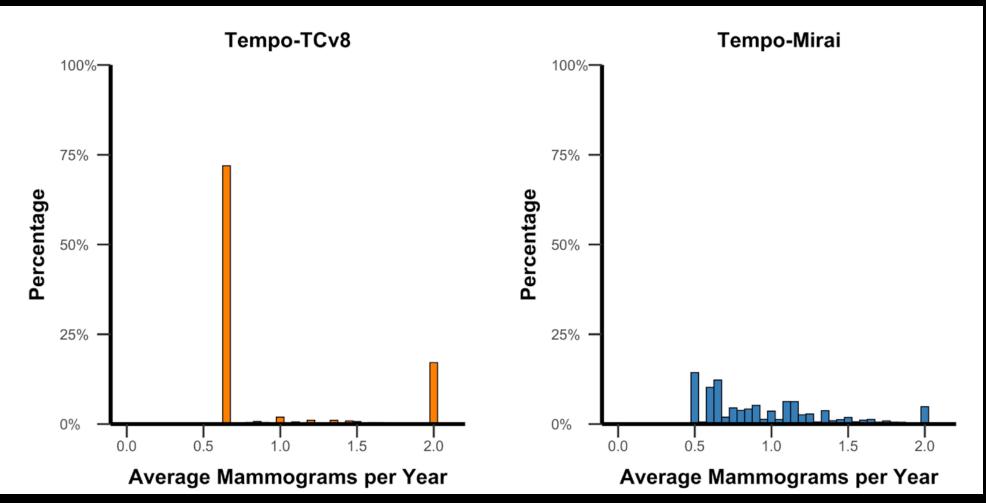
Trained across possible (λ_1, λ_2) to maximize:

Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

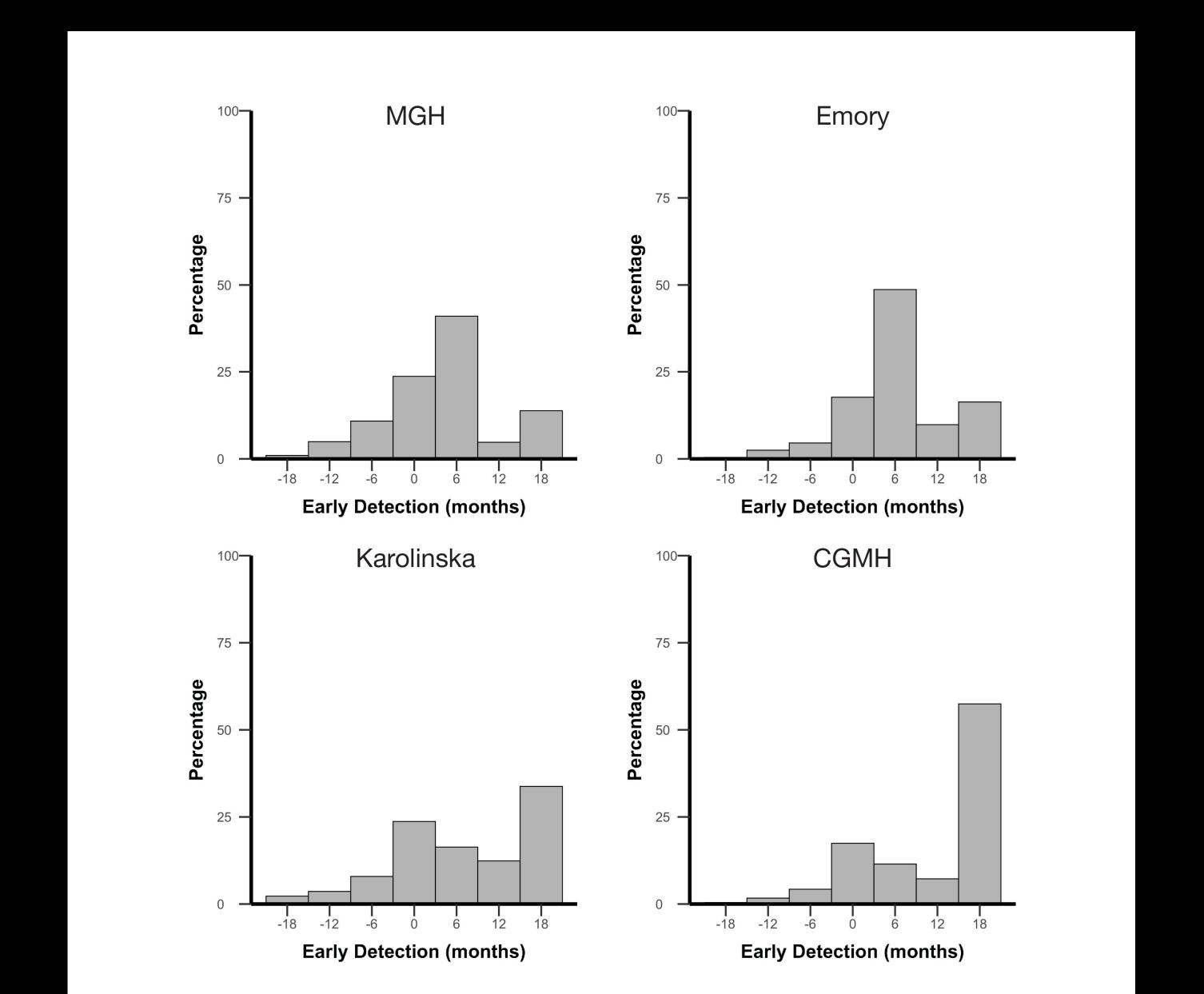
A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Results: Screening Frequency



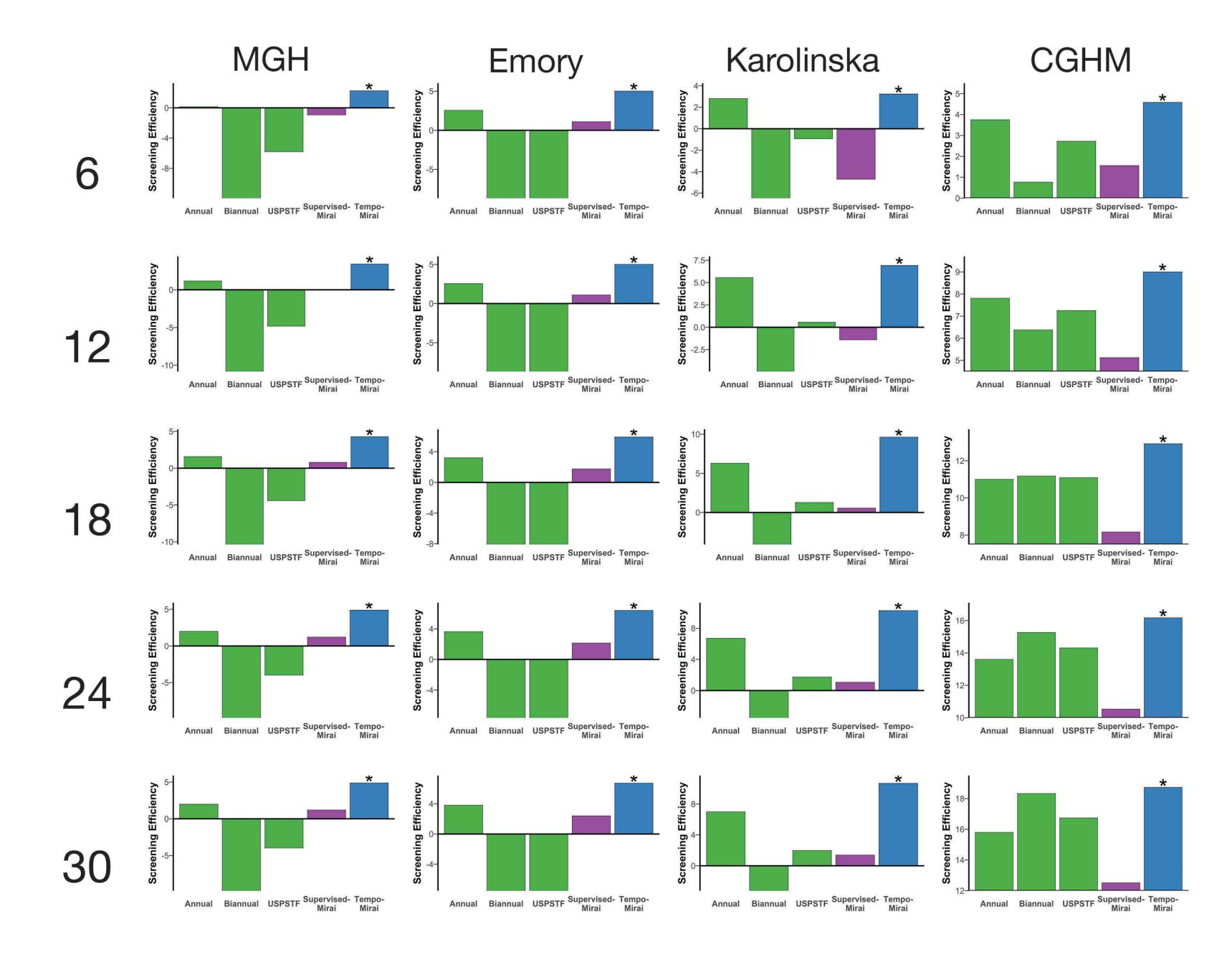


Results: Early Detection



Results: Robustness

- Policies trained with 18 month assumption
- Tempo-Mirai more efficient across assumptions



Results: Risk Progression

