2022-11-03

Multi-armed bandits

Exploration-Exploitation Dilemma

Cathy Wu

6.7950: Reinforcement Learning: Foundations and Methods

Wu



References

1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lecture 6.

2. Aleksandrs Slivkins. Introduction to Multi-Armed Bandits.
2019. Chapters 1, 8.



Outline

1. From RL to bandits
2. Exploration Strategies

3. Linear and contextual linear bandits



Outline

1. From RL to bandits

a. Example: Recommender systems
b. Regret

2. Exploration Strategies

3. Linear and contextual linear bandits



Why study bandits?

Bandits the RL interaction loop (MDP), providing a focused
problem setting to consider the in sequential
decision making (exploration-exploitation dilemma).

Also called , methods for analyzing bandits are

foundational for —that is,
, as opposed to asymptotic convergence.

are the most widely deployed form of RL, in the
form of . Understanding bandits means
understanding the core ideas and algorithms behind these products
and services.



Recall: Q-Learning

If the learning rate satisfies the Robbins-Monro conditions in all states

s,a € SXA . .
znt(s,a) = 00 zn?(s,a) < o
i=0 1=0

And all state-action pairs are tried infinitely often, then for all s,a €
SXA

0(s, @) — Q*(s, a)



Learning the Optimal Policy

fori=1,..,ndo
Sett =0
Set initial state s
while (s; not terminal)
Take action a; according to a suitable exploration policy

Observe next state s;, 1 and reward 73
Compute the temporaldifference ~
Op =1ty max Q(str1,a’) — Q(spar)  (Q—learning)
Update the Q-function
Q(se ar) = 0(sy, ap) + alsy, ap)ée
Sett=t+1

endwhile

endfor

No Convergence
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Learning the Optimal Policy

fori=1,..,ndo

Sett =0

Set initial state s
while (s; not terminal)

Observe next state s;, 4 and reward 1
Compute the temporal difference

Update the Q—furlction
Q(St; at) =
Sett=t+1

endwhile

endfor
Bad Convergence

Op =1ty max Q(st+1,a") — Q(sear)  (Q—learning)

+ a(se, ar)d;



From RL to Multi-armed Bandit

fori=1,..,ndo
Sett =0
Setinitial
—while-(s -netterminal}
Take action a;

Observe rextstate-sand-reward 1,
endwhile

endfor

12
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From RL to Multi-armed Bandit

The protocol
fori=1,..,ndo
Take action a;

Observe reward r:~v(a;)
endfor

The problem

Set of A actions

Reward distribution v(a) with

u(a) = E[r(a)]

(bounded in [0,1] for convenience)

The objective

Maximize sum of reward E[}.}—; 7]
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A Simple Recommendation System

. Row ’ My List Notifications Several profiles Personal
A RS can recommend different genres e promas /ot
of movies (e.g. action, adventure, ——— —
romance, animation) ﬂ \;SPM I

Users arrive at random and no
information about the user is available

Netflix's own
series

The RS picks a genre to recommend to ;
the user but not the specific movies SP”“t ""!.i.'.!‘!.! -

The feedback is whether the user
watched a movie of the recommended "

. T _‘ recommendations
genre or not . Fasrsrm M

Objective: Design a RS that maximizes "} ey
the movies watched in the
recommended genre




RS as a Multi-armed Bandit

fori=1,..,ndo
1. User arrives
2. Recommend genre a;

3. Reward
{1 user watches movie of genre a;
T =

0 otherwise

endfor
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RS as a Multi-armed Bandit

The model

= v(a) is a Bernoulli

= p(a) = E[r(a)] is the probability a random user watches a movie of
genre a

= Assumption: ry~v(a;) is a realization of the Bernoulli of a genre a
The objective

= Maximize sum of reward E[Y.7-; 1¢]




Other Examples

= Movies, TV, music
= Packet routing

= Clinical trials

= Web advertising
= Health advice

= Education

= Computer games
= Resource mining
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P HeartSteps

HeartSteps explores new ways that mobile technology—
smartphones and wearable activity trackers—can be
used to help patients to increase their physical activity.
We have developed a mobile app that works with a Fitbit
activity tracker to help individuals set activity goals, plan
how they will be active, and remain motivated to find
ways to incorporate physical activity into their daily lives.
Our ultimate goal is to develop technology that
effectively supports physical activity over the long-term.

Funded by the National Institutes of Health (NIH)

https://heartsteps.net
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Recommender system strategies: in a nutshell

= Studied since the 90s.

= Content-based filtering (early systems): Recommend items
with features like the user’s past selections.

= Collaborative filtering (modern systems): Recommend items
based on other users with similar selection characteristics
to the user’s past selections. A=UsVT = (UVE)(VEVT)

* Dominant approach: matrix n

factorization % o x _.
* Fueled by Netflix Prize 9 %

competition (2006--): — i0

100mil movie ratings

Movies [|



Low rank matrix factorization

Serious
The Color Purple Amadeus
.IZ!
o /
S
@ Lethal Weapon
Sense and
Geared Sensibility |Ocearis 11] G 1 Geared
toward < N » toward
females males
The Lion King Dok
a1 Dumber
The Princess Independence &
Diaries Day =
Gus

A
Escapist

Latent factors illustration [1]
Improved upon Netflix’s rating predictions by 10%!

S1mil prize!

08
Star Wars Mission: Impossible
* *
0.7
*
06 * * *
ok Return of the Jedi *
05 *,
Y *
04 * w *
*
0.3
*
) *
02 *  preferred item
’ disliked item
® user
0.1
02 03 04 05 06

Latent factors in practice [2]

Latent factors effective, but not that easy to interpret.

[1] Koren, Bell, Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 2009. [Winner of the Netflix Prize]
[2] Junliang Yu, et al. A Social Recommender Based on Factorization and Distance Metric Learning. IEEE Access, 2017. Wu
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Fundamental challenges for recommender systems

The : need to base recommendations
How to recommend ?
Example: new posts on social media, new webpages, new videos on YouTube
Many recommender systems are

Balancing optimization:
Immediate user-engagement metrics: easy to measure, direct translation to
revenue, ignores long-term impacts

Long-term ecosystem health: hard to measure / justify to stakeholders,
promotes long-term sustainability



The Regret - how quickly to “warm up”?

S

t=1

n

R, = max E [z re(a)

t=1

The expectation summarizes any possible source of randomness
(either in r or in the algorithm)

Relation to RL: Can think of this as n trajectories (of length 1).

Measures not only the final error, but all mistakes made over n “iterations.”

Wu
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Minimizing regret encodes the exploration-exploitation dilemma

Problem 1: The environment does not reveal the reward of the actions
not selected by the learner

The learner should gain information by repeatedly selecting all
actions — exploration

Problem 2: Whenever the learner selects a bad action, it suffers some
regret

The learner should reduce the regret by repeatedly selecting the
best action — exploitation

Challenge: The learner should solve the exploration-exploitation dilemma!

Wu



The Regret

Regret

R, = max E [Z rr(a)|—E lz rt(at)]

Ry = maxnp(a) — Z Tt(at)]

n Lt=1
Ry =np(a’) —E [2 rt(aa‘

t=1
R, = nu(@) = ) EIT,(@]u(@)
Ry= ) ElT@](u(a) - u(@)

a+a*

Ry= ) ElT,(@]A(@

aza*

Number of times action a
has been selected after n
rounds

To(@) = ) Ha, = a)

Gap A@) = p(a”) — u(a)



The Regret

Ry= ) ElT(@]A@

axa*
We only need to study the
actions are selected

Worst case possible: R,, = O(n)
Discuss: Why?

A good algorithm has R,, = o(n), i.e. % -0
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What does it mean for an algorithm to work?

Monotonic improvement global convergence

e SO

Low regret §\ /
ddtonaregrt (local) convergence

7 Finite sample guarantees

7 //7 F/f Asymptotic convergence
%//}é/%z Sample efficient

(B Training samples 0

Average return




Finite sample analysis: regret vs sample complexity
How many data points are needed for a good approximation of the
optimal policy with an algorithm K?

T(6,€,|S]|, |A]): smallest T such that with
probability at least 1 — 6,
AvgError(K) < €
Where AvgError(XK), is the average error made by the algorithm
after t steps.

: cumulative error over the course of the algorithm

T
Z Error(X);
t=1

Adapted from Mohammed Amine Bennouna & Moise Blanchard Wu
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3. Linear and contextual linear bandits
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Explore-then-Commit

Consider: A = {ay,a,,a3}; A=|A| =3

t = 0 1 2 3 4 5 6 7
a, as as a, a, aq aq as
v v v v v v v v
r(a;) r(as) r(as) r(ap)|r(az) r(a;) r(ay) r(as)

o
»

' timen
Explore phase tmet Exploit phase



Explore-then-Commit: Algorithm

Explore phase
fori=1,..,7=AK do
1. Take action a;~TL(A) (or round robin)
2. Observe reward ry~v(a;)
endfor

Compute statistics for each action a

1
fir(a) = T.(a) z r:l{as = a}

Exploit phase
fori=7+1,..,ndo
1. Take action @* = argmax fi;(a)
2. Observe reward rt~v(§*)
endfor

Define:

To(@) = ) Ia, = a)
t=1

30



Explore-then-Commit: Regret

Let A be the number of arms. If is run for n steps,
exploring (round robin) for the first 7 steps, then it suffers (expected) regret:

Alogn
R, <7+0

n
T

2

With best choice of 7, can get R,, = O (nE) (for T = n?/3(logn)'/3)
Recall: worst possible: R,, = 0(n)



Concentration inequalities

Foundational tools for regret analysis.

Proposition (Hoeffding Inequality)

Let X; € [a, b] be an independent r.v. with common mean u = EX;.
Then:

2ne?
(b—a)?

IP’[l)?n—u|>e]S2exp(— ) vn >0

— _ 1 n
where X, = - =1 Xj -



Explore-then-Commit: Regret Analysis

regret decomposition = phase + phase Recall: )
n 1
R, = z E[v(a*) —v(a,)] + 2 E[v(a*) —v(a* 2 v(a*) — v(a)] i (a) = m; rsl{as = a}
t=t+1 a* = arg m;ixﬁf(a)
For phase Overall expected regret:
2Alogn

Define confidence radius r(a) = .
T R < o A logn
Using , we get n ST+ (n—1)
A 4

Plla.(a) —p(@)| =r(@]=1-2/n

“Clean event” (above holds). Regret incurred when a* # a”*. Alogn
u@) +r@) = > u(a*) —r(a”) <t+0 < / . n>
. " . . Alogn Set T = n?/3(Alogn)'/3, so
u(@) —p@) sr@)+r@) =0 . that two sides are roughly
equal. Get

2/3 1/3
“Dirty event” (above doesn’t hold). W.h.p., regret is bounded Rp < 0(n*?(Alogn)'/?)

by (n — 1)2/n* < 0(1/n3). Small (can be neglected).

Wu



e-greedy: Algorithm

fori=1,..,ndo

U(A)
arg max (i, (a)
a
Observe reward r.~v(a;)

Update statistics for action a;
Ti(ar) = Ti—q
1

at:

fr(ar) =

endfor

[Recall: Q-learning]

with probability €, (explore)
with probability 1 — €; (exploit)

(at)t +1

Tt (at) Szl 7AS]I{aS - at}



e-greedy: Regret

1
If e-greedy is run with parameter €, = t 3(A4logt)'/3, then
it suffers a regret:
R, < 0(t?/3)

Same asymptotic regret, now holds for all rounds t

Can do better, but optimal € depends on knowledge of A (difficult to
tune) — same with explore-then-commit

Keep selecting very bad arms with some probability

Sharply separates exploration and exploitation



Types of exploration strategies

Non-adaptive exploration
Explore-then-commit: explore + exploit (separately)
e-greedy: exploit + explore (agnostic to exploitation)

Adaptive exploration
Exploit + Explore (based on exploitation)

39



Softmax (aka Exp3): Algorithm

“exponential-weight algorithm for exploration and exploitation”

fori=1,..,ndo

exp (M) More probability to better
a,~ z/ actions (arms)
Y, ex fic(a’)

a' OXP\ T Temperature 7: large for
Observe reward r.~v(a;) exploration, small for
Update statistics for action a; exploitation
Tear) = Tt-ll(“t)t+ 1 Recall: SARSA
fA(ar) = 2 rsl{as = a.} Con: Difficult to tune

T (a;) —

endfor



Example of Regret Performance

200

=
w
o

100

Expected Cumulative Regret

50

—— ¢g-greedy
—— Softmax

—— Explore-then-Exploit

2000

3000
Rounds

4000

5000

6000
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Optimism in Face of Uncertainty

“Whenever the value of an action is uncertain, consider its largest
plausible value, and then select the best action.”

Upper Bound [

Confidence
Interval Q(A)

i |

Missing ingredient: uncertainty of our estimates.

Lower Bound



Measuring Uncertainty

Proposition (Chernoff-Hoeffding Inequality)

Let X; € |a,b]| ben

rv. with mean u = EX;. Then:
n 2
P 12){ > (b - a) 85| < 4
n & s Yo |




Recipe of UCB

Computation of estimates
1

i (a) = T (a)zrsﬂ{as = a}
t s=1

Evaluation of uncertainty

e (a) — p(a)| <

Optimism: combine estimates and uncertainty (a.k.a. exploration bonus)

Bi(a) = fi(a) +

Select the best action (according to its combined value)
a; = argmax B;(a)
a
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Upper Confidence Bound (UCB) Algorithm

Consider: A = {aq,a,,a3}; A=|A|=3

exploitation log=
n 5¢
a; = argmax fi;(a) + p
i 2T¢(a)
N
t = 0 1 2 3 4

11171

Initial confidence intervals:
—

Ul
@)
~

af a, as
o~

r(az) r(as) r(az) r(a;) r(az) r(a;) r(a) 7(@s) timen




UCB: Algorithm

fort=1,..,ndo
Compute upper-confidence bound

Be(a) = fe(a) +p

\
a; arg max B;(a)
a
Observe reward r,~v(a;)

Update statistics for action a;
Ti(a;) = Tt—l(at)t‘l' 1

A _ 1 —
fc(ar) = T.(ap) ;TSH{aS = a.}

endfor



UCB: Regret

Consider a MAB problem with A Bernoulli arms with gaps A(a). If UCB is run withp = 1
and 6; = %for n steps, then it suffers regret:

Rn:o(Z A(a)>

a*xa*
Consider a 2-action MAB problem, then for any fixed n, in the worst-case (w.r.t A) UCB

suffers a regret:
R,=0 (\/nlog(n))

It (almost) matches lower bounds

It does not require any prior knowledge about the MAB, apart from the
range of the r.v.

The big-O hides a few numerical constants and n-independent additive
terms




UCB: Proof Sketch

Disclaimer: This is a slightly suboptimal proof, but it provides an easy path.

Define the (high-probability) event [statistics]

log%
£ =\vatli(a) - < |—=%
a |:u't (a) .u'(a) | ZTt (a)
By Chernoff-Hoeffding & union bound: P[E] > 1 — n4d
If at time t, we select action a, then [algorithm]
Bi(a) = B.(a")
logz logz
A ) P 9
> - 0
On the event &, we have [math]
2
logg
2 > *
u(a) + 2T (@) = u(a”)



UCB: Proof Sketch

Assume t is the last time a is selected, then T,,(a) = T,_;(a) + 1 (for n = t), thus:

Reordering [math]

under event £ and thus with probability 1 — nAd

Moving to the expectation [statistics]
E[T,(a)] = E[T,(a)|€] + E[T,(a)|E¢]
2log 2

0
E[T,(a)] < W-l_ (nAéd)

Trading-off the two terms , We obtain:

4log 2n
]E[Tn (a)] < W +



Tuning the p Parameter
Theory

= p <1, polynomial regret w.r.t. n
= p =1, logarithmic regret w.r.t. n

Recall:

lo 2
g 5,
2T, (a)

(yy = argmax e (a) + p

Practice: p = 0.2 is often the best choice

Regret of UCB1(p) for n = 1000 and K = 3 arms:
Ber(0.6), Ber(0.5) and Ber(0.5)

Expected regret

=
T

80 02 04 06 08 1.0 12 1.4 16 L8 20
Exploration parameter p

g 3 8
= T

@

8

Expected regret

8

10+

80 02 04 06 08 1.0 12 14 16 L8 2.0

Regret of UCB1(p) for n = 1000 and K = 5 arms:
Ber(Q.7), I}ex(Oﬁ), Bver(O.‘5), Bgr(O.fi) an'd Be::(O.3)

Exploration parameter p

59



Improvements: UCB-V

Idea: Use for more accurate confidence intervals (c.i.)

Algorithm:

Compute the of eacharm i
267 (a)logt N 8logt
T (a) 3T¢(a)

Bi(a) = fi;(a) +
Select action
a; = arg max B;(a)
a

Update the statistics Ty (a;), fA:(a;) and 67 (a,)
Regret:

2
R, <O (%logn)



Improvements: KL-UCB

Idea: Use even tighter c.i. based on

p
KL(p,q) =p loga + (1 —p)log

1—gq
Algorithm: Compute the of each arm i (convex optimization)
B.(a) = max{q € [0,1]: T;(a)KL(i.(a),q) < logt + clog(logt)}
Regret: Pulls to suboptimal arms
log n C,(e)
+ C; log(logn) +
KL(p(a), u(a*)) 1 log(logn) np )

E[T,(a)] = (1 +€)

Where d(u;, u*) = 2A?



Outline

1. From RL to bandits
2. Exploration Strategies

3. Linear and contextual linear bandits
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Outline

Basic Exploration Strategies

 Explore then Commit
* ¢e-greedy
e Softmax

Advanced Strategies

* Lower bounds
* UCB
e Thompson Sampling

Linear and Contextual Linear Bandit
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A Simple Recommendation System

Row My List Notifications Several profiles

. o 2 Personal
= A RS can recommend specific - b J sartpage

movies [Netflix has 3600 movies (vs 14
genres)]

= Users arrive at random and no

information about the user is Nedi's v
available A |
. , crvovre, 1 agasons | Spout RANDSOME cidise
* The RS picks a movie to the user
* The feedback is whether the user
watched the movie or not — 0 o
_— : o, ersren A £
= Objective: Design a RS that e - ety

maximizes the number of movies
watched




RS as a Multi-armed Bandit

fori =1,..,ndo
1. User arrives

2. Recommend movie a;
3. Reward

1 user watches movie a;
Ty = _
70 otherwise

Endfor

Issue: Too many movies are available to collect enough feedback for
each movie separately
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RS as a Linear Bandit

The model

u(a) = E[r(a)] is the probability a user watches movie a

Each movie a is characterized by some features ¢(a) € R¢ (e.g.
genre, release date, past rating, income, etc)

The expected value is a linear function u(a) = ¢(a)”6* (with 8* € R?

unknown)

The rewards are noisy observations 1:(a) = u(a) + n; with E[n,] = 0

The objective
Maximize sum of reward E

Dit—1Tt]



Recall: UCB

Computation of estimates

t

1

ﬁt(a) = Tt(a) Z rSH{aS = a}
s=1

Evaluation of uncertainty

1
log =
~ o
a) —ua)| <
1A (@) — p(a)| T.(a)
Mechanism to combine estimates and uncertainty
1
10g5_t
Bi(a) = f;(a) +
t( ) ,th( ) p Tt(a)

Select the best action (according to its combined value)
a; = argmax B:(a)

Issue: T¢(a) is likely to be 0 for most a. We need more sample efficient estimates.



The Regret

R, = maxE [z rt(a)] lz r.(

t=1

ofS o

Issue: a™ unlikely to be ever selected if n < A4



Least-Squares Estimate of 8~

Least-squares estimate
0, = arg mln Z(r — ¢(a;)T0)? + 1|92

Closed form solutlon

A = Z ba)p(a) +A b= ) plaor

- = At 1bt
Estimate of value of action a

a:(a) = ()",



Measuring Uncertainty

Let a4, ..., a; be any sequence of actions to the filtration F,. If the noise
n is of parameter B and the features are bounded byﬁlgb(a)llz <L,
then for any a with probability 1 — 6:

2:(@) — (@] < @ [$(@)7 47 p(@)

Where:

1+% 1
a; = B |dlog 5 + 12]|67]|,

||¢(a)||A;1 measure the correlation between ¢(a) and the actions selected
so far

and llp(@l-r = |—

If {p(a)}, is an orthogonal basis for R4, this reduces to the MAB problem
\/ T¢(a)

Wu



Recipe of LinUCB

Computation of estimates )

0, = At_lbt f(a) = ¢(a)T9t
Evaluation of uncertainty

2:(@) — (@) < @ [$(@)7 47 9(@)
Mechanism to combine estimates and uncertainty

B(@) = 1,(@) + @, [$(@)T 47 6@

Select the best action (according to its combined value)
a; = argmax B;(a)
a




LinUCB: Algorithm

fort=1,..,ndo
Compute upper-confidence bound

B(@) = (@) + &, [ $(@)" A7 p(@)
a; arg max B:(a)

Observe reward ry~¢(a,)T0* + n,
Update statistics for action a;

4t+1 = A—t1+ ¢(a)p(a)”
Or+1 = Ati1besa

endfor



LinUCB: Regret

Consider a linear MAB problem with actions defined in R? and
unknown parameter 8* € R%. If LinUCB is run with &, = %for n steps,

then it suffers a regret:
R, = 0( 1/nlogn)

It depends on d but not the number of actions A

If A < oo, we can improve the bound to

R, =0 (\/ nlog(nA))




A Simple Recommendation System

A RS can recommend specific
movies [Netflix has 3600 movies (vs 14
genres)]

Users arrive at random and we
have information about them

The RS picks a movie to the user

The feedback is whether the user
watched the movie or not

Obijective: Design a RS that
maximizes the number of movies
watched

Row My List Notifications

headlines

Several profiles
per contact

; —CU'*"C; S \JI

— o O — we tmane

METVRRK R

rux . ¢ '"-‘EL‘:-M ' NETFLX ’- KOs
vonnree, 12 REATONs Spuut NANDSOME - cidise

TELECMYSELRT Mamie

Charts
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Personal
/ start page
s

Netflix's own
series

My
recommendations

Recently
watched



RS as a Multi-armed Bandit

fori =1,..,ndo
1. User arrives u;

2. Recommend movie a;
3. Reward

1 user watches movie a;
Ty = _
70 otherwise

Endfor

Issue: Too many users to collect enough feedback for each user
separately

81



RS as a Contextual Linear Bandit

The model

= u(u,a) = E[r(u,a)] is the probability user u watches movie a

= Each user u and movie a is characterized by some features

®(u,a) € R? (e.g. name, location, genre, release date, past rating,
income, etc)

= Assumption:

* The expected value is a linear function u(u, a) = ¢(u, a)”6* (with 6* € R?
unknown)

* The rewards are noisy observations 1 (u, a) = u(u,a) + n, with E[n,] =0
The objective

= Maximize sum of reward E[Y.7-; 1¢]

82



The Regret

R, =E li max 7; (ug, a)‘ — E [Zn: 1 (U, )]

= E IZ((p(uti a;) _ ¢(ut' at))TH*]



Least-Squares Estimate of 8~

Least Squares estlmate
0, = arg min Z(r — b(uy,a)70)? + 16|

Closed form solution

t
A = Z Bty )P (s, @) + A1 b= ) plus, a0
s=1

= 0, = Atlbt

Estimate of value of action a R
fe(u,a) = p(u,a)" 6,



ContextualLinUCB: Algorithm

fort=1,..,ndo
Observe
Compute upper-confidence bound

B, @) = (e, @) + te [t T ATy, @)
a; = arg max B; (u;, a)
a
Observe reward 1y~ (us, a)'0* +n,

Update statistics for action a;
4t+1 = Atl‘" ¢ (us, ar)p(ug, ar)’
Or+1 = Aty1be41

endfor



ContextualLinUCB: Regret

Consider a contextual linear MAB problem with contexts and actions
defined in R and unknown parameter 6" € R<. If ContextuallLinUCB
is run with 6; = - for n steps, then for

, it suffers a regret:

Ry = 0(dy/nlogn)



Bandits - a very rich literature

Lower bounds

Adversarial bandits

Counterfactual estimation: off-policy policy evaluation
Continuous or combinatorial arms

Types of data

Robustness

Bayesian methods



Summary & takeaways

It is possible to determine the best action directly from data &
interaction (i.e. model free), rather than through explicit modeling
of the problem.

The trade-off between exploration and exploitation is a pervasive
theme in reinforcement learning, and can already be observed in
multi-armed bandits.

Multi-armed bandits are state-less decision problems. Contextual
bandits have a state, but states are drawn i.i.d., rather than
dependent on the past. Both can be solved to optimal regret
(modulo log factors).

MAB and CB have wide applications in recommendation systems, ad
choice, health advice, education, etc.

Optimism under uncertainty is an adaptive exploration strategy
which optimally balances exploration and exploitation.



