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So far: sequential decision making is hard
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“Roadmap”
This time: What makes some sequential decision problems easy?

Next time [3x]: Why is there still hope of solving sequential decision problems? 
(general solutions for small-state problems)

Next next time [6x]: Why is there still hope of solving large-state problems?
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1. Recap & roadmap

2. Template for structural DP arguments
a. Convexity, monotonicity

3. Example: optimal stopping

4. Linear quadratic control (LQR)
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Template for Structural DP Arguments
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1. Recognize that the terminal reward/cost-to-go function 𝑉!∗ has a 
nice property (base case in induction proof).

§ Example: convexity or monotonicity

2. Then, argue that this property implies that the policy 𝝅!#𝟏∗ has 
some nice structure.

§ Example: a threshold policy is optimal

3. Extend this with an induction step: we show that if a reward-to-go 
function 𝑉 satisfies the property, then the “next” reward-to-go 
function:

𝑉# 𝑥 = m𝑎𝑥
%∈' (

𝔼 𝑔 𝑠, 𝑎, 𝑤 + 𝑉 𝑓 𝑠, 𝑎, 𝑤
that is generated by a step of the DP algorithm will also satisfy this 
property.
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Operations that Preserve Convexity
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§ Comes in handy in showing the convexity of reward-to-go functions.
§ Non-negative weighted sums:
• If 𝑓!, … , 𝑓": 𝒟 → ℝ are convex and 𝑤!, … , 𝑤" ≥ 0, then 𝑤!𝑓! + …+𝑤"𝑓"

is convex.
• For some 𝑓:𝒳×𝒴 → ℝ, the expectation 𝑔:𝒳 → ℝ defined as 

𝑔 𝑥 = ∫ 𝑓 𝑥, 𝑦 𝑤 𝑦 𝑑𝑦
is convex if 𝑤 𝑦 ≥ 0 and the mapping 𝑥 ⟼ 𝑓 𝑥, 𝑦 is convex for all 𝑦 ∈ 𝒴.

§ Composition with an affine map:
• 𝑔(𝑥) = 𝑓(𝐴𝑥 + 𝑏) is convex if 𝑓 is convex.

§ Point-wise supremum: 
• 𝑔 𝑥 = sup

#∈𝒴
𝑓 𝑥, 𝑦 is convex if 𝑥 ⟼ 𝑓 𝑥, 𝑦 is convex for all 𝑦 ∈ 𝒴.

Further reading: For a detailed treatment, please refer to the book Convex Optimization by Boyd and Vandenberghe.



Wu

Outline
14

1. Recap & roadmap

2. Template for structural DP arguments

3. Example: optimal stopping

4. Linear quadratic control (LQR)
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Asset Selling With Irrevocable Decisions
§ Discrete time setting, 𝑡 = 0, 1, … , 𝑇 − 1
§ Problem: you have an asset to sell by time 𝑇.
• At each epoch

§ You receive an offer 𝑤! drawn independently from some distribution 𝑊 (bounded).
§ You must either accept the offer and invest the money at a fixed interest rate 𝑟 > 0 or 

reject and wait for the next offer.

• Goal: maximize the expected final revenue.  

§ Notes:
• Continuous state problem!
• Assume that a rejected offer is lost.
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Asset Selling With Irrevocable Decisions
§ State 𝑠!

𝑠!"# = #sold if 𝐴! = Accept or 𝑠! = sold
𝑤! 𝑜.𝑤.

∀ 𝑡 = 0,…𝑇 − 1 .
• Set 𝑠! = 0 as a dummy variable.
• The state space is 𝑆 ⊂ ℝ ∪ sold .  

§ Action space:

𝐴! 𝑠! = #
∅ if 𝑠! = sold
Accept, Reject 𝑜. 𝑤.

§ The revenue for each period is defined as:

g! 𝑠!, 𝑢!, 𝑤! = #
0 if 𝑢! ≠ Accept
1 + 𝑟 $%!𝑠! if 𝑢! = Accept

with the revenue for the final state being:

g$ 𝑠$ = #0 if 𝑠$ = sold
𝑠$ 𝑜.𝑤.
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DP Algorithm & Optimal Policy
§ Following the DP algorithm described in the previous section, set 
𝑉!∗ 𝑠 = 𝑔! 𝑠 .  For 𝑡 = 𝑇 − 1, 𝑇 − 2,… , 0 , set:

𝑉.∗ 𝑠 = 5max 1 + 𝑟 !#.𝑠, 𝔼 𝑉./0∗ 𝑤. if 𝑠 ≠ sold
0 if 𝑠 = sold

§ Given the structure of the value-to-go functions, 𝑉.∗ 𝑠 , 
the optimal policy can be easily computed as the following threshold 
policy:

𝜋.∗ 𝑠. | 𝑠. ≠ sold = 5Accept if 𝑠. ≥ 𝛼.
Reject if 𝑠. ≤ 𝛼.

where the thresholds, 𝛼. =
𝔼 2&'(

∗ 3&
0/4 *+& , depend on time 𝑡.  

It is the maximum of 
the termination 

value 1 + 𝑟 !"#𝑠
and the continuation 

value 𝔼 𝑉#$%∗ 𝑤#
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Asset Selling With Offers Retained
§ Now consider the setting:
• The offers 𝑤,, … , 𝑤-.! are i.i.d., non-negative, bounded.
• The rejected offers are not lost.  At any period 𝑡, we can choose the highest 

offer received so far.

§ To accommodate this setting, we define the state such that

𝑠./0 = 5
sold if 𝐴. = Accept or 𝑠. = sold
max 𝑠. , 𝑤. 𝑜.𝑤.

∀𝑡 = 0,… , 𝑇 − 1 .
§ The action space and functions 𝑔.’s stay the same.
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Proposition

An optimal policy for asset selling with offers retained is a stationary 
policy 𝜋∗ = 𝜇∗, 𝜇∗, … , 𝜇∗ , where for 𝑠 ≠ sold, 

𝜋.∗ 𝑠 = R Accept if 𝑠 ≥
1

1 + 𝑟 𝔼3 max 𝑠,𝑤

Reject 𝑜. 𝑤.
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Proof (Proposition)
1. Monotonicity:  For 𝑠 ≠ sold, we can set 𝑉-∗ 𝑠 = 𝑠.  For 𝑡 = 𝑇 − 1 and 𝑠 ≠ sold, 

𝑉-.!∗ 𝑠 = max 1 + 𝑟 𝑠, 𝔼 max 𝑤-.!, 𝑠
≥ 1 + 𝑟 𝑠
= 1 + 𝑟 𝑉-∗ 𝑠

2. By induction, assume that 𝑉/0!∗ 𝑠 ≥ 1 + 𝑟 𝑉/01∗ 𝑠 .  Then
𝑉/∗ 𝑠 = max 1 + 𝑟 -./𝑠, 𝔼 𝑉/0!∗ max 𝑠, 𝑤/

≥ max 1 + 𝑟 -./𝑠, 1 + 𝑟 𝔼 𝑉/01∗ max 𝑠, 𝑤/
= 1 + 𝑟 max 1 + 𝑟 -.(/0!)𝑠, 𝔼 𝑉/01∗ max 𝑠, 𝑤/
= 1 + 𝑟 𝑉/0!∗ (𝑠)

3. Optimal stopping set: 𝑆/∗: = 𝑠 𝑠 ≥ 𝛼/ ≔ 1 + 𝑟 . -./ 𝔼 𝑉/0!∗ max 𝑠, 𝑤/
4. Convergence: thresholds 𝛼/ converge (backwards) because:

• Thresholds 𝛼! are monotonically increasing (backwards)
𝑎! ≥ 𝛼!"# → 𝑆!∗ ⊆ 𝑆!"#∗

• Thresholds 𝛼! are bounded above (bounded offers)
• Thresholds 𝛼! →

)
)*+

𝔼, max 𝑠, 𝑤 , since 1) 𝑆!∗ ⊇ 𝑆!*)∗ , 2) 𝑎./) =
)
)*+

𝔼, max 𝑠, 𝑤
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Proof (picture)

𝑇

𝑉/

0 1 2 𝑤:

𝑤1
𝑤!

𝑤:

𝑤,

Lower returns

More chances at a higher offer

𝑆/∗ = 𝑠 𝑠 ≥ 1 + 𝑟 . -./ 𝔼 𝑉/0!∗ max 𝑠, 𝑤/

As 𝑡 increases:
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1. Recap & roadmap

2. Template for structural DP arguments

3. Example: optimal stopping

4. Linear quadratic control (LQR)
a. Finite horizon LQR
b. Linear quadratic Gaussian & Certainty equivalence
c. Infinite horizon LQR & Algebraic Riccati Equations



Wu

Notation “break”
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In the following section, and in deference to the rich tradition in 
control theory, we will be using standard control theory notation

(𝑥 and 𝑢, in place of 𝑠 and 𝑎, to denote state and the control)
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Linear quadratic control
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Linear time-invariant (LTI) system

State space form

Assumptions: deterministic, finite horizon, discrete time

w.l.o.g.

Desired height

Further reading:
Chen, Chi-Tsong. Linear system 
theory and design. 1984.

Adapted from Kevin Jamieson 

eig 𝐴 ≤ 1 → stable

ℎ/0!
𝑣/0!

= 1 Δ
0 1

ℎ/
𝑣/

+ 
!
1
Δ1

Δ
𝛼/ − 𝑔

𝑥/0! 𝐴 𝑥/ 𝐵 𝑢/

𝑥/0! = 𝑓 𝑥, 𝑢/ = 𝐴𝑥/ + 𝐵𝑢/

𝑥/ ≔
ℎ/
𝑣/

− 𝑥;

𝑥; ≔
ℎ;
0

The dynamics (discrete form) are governed by the equations of motion is:

ℎ!"# = ℎ! + Δ𝑣! +
1
2Δ

& 𝛼! − 𝑔
𝑣!"# = 𝑣! + Δ 𝛼! − 𝑔
where Δ = time step (sec)
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Linear quadratic control
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Assumptions: deterministic, finite horizon, discrete time, stable

Desired height

Goal: minimize Finite horizon LQR:

(excuse the max/min…)

Adapted from Kevin Jamieson 

𝑉 𝑥,; 𝑢 = X
/<,

-.!

𝑥/-𝑄𝑥/ + 𝑢/𝑅𝑢/

𝑄 ≽ 0, 𝑅 ≻ 0

𝑢 = min
=0,…,=123

𝑉 𝑥,; 𝑢 = X
/<,

-.!

𝑥/-𝑄𝑥/ + 𝑢/-𝑅𝑢/ + 𝑥--𝑄-𝑥-

s.t. 𝑥/0! = 𝐴𝑥/ + 𝐵𝑢/ , 𝑡 = 0, 1, … , 𝑇 − 1
Terminal cost 

ℎ/0!
𝑣/0!

= 1 Δ
0 1

ℎ/
𝑣/

+ 
!
1
Δ1

Δ
𝛼/ − 𝑔

𝑥/0! 𝐴 𝑥/ 𝐵 𝑢/
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Linear quadratic control
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Theorem (Finite horizon LQR)
The optimal cost-to-go and optimal control at time t are given by:

𝑉∗ 𝑥. = 𝑥.!𝑃.𝑥.
𝑢.∗ = −𝐾.𝑥.

where
𝑃. = 𝑄 + 𝐾.!𝑅𝐾. + 𝐴 − 𝐵𝐾. !𝑃./0 𝐴 − 𝐵𝐾. , 𝑃! = 𝑄!
𝐾. = 𝑅 + 𝐵!𝑃./0𝐵 #0𝐵!𝑃./0𝐴, 𝑡 ∈ 0,… , 𝑇 − 1

Optimal control law is a linear feedback controller: 𝑥/0! = 𝐴𝑥/ + 𝐵𝑢/ = 𝐴 − 𝐵𝐾/ 𝑥/

Finite horizon LQR

𝑢 = min
'",…,'#$%

𝑉 𝑥*; 𝑢 = O
!+*

$%#

𝑥!$𝑄𝑥! + 𝑢!$𝑅𝑢! + 𝑥$$𝑄$𝑥$

s.t. 𝑥!"# = 𝐴𝑥! + 𝐵𝑢!, 𝑡 = 0, 1, … , 𝑇 − 1

𝑥/0! = 𝐴𝑥/ + 𝐵𝑢/

𝐾/

𝑢/ 𝑥/

eig 𝐴 − 𝐵𝐾/ ≤ 1 → stable
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§ Base case (stage T):
𝑉∗ 𝑥' = 𝑥'(𝑃'𝑥'
⇒ 𝑃( = 𝑄(

§ Special structure: 𝑉∗ 𝑥( = 𝑥((𝑄(𝑥( is convex.
§ Induction: assume 𝑃! holds for step t & convex, show for t-1
Recall: 𝑟! 𝑥! , 𝑢! ≔ 𝑥!.𝑄𝑥! + 𝑢!𝑅𝑢!
𝑉∗ 𝑥!/) = min

4%&'
𝑥!/). 𝑄𝑥!/) + 𝑢!/). 𝑅𝑢!/) + 𝑉∗ 𝑥!

= min
4%&'

𝑥!/). 𝑄𝑥!/) + 𝑢!/). 𝑅𝑢!/) + 𝑥!.𝑃!𝑥!

= min
4%&'

𝑥!/). 𝑄𝑥!/) + 𝑢!/). 𝑅𝑢!/) + 𝐴𝑥!/) + 𝐵𝑢!/) .𝑃! 𝐴𝑥!/) + 𝐵𝑢!/)

∇4%&'𝑉
∗ 𝑥!/) = 2𝑢!/). 𝑅 + 2 𝐴𝑥!/) + 𝐵𝑢!/) .𝑃!𝐵 = 0

𝑢!/)∗ = 𝑅 + 𝐵.𝑃!𝐵 /)𝐵.𝑃!𝐴𝑥!/) = −𝐾!/)𝑥!/)
𝑉∗ 𝑥!/) = 𝑥!/). 𝑄𝑥!/) + 𝑢!/). 𝑅𝑢!/) + 𝐴𝑥!/) + 𝐵𝑢!/)∗ .𝑃! 𝐴𝑥!/) + 𝐵𝑢!/)∗

= 𝑥!/). 𝑄 + 𝐾!/). 𝑅𝐾!/) + 𝐴 − 𝐵𝐾!/) .𝑃! 𝐴 − 𝐵𝐾!/) 𝑥!/)
= 𝑥!/). 𝑃!/)𝑥!/)

28

Proof (induction)
Finite horizon LQR:
𝑢 = min

'!,…,'"#$
𝑉 𝑥*; 𝑢 = <

#+*

!"%

𝑥#!𝑄𝑥# + 𝑢#!𝑅𝑢# + 𝑥!!𝑄!𝑥!

s.t. 𝑥#$% = 𝐴𝑥# + 𝐵𝑢#, 𝑡 = 0, 1, … , 𝑇 − 1

(principle of optimality)

(induction hypothesis)

(system equations)

(𝑅 ≻ 0, derives 𝐾' for any 𝑡)

(derives 𝑃')*)

(convexity)
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Linear quadratic control (stochastic)
30

Theorem (LQG)

The optimal cost-to-go and optimal control at time t are given by:
𝑉∗ 𝑥! = 𝑥!.𝑃!𝑥! + Σ!
𝑢!∗ = −𝐾!𝑥!

where
𝑃! = 𝑄 + 𝐾!.𝑅𝐾! + 𝐴 − 𝐵𝐾! .𝑃!*) 𝐴 − 𝐵𝐾! , 𝑃. = 𝑄J
𝐾! = 𝑅 + 𝐵.𝑃!*)𝐵 /)𝐵.𝑃!*)𝐴, Σ!/) = 𝑇𝑟 Σ𝑃! + Σ! , Σ. = 0
𝑡 ∈ 0,… , 𝑇 − 1

§ Intuition: noise terms are independent of actions à optimal actions don’t change.
§ Exercise: complete the proof.

certainty equivalence: control as if 
disturbances were known (deterministic)!

§ Assumptions: deterministic, finite horizon, discrete time
§ Gaussian noise à Linear quadratic Gaussian (LQG) problem

𝑥!*) = 𝑓 𝑥! , 𝑢! , 𝜖! = 𝐴𝑥! + 𝐵𝑢! + 𝜖! 𝜖!~𝒩 0, Σ
§ Revised optimization problem:

𝑢 = min
4(,…,4)&'

𝑉 𝑥K; 𝑢 = 𝔼 Z
!LK

./)

𝑥!.𝑄𝑥! + 𝑢!𝑅𝑢! + 𝑥..𝑄J𝑥.

subject to 𝑥!*) = 𝐴𝑥! + 𝐵𝑢! + 𝜖!
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Linear quadratic control (towards infinite horizon)
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Theorem (infinite horizon LQR)

If the system (𝐴, 𝐵) is controllable, the optimal cost-to-go and optimal control 
converges to

𝑉∗ 𝑥 = 𝑥.𝑃𝑥
𝑢∗ = −𝐾𝑥

where
𝑃 = 𝑄 + 𝐴.𝑃𝐴 − 𝐴.𝑃𝐵 𝑅 + 𝐵.𝑃𝐵 /)𝐵.𝑃𝐴

𝐾 = 𝑅 + 𝐵.𝑃𝐵 /)𝐵.𝑃𝐴

§ Assumptions: deterministic, finite horizon, discrete time
§ Revised optimization problem:

𝑢∗ = min
'",…,'#$%

𝑉 𝑥*; 𝑢 = lim
$→.

O
!+*

$%#

𝑥!$𝑄𝑥! + 𝑢!𝑅𝑢!

subject to 𝑥!"# = 𝐴𝑥! + 𝐵𝑢!
§ Before (finite horizon): finite horizon à finite sum.
§ Now, need some condition to keep sum finite.

• System (𝐴, 𝐵) is controllable if A is full rank & 𝐴̅: = 𝐵 𝐴𝐵 𝐴+𝐵 … 𝐴,)*𝐵 is full rank (n).

Algebraic Riccati Equation (ARE) 

No “final step”

Later: infinite horizon problems
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Controllability
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§ System is controllable if A is full rank & 𝐶 =
𝐵 𝐴𝐵 𝐴c𝐵 … 𝐴d#0𝐵 is full rank (n).

§ Intuition: Can s’ be reached within n steps from any s?
𝑥./0 = 𝐴𝑥. + 𝐵𝑢.

= 𝐴 𝐴𝑥.#0 + 𝐵𝑢.#0 + 𝐵𝑢.
= 𝐴c𝑥.#0 + 𝐴𝐵𝑢.#0 + 𝐵𝑢.
= 𝐴e𝑥.#c𝐴c𝐵𝑢.#c + 𝐴𝐵𝑢.#0 + 𝐵𝑢.
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Proof (intuition)

For simplicity, take 𝑃! = 𝑄! = 0
§ 𝑥!𝑃"𝑥 ≤ 𝑥!𝑃"#$𝑥
§ As 𝑇 → ∞, 𝑥!𝑃%𝑥 must converge or go to infinity
§ Controllability (for linear systems) → For every 𝑥, there is a sequence 
𝑢%, … , 𝑢&#$ (where 𝑥 ∈ ℝ&) that drives 𝑥 to 0.

§ After 𝑛 steps, can set 𝑢' = 0 for 𝑘 ≥ 𝑛.
§ Controllability 

• → 𝑥$𝑃*𝑥 is bounded above, for any 𝑥
• → 𝑃* converges to finite limit.

𝑡 − 1 𝑡

(convexity)

𝑇 (big)0

𝑉 𝑥/ = 𝑥/-𝑃/𝑥/
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LQR – final notes
36

§ Iterative LQR remains a powerful approach, e.g. in robotics.
§ Extensions:
• Continuous time (Callier & Desoer)
• Model estimation, via LS & recursive LS
• Adaptive control (Abbasi-Yadkori, 2011)
• Unknown models, robust LQR (Dean, 2017)
• Time Varying Regression with Hidden Linear Dynamics (Mania, 

2022)
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Summary  & takeaways
§Certain DP problems admit closed form solutions, such as 

optimal stopping and linear quadratic control (LQR).
§DP for problems with special structures can be analyzed by 

induction, by showing that the special structure holds from one 
step to the previous, as well as for the terminal case. Special 
structures include convexity and monotonicity.

§LQR exhibits certainty equivalence: the optimal policy remains 
the same when random disturbances are replaced with their 
means (conditional expectation).

37


