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Why study bandits?
8

§ Bandits simplify the RL interaction loop (MDP), providing a focused 
problem setting to consider the role of exploration in sequential 
decision making (exploration-exploitation dilemma).

§ Also called online learning, methods for analyzing bandits are 
foundational for finite sample analysis in RL – that is, convergence 
rate, as opposed to asymptotic convergence.

§ Contextual bandits are the most widely deployed form of RL, in the 
form of recommender systems. Understanding bandits means  
understanding the core ideas and algorithms behind these products 
and services.
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Recall: Q-Learning
9

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all states 
𝑠, 𝑎 ∈ 𝑆×𝐴

(
!"#

$

𝜂% 𝑠, 𝑎 = ∞ (
!"#

$

𝜂%& 𝑠, 𝑎 < ∞

And all state-action pairs are tried infinitely often, then for all 𝑠, 𝑎 ∈
𝑆×𝐴

-𝑄 𝑠, 𝑎
'.).
𝑄∗ 𝑠, 𝑎

Remark: “infinitely often” requires a steady exploration policy.
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Learning the Optimal Policy
10

for 𝑖 = 1,… , 𝑛 do
1. Set 𝑡 = 0
2. Set initial state 𝑠!
3. while (𝑠" not terminal)

1) Take action 𝑎! = argmax
"

2𝑄 𝑠! , 𝑎
2) Observe next state 𝑠!#$ and reward 𝑟!
3) Compute the temporal difference

𝛿! = 𝑟! + 𝛾max"!
2𝑄 𝑠!#$, 𝑎% − 2𝑄(𝑠! , 𝑎!) (Q−learning)

4) Update the Q-function
2𝑄 𝑠! , 𝑎! = 2𝑄 𝑠! , 𝑎! + 𝛼 𝑠! , 𝑎! 𝛿!

5) Set 𝑡 = 𝑡 + 1
endwhile

endfor
No Convergence

according to a suitable exploration policy
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Learning the Optimal Policy
11

for 𝑖 = 1,… , 𝑛 do
1. Set 𝑡 = 0
2. Set initial state 𝑠!
3. while (𝑠" not terminal)

1) Take action 𝑎!~𝒰(𝐴)
2) Observe next state 𝑠!#$ and reward 𝑟!
3) Compute the temporal difference

𝛿! = 𝑟! + 𝛾max"!
2𝑄 𝑠!#$, 𝑎% − 2𝑄(𝑠! , 𝑎!) (Q−learning)

4) Update the Q-function
2𝑄 𝑠! , 𝑎! = 2𝑄 𝑠! , 𝑎! + 𝛼 𝑠! , 𝑎! 𝛿!

5) Set 𝑡 = 𝑡 + 1
endwhile

endfor
Bad Convergence
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From RL to Multi-armed Bandit
12

for 𝑖 = 1,… , 𝑛 do
1. Set 𝑡 = 0
2. Set initial state 𝑠!
3. while (𝑠" not terminal)

1) Take action 𝑎!
2) Observe next state 𝑠!#$ and reward 𝑟!
endwhile

endfor
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From RL to Multi-armed Bandit
13

The protocol
for 𝑖 = 1, … , 𝑛 do

1. Take action 𝑎!
2. Observe reward 𝑟!~𝑣 𝑎!

endfor

The problem
§ Set of 𝐴 actions
§ Reward distribution 𝑣 𝑎 with 
𝜇 𝑎 = 𝔼 𝑟 𝑎
(bounded in [0,1] for convenience)

The objective
§ Maximize sum of reward 𝔼 ∑%"IJ 𝑟%
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§ A RS can recommend different genres
of movies (e.g. action, adventure, 
romance, animation)

§ Users arrive at random and no 
information about the user is available

§ The RS picks a genre to recommend to
the user but not the specific movies

§ The feedback is whether the user 
watched a movie of the recommended 
genre or not

§ Objective: Design a RS that maximizes 
the movies watched in the 
recommended genre

A Simple Recommendation System
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RS as a Multi-armed Bandit

for 𝑖 = 1,… , 𝑛 do
1. User arrives
2. Recommend genre 𝑎"
3. Reward

𝑟" = ,10
user watches movie of genre 𝑎"

otherwise
endfor
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RS as a Multi-armed Bandit

The model
§ 𝑣(𝑎) is a Bernoulli
§ 𝜇 𝑎 = 𝔼 𝑟 𝑎 is the probability a random user watches a movie of 

genre 𝑎
§ Assumption: 𝑟%~𝑣 𝑎% is a realization of the Bernoulli of a genre 𝑎
The objective
§ Maximize sum of reward 𝔼 ∑%"IJ 𝑟%
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Other Examples

§ Movies, TV, music
§ Packet routing
§ Clinical trials
§ Web advertising
§ Health advice
§ Education
§ Computer games
§ Resource mining
§ …

HeartSteps explores new ways that mobile technology—
smartphones and wearable activity trackers—can be 
used to help patients to increase their physical activity. 
We have developed a mobile app that works with a Fitbit 
activity tracker to help individuals set activity goals, plan 
how they will be active, and remain motivated to find 
ways to incorporate physical activity into their daily lives. 
Our ultimate goal is to develop technology that 
effectively supports physical activity over the long-term.

Funded by the National Institutes of Health (NIH)

https://heartsteps.net
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Recommender system strategies: in a nutshell
18

§ Studied since the 90s.
§ Content-based filtering (early systems): Recommend items 

with features like the user’s past selections.
§ Collaborative filtering (modern systems): Recommend items 

based on other users with similar selection characteristics
to the user’s past selections.
• Dominant approach: matrix 

factorization
• Fueled by Netflix Prize 

competition (2006--): 
100mil movie ratings

𝐴 = 𝑈Σ𝑉# = (𝑈 Σ)( Σ𝑉#)
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Low rank matrix factorization
19

Latent factors illustration [1] Latent factors in practice [2]

[1] Koren, Bell, Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 2009. [Winner of the Netflix Prize]
[2] Junliang Yu, et al. A Social Recommender Based on Factorization and Distance Metric Learning. IEEE Access, 2017.

Improved upon Netflix’s rating predictions by 10%!
$1mil prize!

Latent factors effective, but not that easy to interpret.
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Fundamental challenges for recommender systems
20

§ The cold-start problem: need selection data to base recommendations
• How to recommend new items?
• Example: new posts on social media, new webpages, new videos on YouTube
• Many recommender systems are highly dynamic.

§ Balancing short-term vs long-term optimization:
• Immediate user-engagement metrics: easy to measure, direct translation to 

revenue, ignores long-term impacts
• Long-term ecosystem health: hard to measure / justify to stakeholders, 

promotes long-term sustainability
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The Regret - how quickly to “warm up”?
21

𝑅J = max
'
𝔼 (

%"I

J

𝑟%(𝑎) − 𝔼 (
%"I

J

𝑟%(𝑎%)

The expectation summarizes any possible source of randomness 
(either in 𝑟 or in the algorithm)

Relation to RL: Can think of this as 𝑛 trajectories (of length 1).

Measures not only the final error, but all mistakes made over 𝑛 “iterations.” 
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Minimizing regret encodes the exploration-exploitation dilemma
22

Problem 1: The environment does not reveal the reward of the actions 
not selected by the learner
Ø The learner should gain information by repeatedly selecting all 

actions

Problem 2: Whenever the learner selects a bad action, it suffers some 
regret
Ø The learner should reduce the regret by repeatedly selecting the 

best action

Challenge: The learner should solve two opposite problems!

⟹ exploration

⟹ exploitation

the exploraaon-exploitation dilemma!
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The Regret
23

§ Number of times action 𝑎
has been selected after 𝑛
rounds

𝑇J 𝑎 =(
%"I

J

𝕀 𝑎% = 𝑎

§ Gap Δ 𝑎 ≔ 𝜇 𝑎∗ − 𝜇(𝑎)

§ Regret

𝑅$ = max
%
𝔼 F

"&'

$

𝑟"(𝑎) − 𝔼 F
"&'

$

𝑟"(𝑎")

𝑅$ = max
%
𝑛𝜇 𝑎 − 𝔼 F

"&'

$

𝑟"(𝑎")

𝑅$ = 𝑛 𝜇 𝑎∗ −𝔼 F
"&'

$

𝑟"(𝑎")

𝑅$ = 𝑛𝜇 𝑎∗ −F
%

𝔼 𝑇$ 𝑎 𝜇 𝑎

𝑅$ = F
%)%∗

𝔼 𝑇$ 𝑎 𝜇 𝑎∗ − 𝜇 𝑎

𝑅$ = F
%)%∗

𝔼 𝑇$ 𝑎 Δ(𝑎)
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The Regret
24

𝑅J = (
'K'∗

𝔼 𝑇J 𝑎 Δ(𝑎)

Ø We only need to study the expected number of times suboptimal 
actions are selected

Ø Worst case possible: 𝑅J = 𝒪(𝑛)
• Discuss: Why?

Ø A good algorithm has 𝑅J = 𝑜(𝑛), i.e. L*
J
→ 0
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What does it mean for an algorithm to work?
26

Av
er

ag
e 

re
tu

rn (local) convergence

𝑉∗
global convergence

Low regret

Additional regret

Sample efficient

Training samples ∞0

Asymptotic convergence
Finite sample guarantees

Monotonic improvement
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Finite sample analysis: regret vs sample complexity
27

§ How many data points are needed for a good approximation of the 
optimal policy with an algorithm 𝒦?

§ Sample complexity 𝑇 𝛿, 𝜖, 𝒮 , 𝒜 : smallest 𝑇 such that with 
probability at least 1 − 𝛿,

AvgError 𝒦 M ≤ 𝜖
Where AvgError 𝒦 % is the average error made by the algorithm 
after 𝑡 steps.

§ Regret: cumulative error over the course of the algorithm

(
%"I

M

Error 𝒦 %

Adapted from Mohammed Amine Bennouna & Moïse Blanchard
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Outline
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1. From RL to bandits

2. Exploration Strategies
a. Explore then Commit
b. 𝜖-greedy
c. Softmax
d. Optimism in the face of uncertainty: upper confidence bound (UCB)

3. Linear and contextual linear bandits
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Explore-then-Commit
29

time ntime 𝜏

𝑎+

0𝑡 =

𝑟(𝑎+)

𝑎,

1

𝑟(𝑎,)

Consider: 𝒜 = 𝑎', 𝑎+, 𝑎, ; 𝐴 = 𝒜 = 3

𝑎,

2

𝑟(𝑎,)

𝑎'

3

𝑟(𝑎')

𝑎+

4

𝑟(𝑎+)

𝑎'

5

𝑟(𝑎')

𝑎'

6

𝑟(𝑎')

𝑎,

7

𝑟(𝑎,)

Explore phase Exploit phase
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Explore-then-Commit: Algorithm
30

Explore phase
for 𝑖 = 1, … , 𝜏 = 𝐴𝐾 do

1. Take action 𝑎!~𝒰(𝐴) (or round robin)
2. Observe reward 𝑟!~𝑣 𝑎!

endfor
Compute statistics for each action 𝑎

�̂�- 𝑎 =
1

𝑇-(𝑎)
F
.&'

-

𝑟.𝕀 𝑎. = 𝑎

Exploit phase
for 𝑖 = 𝜏 + 1,… , 𝑛 do

1. Take action N𝑎∗ = argmax
"

N𝜇' 𝑎
2. Observe reward 𝑟!~𝑣 N𝑎∗

endfor

Define:

𝑇! 𝑎 =$
"#$

!

𝕀 𝑎" = 𝑎
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Explore-then-Commit: Regret
31

Theorem
Let 𝐴 be the number of arms. If explore-then-commit is run for 𝑛 steps, 
exploring (round robin) for the first 𝜏 steps, then it suffers (expected) regret:

𝑅& ≤ 𝜏 + 𝒪
𝐴 log 𝑛
𝜏

𝑛

§ With best choice of 𝜏, can get 𝑅J = Y𝒪 𝑛
/
0 (for 𝜏 = 𝑛&/Q log 𝑛 I/Q)

§ Recall: worst possible: 𝑅J = 𝒪 𝑛
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Concentration inequalities
32

Proposition (Hoeffding Inequality)

Let 𝑋! ∈ 𝑎, 𝑏 be an independent r.v. with common mean 𝜇 = 𝔼𝑋!.  
Then:

ℙ �̂�J − 𝜇 > 𝜖 ≤ 2 exp − &JR/

ST' / ∀𝑛 > 0

where �̂�J =
I
J
∑!"IJ 𝑋! .

§ Foundational tools for regret analysis.

deviation

accuracy
confidence
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For exploit phase

§ Define confidence radius 𝑟 𝑎 = () *+, -
'

.

§ Using Hoeffding’s inequality, we get 
ℙ N𝜇' 𝑎 − 𝜇 𝑎 ≤ 𝑟 𝑎 ≥ 1 − 2/𝑛.

§ “Clean event” (above holds). Regret incurred when N𝑎∗ ≠ 𝑎∗.
𝜇 N𝑎∗ + 𝑟 N𝑎∗ ≥ N𝜇' N𝑎∗ > N𝜇' 𝑎∗ ≥ 𝜇 𝑎∗ − 𝑟 𝑎∗

𝜇 𝑎∗ − 𝜇 N𝑎∗ ≤ 𝑟 N𝑎∗ + 𝑟 𝑎∗ = 𝒪
𝐴 log 𝑛
𝜏

§ “Dirty event” (above doesn’t hold). W.h.p., regret is bounded 
by 𝑛 − 𝜏 2/𝑛. ≤ 𝒪(1/𝑛/). Small (can be neglected).

Explore-then-Commit: Regret Analysis
Recall:

�̂�! 𝑎 =
1

𝑇!(𝑎)
>
"#$

!

𝑟"𝕀 𝑎" = 𝑎

A𝑎∗ = argmax
&
�̂�! 𝑎

Overall expected regret:

𝑅- ≤ 𝜏 + 𝒪
𝐴 log 𝑛
𝜏 𝑛 − 𝜏

≤ 𝜏 + 𝒪 ) *+, -
'

𝑛

§ Set 𝜏 = 𝑛(// 𝐴 log 𝑛 $//, so 
that two sides are roughly 
equal. Get 
𝑅- ≤ 𝒪 𝑛(// 𝐴 log 𝑛 $//

§ Expected regret decomposition = explore phase + exploit phase

𝑅" =3
#$%

&

𝔼 𝜈 𝑎∗ − 𝜈 𝑎# + 3
#$&(%

"

𝔼 𝜈 𝑎∗ − 𝜈 9𝑎∗ ≤ 𝜏 + 3
#$&(%

"

𝔼 𝜈 𝑎∗ − 𝜈 9𝑎∗
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𝜖-greedy: Algorithm
36

for 𝑖 = 1,… , 𝑛 do
1. Take action

𝑎" = Z
𝒰 𝐴

argmax
%
�̂�" 𝑎

with probability 𝜖" (explore)
with probability 1 − 𝜖" (exploit)

2. Observe reward 𝑟"~𝑣 𝑎"
3. Update statistics for action 𝑎"

𝑇" 𝑎" = 𝑇"<' 𝑎" + 1

�̂�" 𝑎" =
1

𝑇" 𝑎"
F
.&'

"

𝑟.𝕀 𝑎. = 𝑎"

endfor

[Recall: Q-learning]
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𝜖-greedy: Regret
37

Theorem

If 𝜖-greedy is run with parameter 𝜖% = 𝑡T
=
0 𝐴 log 𝑡 I/Q, then for each 

round 𝑡 it suffers a regret:
𝑅% ≤ Y𝒪 𝑡&/Q

§ Same asymptotic regret, now holds for all rounds t
§ Can do better, but optimal 𝜖 depends on knowledge of Δ (difficult to 

tune) – same with explore-then-commit
§ Keep selecting very bad arms with some probability
§ Sharply separates exploration and exploitation
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Types of exploration strategies
39

§ Non-adaptive exploration
• Explore-then-commit: explore + exploit (separately)
• 𝜖-greedy: exploit + explore (agnostic to exploitation)

§ Adaptive exploration
• Exploit + Explore (based on exploitation)
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Softmax (aka Exp3): Algorithm
41

for 𝑖 = 1,… , 𝑛 do
1. Take action

𝑎"~
exp �̂�" 𝑎

𝜏

∑%G exp
�̂�" 𝑎>
𝜏

2. Observe reward 𝑟"~𝑣 𝑎"
3. Update statistics for action 𝑎"

𝑇" 𝑎" = 𝑇"<' 𝑎" + 1

�̂�" 𝑎" =
1

𝑇" 𝑎"
F
.&'

"

𝑟.𝕀 𝑎. = 𝑎"

endfor

§ More probability to better 
actions (arms)

§ Temperature 𝜏: large for 
exploration, small for 
exploitation

§ Recall: SARSA
§ Con: Difficult to tune 

“exponential-weight algorithm for exploration and exploitation”
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Example of Regret Performance
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Optimism in Face of Uncertainty
48

“Whenever the value of an action is uncertain, consider its largest 
plausible value, and then select the best action.”

Missing ingredient: uncertainty of our estimates.
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Measuring Uncertainty
49

Proposition (Chernoff-Hoeffding Inequality)
Let 𝑋! ∈ [𝑎, 𝑏] be 𝑛 independent r.v. with mean 𝜇 = 𝔼𝑋!.  Then:

ℙ
1
𝑛
(
%"I

J

𝑋% − 𝜇 > 𝑏 − 𝑎
log 2𝛿
2𝑛

≤ 𝛿
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Recipe of UCB
51

1. Computation of estimates

!𝜇! 𝑎 =
1

𝑇! 𝑎
'
"#$

!

𝑟"𝕀 𝑎" = 𝑎

2. Evaluation of uncertainty

!𝜇! 𝑎 − 𝜇 𝑎 ≤
log 2𝛿
2𝑇! 𝑎

3. Optimism: combine estimates and uncertainty (a.k.a. exploration bonus)

𝐵! 𝑎 = !𝜇! 𝑎 + 𝜌
log 2𝛿!
2𝑇! 𝑎

4. Select the best action (according to its combined value)
𝑎! = argmax

%
𝐵! 𝑎
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Upper Confidence Bound (UCB) Algorithm
52

§ Consider: 𝒜 = 𝑎I, 𝑎&, 𝑎Q ; 𝐴 = 𝒜 = 3

§ 𝑎c = argmax
d
�̂�c 𝑎 + 𝜌

efg '()
hi) j

time n

𝑎+

0𝑡 =

𝑟(𝑎+)

𝑎,

1

𝑟(𝑎,)

𝑎,

2

𝑟(𝑎,)

𝑎'

3

𝑟(𝑎')

𝑎+

4

𝑟(𝑎+)

𝑎'

5

𝑟(𝑎')

𝑎'

6

𝑟(𝑎')

𝑎,

7

𝑟(𝑎,)

Initial confidence intervals:

𝑎' 𝑎+ 𝑎,
exploration (bonus)

exploitation
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UCB: Algorithm
53

for 𝑡 = 1,… , 𝑛 do
1. Compute upper-confidence bound

𝐵" 𝑎 = �̂�" 𝑎 + 𝜌
log 2𝛿"
2𝑇" 𝑎

2. Take action 𝑎" argmax% 𝐵" 𝑎
3. Observe reward 𝑟"~𝑣 𝑎"
4. Update statistics for action 𝑎"

𝑇" 𝑎" = 𝑇"<' 𝑎" + 1

�̂�" 𝑎" =
1

𝑇" 𝑎"
F
.&'

"

𝑟.𝕀 𝑎. = 𝑎"

endfor
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UCB: Regret
55

Theorem
Consider a MAB problem with 𝐴 Bernoulli arms with gaps Δ(𝑎).  If UCB is run with 𝜌 = 1
and 𝛿! =

$
!

for 𝑛 steps, then it suffers regret:

𝑅& = 𝒪 -
%'%∗

log 𝑛
Δ 𝑎

Consider a 2-action MAB problem, then for any fixed 𝑛, in the worst-case (w.r.t Δ) UCB 
suffers a regret:

𝑅& = 𝒪 𝑛 log 𝑛

§ It (almost) matches lower bounds
§ It does not require any prior knowledge about the MAB, apart from the 

range of the r.v.
§ The big-O hides a few numerical constants and 𝑛-independent additive 

terms
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UCB: Proof Sketch
§ Disclaimer: This is a slightly suboptimal proof, but it provides an easy path.

§ Define the (high-probability) event [statistics]

ℰ = ∀𝑎, 𝑡 �̂�# 𝑎 − 𝜇 𝑎 ≤
log 2𝛿
2𝑇# 𝑎

§ By Chernoff-Hoeffding & union bound: ℙ ℰ ≥ 1 − 𝑛𝐴𝛿
§ If at time 𝑡, we select action 𝑎, then [algorithm]

𝐵# 𝑎 ≥ 𝐵# 𝑎∗

�̂�# 𝑎 +
log 2𝛿
2𝑇# 𝑎

≥ �̂�# 𝑎∗ +
log 2𝛿
2𝑇# 𝑎∗

§ On the event ℰ, we have [math]

𝜇 𝑎 + 2
log 2𝛿
2𝑇# 𝑎

≥ 𝜇 𝑎∗
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UCB: Proof Sketch
§ Assume 𝑡 is the last time 𝑎 is selected, then 𝑇" 𝑎 = 𝑇#)% 𝑎 + 1 (for 𝑛 ≥ 𝑡), thus:

𝜇 𝑎 + 2
log 2𝛿
2𝑇" 𝑎 ≥ 𝜇 𝑎∗

§ Reordering [math]

𝑇" 𝑎 ≤
2log 2𝛿
Δ 𝑎 *

under event ℰ and thus with probability 1 − 𝑛𝐴𝛿

§ Moving to the expectation [statistics]
𝔼 𝑇" 𝑎 = 𝔼 𝑇" 𝑎 |ℰ + 𝔼 𝑇" 𝑎 |ℰ+

𝔼 𝑇" 𝑎 ≤
2log 2𝛿
Δ 𝑎 * + 𝑛 𝑛𝐴𝛿

§ Trading-off the two terms 𝛿 = %
"'

, we obtain:

𝔼 𝑇" 𝑎 ≤
4log 2𝑛
Δ 𝑎 * + 𝐴
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Tuning the 𝜌 Parameter
59

Theory
§ 𝜌 < 1, polynomial regret w.r.t. 𝑛
§ 𝜌 ≥ 1, logarithmic regret w.r.t. 𝑛
Practice: 𝜌 = 0.2 is often the best choice

Recall:

𝑎"&$ = argmax
'
�̂�" 𝑎 + 𝜌

log 2𝛿"
2𝑇" 𝑎
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Improvements: UCB-V
60

Idea: Use empirical Bernstein bounds for more accurate confidence intervals (c.i.)
Algorithm:
§ Compute the score of each arm 𝑖

𝐵; 𝑎 = �̂�; 𝑎 + 𝜌
4log 𝑡
2𝑇; 𝑎

§ Select action
𝑎; = argmax

<
𝐵; 𝑎

§ Update the statistics 𝑇; 𝑎; , �̂�; 𝑎;
Regret:

𝑅& ≤ 𝒪
1
Δ
log 𝑛

and i𝜎%& 𝑎%

𝜎&

2 i𝜎%& 𝑎 log 𝑡
𝑇% 𝑎

+
8 log 𝑡
3𝑇% 𝑎
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Improvements: KL-UCB
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Idea: Use even tighter c.i. based on Kullback-Leibler divergence

KL 𝑝, 𝑞 = 𝑝 log
𝑝
𝑞
+ 1 − 𝑝 log

1 − 𝑝
1 − 𝑞

Algorithm: Compute the score of each arm 𝑖 (convex optimization)
𝐵% 𝑎 = max 𝑞 ∈ 0,1 : 𝑇% 𝑎 𝐾𝐿 �̂�% 𝑎 , 𝑞 ≤ log 𝑡 + 𝑐 log log 𝑡

Regret: Pulls to suboptimal arms

𝔼 𝑇J 𝑎 ≤ 1 + 𝜖
log n

KL 𝜇 𝑎 , 𝜇 𝑎∗
+ CI log log 𝑛 +

𝐶& 𝜖
𝑛` R

Where 𝑑 𝜇! , 𝜇∗ ≥ 2Δ!&
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Outline
62

1. From RL to bandits

2. Exploration Strategies

3. Linear and contextual linear bandits
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Outline
69

1. Basic Exploration Strategies
• Explore then Commit
• 𝜖-greedy
• Softmax

2. Advanced Strategies
• Lower bounds
• UCB
• Thompson Sampling

3. Linear and Contextual Linear Bandit
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70

§ A RS can recommend specific 
movies [Netflix has 3600 movies (vs 14 
genres)]

§ Users arrive at random and no 
information about the user is 
available

§ The RS picks a movie to the user
§ The feedback is whether the user 

watched the movie or not
§ Objective: Design a RS that 

maximizes the number of movies 
watched

A Simple Recommendation System



Wu

71

RS as a Multi-armed Bandit

for 𝑖 = 1,… , 𝑛 do
1. User arrives
2. Recommend movie 𝑎"
3. Reward

𝑟" = ,10
user watches movie 𝑎"

otherwise
Endfor

Issue: Too many movies are available to collect enough feedback for 
each movie separately
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RS as a Linear Bandit

The model
§ 𝜇 𝑎 = 𝔼 𝑟 𝑎 is the probability a random user watches movie 𝑎
§ Each movie 𝑎 is characterized by some features 𝜙 𝑎 ∈ ℝa (e.g.

genre, release date, past rating, income, etc)
§ Assumption:
• The expected value is a linear function 𝜇 𝑎 = 𝜙 𝑎 #𝜃∗ (with 𝜃∗ ∈ ℝT

unknown) 
• The rewards are noisy observations 𝑟" 𝑎 = 𝜇 𝑎 + 𝜂" with 𝔼 𝜂" = 0

The objective
§ Maximize sum of reward 𝔼 ∑%"IJ 𝑟%
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Recall: UCB
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1. Computation of estimates

N𝜇! 𝑎 =
1

𝑇! 𝑎
c
HI$

!

𝑟H𝕀 𝑎H = 𝑎

2. Evaluation of uncertainty

N𝜇! 𝑎 − 𝜇 𝑎 ≤
log 1𝛿
𝑇! 𝑎

3. Mechanism to combine estimates and uncertainty

𝐵! 𝑎 = N𝜇! 𝑎 + 𝜌
log 1𝛿!
𝑇! 𝑎

4. Select the best action (according to its combined value)
𝑎! = argmax

"
𝐵! 𝑎

Issue: 𝑇!(𝑎) is likely to be 0 for most 𝑎.  We need more sample efficient estimates.
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The Regret
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𝑅J = max
'
𝔼 (

%"I

J

𝑟% 𝑎 − 𝔼 (
%"I

J

𝑟% 𝑎%

= 𝔼 (
%"I

J

𝜙 𝑎∗ − 𝜙 𝑎%
M
𝜃∗

Issue: 𝑎∗ unlikely to be ever selected if 𝑛 ≪ 𝐴
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Least-Squares Estimate of 𝜃∗
75

§ Least-squares estimate

-𝜃% = arg min
g∈ℝU

1
𝑡
(
)"I

%

𝑟) − 𝜙 𝑎) M𝜃 & + 𝜆 𝜃 &

§ Closed form solution

𝐴% =(
)"I

%

𝜙 𝑎) 𝜙 𝑎) M + 𝜆𝐼 𝑏% =(
)"I

%

𝜙 𝑎) 𝑟)

⟹ -𝜃% = 𝐴%TI𝑏%
§ Estimate of value of action 𝑎

�̂�% 𝑎 = 𝜙 𝑎 M -𝜃%
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Measuring Uncertainty
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Proposition
Let 𝑎', … , 𝑎" be any sequence of actions adapted to the filtration ℱ".  If the noise 
𝜂 is sub-Gaussian of parameter 𝐵 and the features are bounded by 𝜙 𝑎 + ≤ 𝐿, 
then for any 𝑎 with probability 1 − 𝛿:

�̂�" 𝑎 − 𝜇 𝑎 ≤ 𝛼" 𝜙 𝑎 #𝐴"<'𝜙 𝑎

Where:

𝛼" = 𝐵 𝑑 log
1 + 𝑡𝐿𝜆
𝛿 + 𝜆

'
+ 𝜃∗ +

§ 𝜙 𝑎 =JKL measure the correlation between 𝜙 𝑎 and the actions selected 
so far

§ If 𝜙 𝑎 < is an orthogonal basis for ℝ=, this reduces to the MAB problem 
and 𝜙 𝑎 =J

KL = >
?J <
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Recipe of LinUCB
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1. Computation of estimates
y𝜃" = 𝐴"<'𝑏" �̂�" 𝑎 = 𝜙 𝑎 # y𝜃"

2. Evaluation of uncertainty
�̂�" 𝑎 − 𝜇 𝑎 ≤ 𝛼" 𝜙 𝑎 #𝐴"<'𝜙 𝑎

3. Mechanism to combine estimates and uncertainty
𝐵" 𝑎 = �̂�" 𝑎 + 𝛼" 𝜙 𝑎 #𝐴"<'𝜙 𝑎

4. Select the best action (according to its combined value)
𝑎" = argmax

%
𝐵" 𝑎
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LinUCB: Algorithm
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for 𝑡 = 1,… , 𝑛 do
1. Compute upper-confidence bound

𝐵" 𝑎 = �̂�" 𝑎 + 𝛼" 𝜙 𝑎 #𝐴"<'𝜙 𝑎

2. Take action 𝑎" argmax% 𝐵" 𝑎
3. Observe reward 𝑟"~𝜙 𝑎" #𝜃∗ + 𝜂"
4. Update statistics for action 𝑎"

𝐴"V' = 𝐴" + 𝜙 𝑎" 𝜙 𝑎" #

y𝜃"V' = AWV'<' 𝑏"V'
endfor
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LinUCB: Regret
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Theorem
Consider a linear MAB problem with actions defined in ℝa and 
unknown parameter 𝜃∗ ∈ ℝa.  If LinUCB is run with 𝛿% =

I
%

for 𝑛 steps, 
then it suffers a regret:

𝑅J = 𝒪 𝑑 𝑛 log 𝑛

§ It depends on 𝑑 but not the number of actions 𝐴
§ If 𝐴 < ∞, we can improve the bound to

𝑅J = 𝒪 𝑑𝑛 log 𝑛𝐴
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§ A RS can recommend specific 
movies [Netflix has 3600 movies (vs 14 
genres)]

§ Users arrive at random and we 
have information about them

§ The RS picks a movie to the user
§ The feedback is whether the user 

watched the movie or not
§ Objective: Design a RS that 

maximizes the number of movies 
watched

A Simple Recommendation System
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RS as a Multi-armed Bandit

for 𝑖 = 1,… , 𝑛 do
1. User arrives 𝑢"
2. Recommend movie 𝑎"
3. Reward

𝑟" = ,10
user watches movie 𝑎"

otherwise
Endfor

Issue: Too many users to collect enough feedback for each user 
separately
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RS as a Contextual Linear Bandit

The model
§ 𝜇 𝑢, 𝑎 = 𝔼 𝑟 𝑢, 𝑎 is the probability user 𝑢 watches movie 𝑎
§ Each user 𝑢 and movie 𝑎 is characterized by some features 
𝜙 𝑢, 𝑎 ∈ ℝa (e.g. name, location, genre, release date, past rating, 
income, etc)

§ Assumption:
• The expected value is a linear function 𝜇 𝑢, 𝑎 = 𝜙 𝑢, 𝑎 #𝜃∗ (with 𝜃∗ ∈ ℝT

unknown) 
• The rewards are noisy observations 𝑟" 𝑢, 𝑎 = 𝜇 𝑢, 𝑎 + 𝜂" with 𝔼 𝜂" = 0

The objective
§ Maximize sum of reward 𝔼 ∑%"IJ 𝑟%
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The Regret
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𝑅J = 𝔼 (
%"I

J

max
'

𝑟% 𝑢% , 𝑎 − 𝔼 (
%"I

J

𝑟% 𝑢% , 𝑎%

= 𝔼 (
%"I

J

𝜙 𝑢% , 𝑎%∗ − 𝜙 𝑢% , 𝑎%
M𝜃∗
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Least-Squares Estimate of 𝜃∗
84

§ Least-squares estimate

-𝜃% = arg min
g∈ℝU

1
𝑡
(
)"I

%

𝑟) − 𝜙 𝑢) , 𝑎) M𝜃 & + 𝜆 𝜃 &

§ Closed form solution

𝐴% =(
)"I

%

𝜙 𝑢) , 𝑎) 𝜙 𝑢) , 𝑎) M + 𝜆𝐼 𝑏% =(
)"I

%

𝜙 𝑢) , 𝑎) 𝑟)

⟹ -𝜃% = 𝐴%TI𝑏%
§ Estimate of value of action 𝑎

�̂�% 𝑢, 𝑎 = 𝜙 𝑢, 𝑎 M -𝜃%
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ContextualLinUCB: Algorithm
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for 𝑡 = 1,… , 𝑛 do
1. Observe context 𝑢"
2. Compute upper-confidence bound

𝐵" 𝑢" , 𝑎 = �̂�" 𝑢" , 𝑎 + 𝛼" 𝜙 𝑢" , 𝑎 #𝐴"<'𝜙 𝑢" , 𝑎

3. Take action 𝑎" = argmax
%
𝐵" 𝑢" , 𝑎

4. Observe reward 𝑟"~𝜙 𝑢" , 𝑎" #𝜃∗ + 𝜂"
5. Update statistics for action 𝑎"

𝐴"V' = 𝐴" + 𝜙 𝑢" , 𝑎" 𝜙 𝑢" , 𝑎" #

y𝜃"V' = AWV'<' 𝑏"V'
endfor



Wu

ContextualLinUCB: Regret
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Theorem
Consider a contextual linear MAB problem with contexts and actions 
defined in ℝa and unknown parameter 𝜃∗ ∈ ℝa.  If ContextualLinUCB
is run with 𝛿% =

I
%

for 𝑛 steps, then for any arbitrary sequence of 
contexts 𝑢I, 𝑢&, … , 𝑢J, it suffers a regret:

𝑅J = 𝒪 𝑑 𝑛 log 𝑛
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Bandits - a very rich literature
87

§ Lower bounds
§ Adversarial bandits
§ Counterfactual estimation: off-policy policy evaluation
§ Continuous or combinatorial arms 
§ Types of data
§ Robustness
§ Bayesian methods
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Summary & takeaways
§ It is possible to determine the best action directly from data & 

interaction (i.e. model free), rather than through explicit modeling 
of the problem.

§ The trade-off between exploration and exploitation is a pervasive 
theme in reinforcement learning, and can already be observed in 
multi-armed bandits.

§ Multi-armed bandits are state-less decision problems. Contextual 
bandits have a state, but states are drawn i.i.d., rather than 
dependent on the past. Both can be solved to optimal regret 
(modulo log factors).

§ MAB and CB have wide applications in recommendation systems, ad 
choice, health advice, education, etc.

§ Optimism under uncertainty is an adaptive exploration strategy 
which optimally balances exploration and exploitation.


